ArticlePDF Available

Distinctive, fine‐scale distribution of Eastern Caribbean sperm whale vocal clans reflects island fidelity rather than environmental variables

Wiley
Ecology and Evolution
Authors:

Abstract and Figures

Environmental variables are often the primary drivers of species' distributions as they define their niche. However, individuals, or groups of individuals, may sometimes adopt a limited range within this larger suitable habitat as a result of social and cultural processes. This is the case for Eastern Caribbean sperm whales. While environmental variables are reasonably successful in describing the general distribution of sperm whales in the region, individuals from different cultural groups have distinct distributions around the Lesser Antilles islands. Using data collected over 2 years of dedicated surveys in the Eastern Caribbean, we conducted habitat modeling and habitat suitability analyses to investigate the mechanisms responsible for such fine-scale distribution patterns. Vocal clan-specific models were dramatically more successful at predicting distribution than general species models, showing how a failure to incorporate social factors can impede accurate predictions. Habitat variation between islands did not explain vocal clan distributions, suggesting that cultural group segregation in the Eastern Caribbean sperm whale is driven by traditions of site/island fidelity (most likely maintained through conformism and homophily) rather than habitat type specialization. Our results provide evidence for the key role of cultural knowledge in shaping habitat use of sperm whales within suitable environmental conditions and highlight the importance of cultural factors in shaping sperm whale ecology. We recommend that social and cultural information be incorporated into conservation and management as culture can segregate populations on fine spatial scales in the absence of environmental variability.
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2022;12:e9449. 
|
1 of 13
https://doi.org/10.1002/ece3.9449
www.ecolevol.org
Received:9August2022 
|
Revised:3O ctobe r2022 
|
Accepted :6Octob er2022
DOI:10.1002 /ece3.9449
RESEARCH ARTICLE
Distinctive, fine- scale distribution of Eastern Caribbean
sperm whale vocal clans reflects island fidelity rather than
environmental variables
Felicia Vachon1| Ana Eguiguren1| Luke Rendell2| Shane Gero3| Hal Whitehead1
This is an op en access arti cle under the ter ms of the CreativeCommonsAttributionL icense,whichpe rmitsuse,dis tribu tionandreprod uctioninanymed ium,
provide dtheoriginalwor kisproperlycited.
© 2022 The Author s. Ecolog y and EvolutionpublishedbyJohnWiley&S onsLtd.
1Depar tmentofBiolog y,Dalhousie
University,Halifax,NovaScotia ,Canada
2SchoolofBiolog y,UniversityofSt.
Andrews,St.An drews,UK
3Depar tmentofBiolog y,Carleton
University,Ottawa,Ontario,Canada
Correspondence
FeliciaVachon,Depart mentofBiology,
DalhousieUniversity,Halifax,NS,Canada.
Email: fvachon@dal.ca
Funding information
AGOASanc tuar y;Anim alBehav ior
Societ y;NationalGeographicSociety,
Grant /AwardNumber:NGS -62320R-
19-2;NaturalSciencesandEngineer ing
Research Council of Canada
Abstract
Environmental variables are often the primar y drivers of species' distributions as
they define t heir niche. However, individuals , or groups of individuals , may some-
timesadoptalimitedrangewithinthislargersuitablehabitatasaresultofsocialand
culturalprocesses.ThisisthecaseforEasternCaribbeanspermwhales.Whileenvi-
ronmentalvariablesarereasonably successfulin describingthegeneral distribution
of sperm whales in the region, individuals from different cultural groups have distinct
distributionsaround theLesserAntillesislands. Using datacollected over 2 yearsof
dedicatedsurveysintheEasternCaribbean,weconductedhabitatmodelingandhab-
itatsuitabilityanalysestoinvestigatethemechanismsresponsibleforsuchfine-scale
distributionpatterns.Vocalclan-specificmodelsweredramaticallymoresuccessfulat
predictingdistributionthangeneralspeciesmodels,showinghowafailuretoincorpo-
ratesocialfactorscanimpedeaccuratepredictions.Habitatvariationbetweenislands
did not explain vocal clan distributions, suggesting that cultural group segregation
in the Easte rn Caribbea n sperm whale is dri ven by traditions of site/ island fidelit y
(mostlikelymaintainedthroughconformismandhomophily)ratherthanhabitattype
specialization.Ourresultsprovideevidenceforthekeyroleofculturalknowledgein
shaping habi tat use of sperm whal es within suitab le environmental co nditions and
highlighttheimportanceofculturalfactorsinshapingspermwhaleecology.Werec-
ommend that socialandculturalinformationbeincorporatedintoconservation and
managementasculturecansegregatepopulationsonfinespatialscalesintheabsence
ofenvironmentalvariability.
KEYWORDS
Caribbean,cet acean,conservation,culture,habitatmodeling,sitefidelity,spermwhale
TAXONOMY CLASSIFICATION
Behaviouralecology,Conser vationecology
2 of 13 
|
   VACHON e t al.
1 | INTRODUC TION
Itisnotuncommonforspeciestoonlyoccupyalimitedrangewithin
availablesuitable habitat. Whileenvironmentalvariables areoften
theprimar ydriverofspeciesdistribution(asafailuretomeetcertain
conditionswillreducefitness),socialfac torsmightalsolimitindivid-
uals'rangewithinawidersuitablehabitat.Thisistrueforterritorial
species (e.g., wolves, Canis lupus—O'Neiletal.,2020, chimpanzees,
Pan troglody tes verus—Herbingeretal.,2001),speciesthatshowsite
fidelit y (e.g., furseals,Arctocephalus gazella—Hoffman et al.,2006;
reef fishes, Thalassoma bifasciatum—Warner,1988), as wellas prey
typespecialists(e.g.,killerwhales,Orcinus orcaFilatova et al., 2019)
andhabitatspecialists(e.g.,bottlenosedolphins,Tursiops truncatus
Kopps et al., 2 014 , elephants, Loxodonta africana— Fishlock
et al., 2016). In case s of prey or habit at specializat ion, individ uals
learntouse,andcanspecializeon,preyorhabitatfeaturesthatare
distrib uted differently from the prey or habitat features used by
other members ofthe same species, thereby resulting ina heter-
ogenous di stribution . Territori ality, site fidelit y,p rey type spe cial-
ization , and habitat spe cialization ar e often group-level processes
that can relate to kinship and/or social learning/culture (with culture
definedasbehaviororinformationsharedwithin acommunitythat
is acquired from conspecifics through some form of social learning;
Whitehead& Rendell, 2015). For i nstance, in dividuals mi ght learn
preyorhabitatpreferencesviasociallearningwithinculturalgroups
asisthecaseinkillerwhaleecotypes(reviewedinRieschetal.,2012)
and/orviavertic alt ransmissionfromp are ntsasisthecasewithbot-
tlenosedolphin“spongers”(Krützenetal.,2005).
However,althoughtheireffectondistributioncanbequitedra-
matic, so cial factors s uch as the ones des cribed above are r arely
include d in analyse s relating to ani mal conser vation. For in stance,
habitat models, which are a widespread tool in conservation as
they allow forthe identification ofcritical habit ats forspecies're-
covery and survivalandcan offerinvaluableinformationregarding
apopulation'shealth (Redfernet al.,2006),considerenvironmental
variablesindetail but rarelyinclude cultural and socialinformation
(exceptions:Eguigurenetal.,2019; Filatova et al., 2019).
As more and more evidence suggests that culture is widespread
in the anim al kingdom (e.g., Whit en, 2017), there is increasing in-
terest in the role of cultural transmission in determining species
distribution (Brakesetal.,2021).Thismightbeparticularlyimport-
antforspecies for which many group-levelbehaviors are culturally
transmitted, such as the sperm whale (Physeter macrocephalus)(e.g.,
Cantor et al., 2015).
Sperm wh ales are deep -diving ce taceans that l ive in all of the
world's oceans (Whitehead, 2003). They have a complex social
struc ture in whic h females an d calves live at l ower latitud es year-
round in s table matril ineally-bas ed social unit s of about 10 mem-
bers (Christal et al., 199 8). Interactions between individuals and
social unit s are thenrestricted to members of the samevocal clan,
a higher-order social s tructure defined by vocal dialec t, that can
occur in sympatry(Gero et al., 2016;Rendell&Whitehead,2003).
Vocal clans can include hundreds to tens of thousands of whales
(Rendell & Whitehead, 2003), are identified by distinctive usage
of stereot yped patter ns of clicks called co das (Gero et al., 2016;
Rendell&Whitehead,2003),andhavebeendocumentedworldwide
(Amano et al., 2014; Amorim et al., 2020; Gero et al., 2016;Huijser
et al., 2020; Rendell & Whitehead, 2003). B eyond acoust ic differ-
ences,spermwhalesfromdifferentvocalclansalsodisplaydifferent
social be haviors (Cant or & Whitehead , 2015),movement patterns
(Vachon et al., 2022;Whitehead&Rendell,2004),anddistributions
(Eguiguren et al., 2 019; Vachon et al., 2022).Becausevocalclanscan
liveinsympatry andgenetic variation is insufficienttoexplainthis
behavior al variatio n (Rendell et al. , 2012), it is believed t hat vocal
clans are cultural entities, with distinctivebehaviors being socially
learnedlargelywithinsocialunits(Cantoretal.,2015).Theexistence
oftheseculturallydrivenvocalclanshas impor tant implicationsfor
thebehavior,ecology,anddistributionofspermwhales,inasimilar
waytotheecotypes of killer whales (Riesch et al., 2012).Therefore,
consider ing conservat ion metrics such a s habitat use with out ac-
counting for culture might lead to misinterpretation as culture can
alter behavior and distribution and subdivide populations in unex-
pectedways(Brakesetal.,2021;Whiten,2017 ).
The popu lation of sperm w hales in the E astern Car ibbean has
been extensively studied but, until recently, at a relatively small
spatial sc ale (i.e., largel y around a single isla nd). Since 2005, T he
DominicaSpermWhale Projec t(DSWP)hasstudied over19sperm
whale social units around Dominica (Gero et al., 2014 ),gaining im-
portantinsightonspermwhalesocialstructureandbehavior(Gero
et al., 2014, 2016).In2019and2020,weextendedthisresearcharea
and condu cted surve ys to include a wid er range along t he Lesser
Antilleanchain(from St.Kitt sandNevistoGrenada).Fromthis,we
gained insightintothewayvocal clansinfluencedthespatial orga-
nization oftheEasternCaribbean spermwhalepopulation (Vachon
et al., 2022).EasternCaribbeanvocalclans(EC1andEC2)appearto
havever ydistinc tivesmall-scaledistributions, with EC1foundpre-
dominantlyaround Dominica,Guadeloupe andSt.Vincentandthe
GrenadinesandEC2foundaroundthetwocentralislands,St.Lucia
and Martinique. This is not unheard of as sperm whale vocal clans
inthe EasternTropicalPacifichave alsobeenshowntohavesome-
what different distributions over a somewhatsimilar scale of 100s
of kilometers (Eguiguren et al., 2019).However,thecauses ofsuch
segregationhavenotbeeninvestigateduntilnow.
Weproposetwocompetinghypothesestoexplainvocalclanis-
land segregation in the Eastern Caribbean.Thefirstis habitat spe-
cializati on, where islan ds vary in the amo unt of each vocal cla n's
preferred habit at type. In this case, foraging strategies specialized
tospecifichabitattypescouldbedrivingthedistributionofEastern
Caribbean spermwhale vocalclans. Assperm whales spendabout
75% of their time fo raging (Whiteh ead & Weilgart, 1991), differ-
ences in for aging strategies relating to environmental variation could
leadtolargedifferencesinoveralldistribution.Thesecondhypoth-
esis is voca l clan-spec ific tradit ions of island pref erences that ar e
arbitrarywithrespecttothehabitateachislandoffers.Thisisakinto
aclassicstu dyofmatingsitec hoiceinblueheadwr asse(Thalassoma
bifasciatum) by Warner (1988) which first showed that preferred
   
|
3 of 13
VACH ON e t al.
coralheadswereinphysicaltermsnodifferentfromunusedones,a
patternrobusttotranslocationwithpersistentpreferencessocially
maintainedbytraditions.InthecaseofCaribbeanspermwhales,the
differ ent Lesser Anti lles islands mig ht be analogous to th e differ-
ent wrasse mating sites, with individuals from different vocal clans
preferentiallystayinginthevicinityofcertainislandsforreasonsof
tradition(site/islandfidelity) rather than specific physical features.
Whiletranslocationexperimentsarenotpossibleforspermwhales,
wecanaskwhet herclan-specifichabi tatprefe rence sma pontovari-
ationintheamountofpreferredhabitatacrossislandstounderstand
whetherthesepreferencesarelikelytobetraditionalornot.
Therefore,inthispaper,weattempted todif ferentiatebetween
habitat specialization and site/island fidelity by modeling sperm
whale hab itat use in th e Eastern C aribbea n, assessin g the relati ve
importance ofisland geography and habitat characteristics in pre-
dicting sperm whale presence by identifying impor tant environ-
mentalvariablesforEC1andEC2whalesindependently,andtesting
whether the distribution of these variables varies significantly
acrosstheEC1andEC2“islands.”IfEasternCaribbeanspermwhales
are habit at specialis ts, we exp ect spec ific environ mental var iables
tobecloselylinked with EC1andEC2distributionsandthereto be
stark variationinatleastsomeofthesevariablesbet weenEC1and
EC2 “islands .”On t he contrar y,if E astern Ca ribbean spe rm whale
distribution is the result of culturally mediated island/site fidelity,
weexpectislandvicinitytobeabetterpredictorofEC1/EC2sperm
whale pre sence and enviro nmental vari ables to not be signi ficant
factorsinourmodels. Suchanapproach notonlyaimsforadeeper
understandingofagroup-livingandculturalspecies'distributionand
behavior,butalso yieldsa novel approach to integrateintoconser-
vationpolicy.
2 | METHODS
2.1  | Field methods
Data were collected between the months of February and April
2019 and Januar y and March 2 020 in the East ern Carib bean. We
surveye d sperm whale pres ence between the i slands of St. Kitt s
andNevisandGrenadaalongthreetransectlines(LeewardInshore:
5–7nauticalmilesfromcoast,LeewardOffshore: 15nauticalmiles
fromcoastandWindward Offshore:5–7nauticalmilesfromshore)
(Figure 1) from a 12 m aux iliary sailb oat using a two-element hy-
drophonearray (two high-frequency Magrec HPO3 elements with
low-cut f ilter set at 2 kHz) towed behind the vessel on a 100 m
cable. O nce encountered a coustically, fema le sperm whales we re
followed, u sing the towed hydrop hone with the d irection sen sing
software Click DetectoronPAMGUARD,forhourstodays.Codasto
identif yvocalclanswererecordedviaaFirefaceUCorUMC202HD
USBaudiointerfaceconnectedtoaPCcomputerrunningsoftware
PAMGuard(Gillespieetal.,2009),samplingat96 kHzandrecording
continuouslyduringsurveys.TheGPSlocationofourresearch ves-
selwas recorded on a GPS marine chartplotter(StandardHorizon
in 2019 and Raymarinein 2020) every5 min. Given thatwe could
identifysocialunitsinrealtimeusingphotoidentification(seeGero
et al., 2014),weintentionallyspentmoretimewithgroupsofwhales
for which we had little or no prior data and, if conditions allowed,
stayed with unknown groupsuntilwehadrepeatsof multiple indi-
vidual's flukesandhad obtained atleast 80codas(this allowedfor
highconfidenceinidentifyingthevocalclanthatthegroupbelonged
to)(Vachonetal.,2022).
2.2  | Assigning GPS coordinates to vocal clans
All individuals identified on the same daywere considered part of
the same g roup if they had coor dinated behavior an d movement
(Gero et al., 2014). Their co das were used to id entify the gr oup's
voc alcl anme mb ershipfollow ingm et hodsbyHe rs he tal.(2021)(see
Vachon et al., 2022).T heGP Spositionofou rresearchve sselwa sas-
signed to a vocal clan for the length of the encounter: From the time,
we first heard the characteristic echolocation clicks of sperm whales
until we could not hear them or chose to leave the whales due to
weather orlogisticalconstraints(Whitehead, 2003).Wedidnotin-
clude enc ounters with U nit 12 (potential EC 3 vocal clan) ( Vachon
et al., 2022)inthisanalysisaswehaverelativelylittledataregarding
theirdistributioncomparedwithEC1andEC2.WeconsideredGPS
locations for which we had EC3 presence as the presence of sperm
whalesbutdidnotincludethemaseitherEC1orEC2presence.
2.3  | Habitat model variables
We included s even topographic al variables (water depth—Depth,
slope— Slope, dist ance to neares t submarine c anyon—Canyon, dis-
tance to the escarpmentEscarp, distance to the abyss—Abyss,
distance to shelf— Shelf, and distance to the center of the nearest
channel between islands—Channel); six oceanographic variables
(eastward current speed— Ecurr, northward current speed— Ncurr,
zonalvelocityvariance—Zvelv,meridionalvelocityvariance—Mvelv,
inflow through the nearest channel— Inflow, and chlorophyll-a
concentration— Chla); and four general variables (latitude—Lat,
longitude— Long, nearest island— Island, and whether the posi-
tion is leeward or windward of the Lesser Antilles island chain—
Windward)—for a total of 17 potentia l variables ( Table S1), in our
ha bi t at mod els .Th ese pre dic torva ria ble swe re cho senas the yw ere
usefulindescribingspermwhalehabitatintheMediterraneanand
South Pa cific and/or are thoug ht to relate to the aggr egation of
spermwhale'sprey,mesopelagicsquid(Claroetal.,2020; Eguiguren
et al., 2019;Pirottaetal.,2011).
Bathymetric data were obtained from the 2020 General
Bathymetric Chart of the Oceans (https://www.gebco.net/data_
and_products/gridded_bathymetry_data/) and extracted using
ArcGIS.Slopewascalculated fromtheGEBCObathymetriclayer
usingArcGISSlopetoo l. Weu se dd is t an ce togeom or phicfeatu re s
canyon, escarpment,abyss, andshelf aspredictorvariablesasin
4 of 13 
|
   VACHON e t al.
the habit at models of Cl aro et al. (2020). Geo morphic fea tures'
definitionsandlocationswereobtainedfromHarriset al. (2014)
v ia B l u e Ha b i t a t (w w w . b l u e h a b i t a t s . o r g )(Figure 1).Oceanographic
variables—eastward current speed, northward current speed,
zonal velocity variance, and meridional velocity variance—
were obtained from the NOAA drifter-derived climatolog y of
global near-surface current s database (Laurindo et al., 2017).
Chlorop hyll-a concent ration was ex tracte d from the NOA A vis-
ible infr ared imaging ra diometer suite ( VIIRS) sate llite data and
averaged over the last 3 months prior to each dat a point to ac-
count for thelag between primary production and sperm whale
preyavailability(Jaquet, 1996). Measures of inflow through the
nearestchannelwereobtainedfromJohnsetal.(2002).Thefour
generalpredictors wereincluded toaccountforunexplained, or
unaccounted,environmentalvariation inourdata.Nearestisland
isacategoricalvariablethatcorrespondstothenearestislandto
a GPS point ( in geodesic di stance) and wa s extrac ted using the
NeartoolinArcGIS.Windward/leewardisabinaryvariablethat
describeswhetheraGPSpoint isleeward,east,(N)orwindward
(Y)oftheLesserAntillesislandchain.
The variables depth and slope wererecordedat 0.004° spatial
resolution; variables eastward current speed, northward current
speed, zonal velocity variance, and meridional velocity variance
wererecordedat0.25°resolution,andChlorophyll-aconcentration
was recorded at 0.036° resolution. As these resolutions are lower
than that of our GPS coordinates, we used ArcGIS tools Near and
Spatial jointoextracttheclosestvaluefore achvar iabletoeachGPS
coordinate.Webelievethattheresolutionatwhichthosevariables
are availab le will not negative ly affect our mo deling approac h as
theyhavelittlesmall-scalevariability.
FIGURE 1 Mapdisplayingthe
geomorphic features used to model
spermwhaledistributionintheEastern
Caribbean.Vesseltracksdisplayedindark
gray.
E, G
E, Ga
F
A
F
F
O
, NOAA, USGS
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
Shelf
Abyss
Canyons
Escarpment
Geomorphic features
Slope
±
050 10025 Kilometers
   
|
5 of 13
VACH ON e t al.
2.4  | Habitat modeling
WeusedGPSfixesfromtheresearchvessel'schartplottertakenat
5minintervalsasourunitsofanalysis.Eachdatapointcorresponds
to specific coordinates at a certain time, along with whether sperm
whaleswereacousticallyencounteredatthatpointandtime,aswell
astheclantowhichencounteredwhalesbelongedto(datasetavail-
able as supplementar y material, Data S1). We fittedfour different
habitat modelt ypes (Presence/Absence, EC1, EC2, and Vocal clan)to
ourdata using twoindependent setsofvariables(Environment and
Island)(Figure 2,definedbelow).Here,wedescribeeachmodeltype
andtherationalefortestingthemacrossthetwovariablesets.
1. Presence/Absence:Thismodeldescribedthegeneraldistribution
of sperm whales in the Lesser Antilles, regardless of vocal clan
member ship. The re sponse vari able was 0 for ac oustic abs ence
of sperm whale and 1 for acoustic presence of sperm whales.
This allowe d us to identify key v ariables for s perm whale hab -
itat in the Lesser Antilles and assess whether modeling sperm
whale distribution independently for each vocal clan resulted
in a significant improvement in predictive accuracy.
2. EC1/EC2: These models described the distribution of sperm
whales that were assigned to the EC1 and EC2 vocal clans, respec-
tively.FortheEC1model,theresponsewas0fortheacousticab-
sence of sperm whales or the presence of EC2 and/or EC3 whales
and1fortheacousticpresenceofEC1whales.Conversely,forthe
EC2 model, the response was 1 for the acoustic presence of EC2
whales and 0 otherwise. These models allowed us to compare
theperformance of vocalclan-specifichabitat models tothat of
generalhabitatmodels(i.e.,Presence/Absence)aswellas identify
importantenvironmentalvariablesforpredictingthepresenceof
EC1andEC2whales,respectively.Theseenvironmentalvariables
werethenusedinourhabitatsuitabilityanalysis(seebelow).
3. Vocal cl an: This model w as fitted to ide ntify the var iables that
best distinguishbetweenthepresenceofEC1andEC2.The re-
sponse was 0 for EC1 acoustic presence and 1 for EC2 acoustic
presen ce. Here, a high predi ctive accurac y would suggest t hat
individuals from different vocalclansprefer contrasting habitat
modelvariablesand,therefore,suggestanimportantcontribution
ofsocialfactors(i.e.,vocalclanmembership)tospermwhaledis-
tribution.The datasetusedfortheVocal clan model was smaller
than that for the Presence/Absence, EC1, and EC2 models since
weonly usedsperm whale presencedat apoints(1sinPresence/
Absencemodel).
We tested these four habitat model types independently on
two set s of variables: eit her a full set of enviro nmental varia bles
(Environmentset), ornearestislandvariables(Islandset),andcom-
pared their predictive performance. The Island set includes vari-
ables Island and Windward, while the environment set includes all
remaining 15 environmental predictors and Windward. Weex pect
models using the Environmentvariableset to per form muchbetter
than the ones using the Islandvariablesetifspermwhalesarehab-
itatspecialistandtheoppositeifpatternsofdistribution aredriven
bysite/islandfidelity.Toavoidconfusion,modelnamesontheirown
(e.g., Presence/Absence)willrefertothemodelsperformedusingthe
Environmentvariable set and models followedby“Island”will refer
to the models performed using the Islandvariables et(e.g.,Presence/
Absence Island).
Modeling approach
Habitat models were fitted using generalized estimating equations
(GEEs;Liang&Zeger,1986),inwhichvariableswereusedaspredictors
of sperm whale presence (Presence/Absence, EC1, and EC2 models) or
vocalclanmembership(Vocal clanmodel),followingPirottaetal.(2011)
and using package geepack inR(Højsgaard et al., 2005).Thisapproach
has been us ed in other cetace an distributi on studies (e.g., E guiguren
et al., 2019; Pirottaetal.,2014; Tepsich et al., 2014)andisappropriate
whendat aarerecordedcontinuouslyalongsurveytransects.Wechose
GEEsoverothermethodssincetheyexplicitlyaccountforautocorrela-
tion (Liang&Zeger,1986).Data point s were clumped into blocks that
corresponded to sperm whale encounters. Under this framework, resid-
ua l sar e allo w edt obec o rrel a tedw i thin b lock s , butw eas s u mei n d epen d -
encebetweenblocks.Weusedencountersasourblockingvariable as
FIGURE 2 Summaryofhabitatmodelingapproach.
Sperm whale data
Presence/Absence
0: Absence
1: Presence (EC1, EC2,
EC3)
EC1
0: Absence, EC2, EC3
1: EC1
EC2
0: Absence, EC1, EC3
1: EC2
Vocal clan
0: EC1
1: EC2
Environment Island Environment Island Environment Island Environment IslandVariable Type
Model Type
6 of 13 
|
   VACHON e t al.
itwassuccessfullyusedinsimilarstudies(Eguigurenetal.,2 019;Pirotta
et al., 2011),andwefoun dthistob eanappropriategrou pingvar iableas
theautocorrelationamongdatapointseventuallyconvergedat0within
each encounter (Figure S1 ).Wemodeledtherelationshipbetweenvari-
ablesandspermwhale presenceaslineartermsonly,asincludingnon-
linear relationships as in previous studies (Eguiguren et al., 2019;Pirotta
et al., 2011)onlyslightlyincreasedoverallfitandpredictiveaccuracy,at
thecostofinterpretability.
Westructuredourmodelingapproachintofivesteps(FigureS2,
described below), which were repeated independently for the
Presence/Absence, EC1, EC2, and Vocal clanmodels.Rcodeavailable
assupplementar ymaterial(CodeS1).
Preparing variables
We looked at the v ariables' distr ibutions and log ged ones, which
were highl y skewed. All var iables were th en standa rdized by sub-
tract ing the mean an d dividing by sta ndard deviatio n to facilitate
model convergence.
Removing collinearity
First,wecalculatedcorrelationcoefficientsbetweenallpairsofpre-
dictorvariables.Variableswhichhadcorrelationcoefficientsabove
0.4wereconsideredto be correlated and not includedinthesame
model.Fromthis,webuiltallpossiblecombinationsofuncorrelated
predictors into potential models, which were then tested for mul-
ticollinearityby measuring the generalized varianceinflationfactor
(GVIF)(carpackageinR).ModelswhichhadapredictorwithaGVIF
value above3were discarded,and all other potential models with
GVIFvaluesbelow3 wereusedasthefirst step in back ward step-
wise selection.
Model selection
Weused QIC (Pan, 2001), an extension of the Akaike Information
Criterion (AIC) that applies to GEE models, to compare models
using manu al backward stepwise sele ction (package MuMIn in R ,
Bartoń,2013).Westarte dfr omallthepotentialco mbi nat ionsofu n-
correlatedpredictors(step2)andcomparedtheirQIC(ΔQIC)aswe
removed a sin gle variabl e in turn. Th e model with t he lowest QI C
isthenused as the startingmodel for the nex tstep, repeating this
procedu re until the rem oval of any variab le in the model l eads to
anincreaseinQIC.ThehighertheabsolutevalueofΔQICbetween
models, the larger the gap in their predictive performance. As such,
wechosemodels withfewervariablesiftheir ΔQICwas10or less
fromtheoriginalmodeltoencouragevariableremoval.Thevariables
within the final model are then ordered according to how much their
removalincreasesQIC(fromhighesttolowest).
Model validation
The best models from step 3 were then further evaluated using
leave-one-out cross-validation where encounters were iteratively
removedfromthedata.Wecomparedthepercentageofdatapoints
thatwerecorrectlyassigned(predictiveaccuracy,Hastieetal.,2009)
betwee n the step 3 mo dels to that of th e same mode l minus one
variable. If the predictive accuracy of models with fewer variables
washigherthanthatoftheoriginalmodel,weremovedthatvariable
and sta rted this pr ocess again u ntil predic tive accurac y was high-
estforthemodelfromwhichwedidnotremovevariables.Thiswas
doneasstepwiseselectionusingQICcansometimesretainspurious
variables(Pirottaetal.,2011).
Model performance was then assessed in terms of how well mod-
elsfitthedata(goodness offit)by measuringthepropor tionofdat a
points co rrect lyassigne da sp re sencesorabs en ce s(orEC1/EC 2i nt he
vocal cla n models) using co nfusion matr ices (Fieldin g & Bell, 1997).
Totransformmodelpredictionsfromarangeof probabilitiestoabi-
nary (presence orabsence), weused the point of maximumdistance
betweenthe receivingoperating characteristic (ROC)curve and the
45-degree diagonal as the cut-off probability, usingthe R package
ROCR(Singet al., 2005). Additionally,wemeasuredmodelgoodness
offit bycalculatingtheareaundertheROCcurve(AUC), which also
reflectsoverallmodelperformance(Fielding&Bell,1997).
We finally compared the performance metrics described be-
tween models with Environment variables andIsland variables for
eachmodelt ype(Presence/Absence, EC1, EC2, and Vocal clan)tode-
terminewhetherdifferencesin distribution aredrivenprimarily by
habitatspecializationorsite/islandfidelit y.
Prediction maps
Todisplaytheresultsofourhabitatmodels,webuiltpredictionmaps
fromthebestpost-cross-validationPresence/Absence, EC1, EC2, and
Vocal clanmodels. Mapswerebuiltbyimportingour modelpredic-
tionsfromRintoArcGISPro.
2.5  | Habitat suitability analysis
Tofurtherestablish whethervocal clans have distinct distributions
asaresultofhabitatspecializationorsite/islandtraditions,wecon-
ducted a habitat suitability analysis for each Lesser Antilles island.
This was done by creating a 0.1 degree grid of GPS points that
extend ed 30 nautic al miles of fshore (repr esentative of o ur effor t,
Figure 1)leewardofeachislandandassigningthesepoints,andtheir
corresponding environmental variable values,tothe closestisland.
Fromthis,weobtainedarangeofvaluesforeachenvironmentalvar-
iable for eachisland whichwe couldthen compare between “EC1”
and “EC2” islands. Only environmental variables that were part of
the final EC1 and/or EC2modelswereincludedintheseanalysesas
theyweretheonesthatweresuggestedtoimpactvocalclandistri-
bution.Wecomparedtheenvironmentalconditionsbetweenislands
using t-te sts to test whet her each environme ntal variable sig nifi-
cantly differed betweenislands predominantlyusedby EC1andis-
landspredominantlyusedbyEC2.
We expecte d environme ntal variab les to be corre lated to pre-
ferred islands ifthe environmental variables themselves are driv-
ing vocal clan distribution (e.g., EC1 whales prefer canyons and
Dominica,GuadeloupeandSt.Vincent havemorecanyonsthanSt.
LuciaandMar tinique)anduncorrelatedifvocalclansaredistributed
   
|
7 of 13
VACH ON e t al.
arounddifferentislandduetositefidelitytraditions(e.g.,allislands
have similar a mounts of canyons b ut EC1 whale are only se en in
Dominica,Guadeloupe,andSt.Vincent).
3 | RESULTS
Overourtwofield seasons(Februar ytoApril2019and January to
March 2020 ), we spent 107 days at sea (Figure 1). Sper m whales
were located throughout the leeward transects, with higher con-
centrations found around Martinique, St. Lucia, and Dominica, but
were not hea rd to windward of t he islands. We had a tot al of 50
sperm whale encounters, 24 with EC1 groups, 22 with EC2 groups,
five with a n EC3 group, and o ne with both EC2 a nd EC3 (Vachon
et al., 2022),fromwhichwerecorded778 hofspermwhalevocaliza-
tions.Altogether,weobtained26,776GPScoordinatedatapoints.
3.1  | Habitat modeling
Refer to Figure 3forafullbreakdownofthePresence/Absence, EC1,
EC2, and Vocal clan habitat models at every selection step. Best
pre-cross-validation and post-cross-validation habitat models, as
well as corresponding results using the Islandv ariable set , can be
found in Table 1andTableS2withassociatedQIC,AUC,goodness
offit,andpredictiveaccuracy.Below,weexpandongeneralresults
fromeachmodeltype.
3.1.1  |  Presence/Absencemodel
Thismodelhad50.62%predictiveaccuracyand69.8%goodnessof
fit in determining sperm whale presence, regardless of vocal clan,
using environmentalvariables. Sperm whaleswere more of ten en-
countere d in areas with low chl orophyll-a conc entration, clo se to
the continental shelf, relatively close to between-island channels
andfurtherawayfromcanyons(FigureS3).Thenegativecorrelation
betweenpresenceandchlorophyll-aconcentrationcouldbecaused
bytherelativelylowchlorophyll-aconcentrationsacrosstheLesser
Antilleschain, spatiallagbetweenWindwardproductivityandlee-
wardbiomassorthetemporallagbetweenprimaryproductivityand
cephalopod biomass (Jaquet, 1996; Pirot ta et al., 2011), alth ough
wetriedtoaccountforthisbyconsideringchlorophyll-aconcentra-
tion over the last 3 months as in Eguiguren et al. (2019). The final
FIGURE 3 Summaryofhabitatmodelingresultsforeachhabitatmodelateachstep(Environmentvariableset).
Presence/Absence
log transform Slope
GVIF removes 3 models
23 potenal models
Best backward model:
Pres ~ Windward +
Chla + Shelf + Zvelv +
Inflow + Channel +
Canyon
Removes: Windward,
Zvelv, Inflow
Pres ~ Chla + Shelf +
Channel + Canyon
Figure S4
EC1
log transform Slope
GVIF removes 3 models
23 potenal models
Best backward model:
Pres ~ Ecurr +
Windward + Escarp +
Abyss + Zvelv
Removes nothing
Pres ~ Ecurr +
Windward + Escarp +
Abyss + Zvelv
Figure S7
EC2
logtransform Slope
GVIF removes 6 models
20 potenal models
Best backward model:
Pres ~ Mvelv +
Windward + Inflow +
Chla + Channel + Depth
+ Zvelv
Removes: Inflow
Pres ~ Mvelv +
Windward + Chla +
Channel + Depth + Zvelv
Figure S8
Vocal clan
logtransform Slope
log transform Chla
GVIF removes 7 models
17 potenal models
Best backward model:
Pres ~ Ecurr + Channel
+ Zvelv
Removes: Channel
Pres ~ Ecurr + Zvelv
Figure S10
STEP 1:
Prepare variables
STEP 2:
Remove collinearity
Potenal models
STEP 3:
Model selecon
STEP 4:
Model validaon
Best model
STEP 5:
Predicon map
8 of 13 
|
   VACHON e t al.
Presence/Absence Islandmodel(Pres ~ Windward + Island)performed
better than thePresence/Absencemodel(Pres ~ Chla + Shelf + Chan
nel + Canyon) with ΔQIC of 2281.4. The Presence/Absence Island
modelhad59.61%predictiveaccuracyand65.8%goodnessoffitin
determining sperm whale presence and suggests that more sperm
whales oc cupy the water s off the cen tral islan ds of Dominic a and
Martinique (Figure S4),for reasonsnotfully explained bythe envi-
ronmentalvariablesthatweconsidered.
3.1.2  |  EC1andEC2models
ModelingspermwhaledistributionindependentlyforEC1andEC2
increas ed model pre dictive accu racy, goodness of f it and lowered
QIC for both the models using environment and island variables
(Table 1).
EC1 whales prefer areas of low eastward current speed, low
zonal veloc ity variance, wit hin the escarpm ent designation, aw ay
from the abyss, leeward of the Lesser Antilles chain (Figure S5).
Bycontrast,EC2whales preferareaswith high meridional velocity
variance,lowchlorophyll-aconcentration,deeperintheocean,and
lowzonalvelocityvariance,closertochannelsleewardoftheLesser
Antilles chain (Figure S6).Unsurprisingly,variableWindward was im-
portant for both the EC1 and the EC2 models since sperm whales
werenotheardwindwardof the islandchain.Thisresult shouldbe
viewed ca utiously since th e leeward side of the is land chain was
muchmoreextensivelysurveyedthanthewindwardside(Figure 1).
Zonalvelocityvariance(Zve lv) was also impor tant forboth models
withEC1sperm whalesencounteredin areas ofhighzonalvelocity
variance and EC2 sperm whales encountered in areas with low zonal
velocityvariance(FiguresS5 and S6).
Thebest EC1model(Pres ~ Ecurr + Windward + Escarp + Abyss
+ Zvelv) and the best EC2 model(Pres ~ Mvelv + Windward + Chla
+ Channel + Depth + Zvelv) p erformed w orse than the EC1 Island
(Pres ~ Windward + Island)andEC2 Island(Pres ~ Windward + Island)
models with respective ΔQICof3115.5and501.4.Accordingtoour
predic tion maps, we exp ect EC1 sperm whal es to aggregate ne ar
Dominica,Guadeloupe,St.VincentandtheGrenadinesandSt.Kitts
and Nevis; a nd EC2 sperm wha les to aggregat e near St.Luc ia and
Martinique (Figures S7 and S8). Suc h predicti ons not only refl ect,
asexpected,thefieldobservationsthatwereusedtoconstructthis
model (Vachon et al., 2022),but also resultsfromthelong-termre-
searchoffDominicabytheDSWP,withEC2groupsseldomencoun-
tered off D ominica (onl y 2.5% of photo ide ntificati on encounter s;
Gero et al., 2016; Vachon et al., 2022).
3.1.3  |  Vocalclanmodel
This model had great accuracy in distinguishing between EC1and
EC2 vocal cla n distribut ion using both th e Environment and Island
variablesets(92%and96.5%goodnessoffit,and49.7%and76.8%
predictive accuracy). EC1whales were more often encountered in
areas of low ea stward cu rrent spee d and high zonal ve locity var i-
ance, while EC2 whales were more often encountered in areas
of high east ward current speed and low zonal velocity variance
(Figure S9).
The Vocal clan Islandmod el (Pre s ~ Windward + Island)performed
better thantheVocal clanmodel(Pres ~ Ecurr + Zvelv)withΔQICof
5033.8,andEC1whalespredominantlyneartheislandsofDominica,
GuadeloupeandSt .VincentandtheGrenadinesandEC2 predomi-
nantlynearSt.LuciaandMartinique(FigureS10).
3.2  | Habitat suitability
The lower QIC and higher predictiveaccuracy of theEC1 Island,
EC2 Island, and Vocal clan Island models (Table 1) su g ges tth a tv ocal
TAB LE 1  Bestvariablecombinationsforeachmodelt ypewithassociatedQIC,ΔQIC,AUC,goodnessoffit,andpredictiveaccuracy
(post-stepwisecross-validation)
Model type Variable set QIC ΔQIC AUC
Goodness of
fit (%)
Predictive
accuracy (±SE)
Presence/
Absence
Env Chla + Shelf + Channel + Canyon 32,966.3 2281.4 0.71 69.8 50.62%(±0.02)
Island Windward + Island 30,684.9 - 0.69 65. 8 59.61%(±0.04)
EC1 Env Ecurr + Windward + Escarp +
Abyss + Zvelv
19,006. 3 311 5.5 0.79 7 7.1 56.65%(±0.03)
Island Windward + Island 15,890.8 - 0.86 72.9 72.05% (±0.04)
EC2 Env Mvelv + Windward + Chla + Channel +
Depth + Zve lv
16,52 2. 2 501.4 0.86 75.35 57.73% (±0.02)
Island Windward + Island 16,020.8 - 0.83 73.2 62.27%(±0.04)
Vocal clan Env Ecurr + Zvelv 6152.1 5033.8 0 .92 92.0 4 9.7 % (±0.05)
Island Island 1118. 3 - 0.99 96 .5 76.8%(±0.14)
Note:Usinghabitatmodelsandhabit atsuitabilit yanalyses,wepresentanddiscussaremarkableandunexpectedpatterninthedistributionof
EasternCaribbeansp ermwhales.UnliketheirPacificconspecifics ,EasternCaribbeanspermwhaleshaveshort-rangemovementsanddisplayisland
fidelityacrossmultipleyears.Suchfine-scaledistributionappear stobeculturallydrivenwithdifferentculturalgroups(calledvoc alclans)occupying
distinctiveislandsalongtheLesserAntillesasaresultoftraditionsofsitefidelit yratherthanenvironmentalvariation.
   
|
9 of 13
VACH ON e t al.
clandistributionmightbebetterexplainedby site/islandfidelity
than theuse of specific habitat variables. Ourhabitatsuitability
results also corroborated this conclusion as the environmental
variables that wereconsidered significant predictors of EC1 and
EC2 presence in the EC1 and EC2modelsdidnotsignificantlydif-
fer bet ween EC1 and EC2 islands, apa rt from Abyss and Depth
(t = −4.01, p-value = .007 and t = 3.6 8, p-value= .010, respec-
tively;Figure 4).Altogetherthissuggeststhatspermwhalesfrom
differ ent vocal clans do not us e different islan ds because they
haveaunique,orsignificantlydifferent,selectionofphysicalhabi-
tat properties.
Similar results were obtained if we only used surveyed grid
poi nt sr atherth antheex trapolated30n au tica lmileoffshore0 .1d e-
greegridtoc arryoutthisanalysis(FigureS11).
4 | DISCUSSION
In this stu dy,we a ttempted to tes t the competing hy potheses of
habitatspecialization and traditionalsite/islandfidelity in explain-
ingthe starkdif ferentiationinEC1and EC2vocalclandistributions
intheEasternCaribbean. Our resultssuggest that site/islandfidel-
ity,ratherthanenvironmentalvariation, isthemaindriver ofsperm
whale dis tribution in t he Lesser Antil les, with dif ferent process es
operating at the species and vocal clan levels.
At the species level, sperm whales use areas that are close to
the continental shelf and channels (Presence/Absencemodel).Such
correlations between sperm whale distribution and topography
have been documented for sperm whales elsewhere (e.g., Claro
et al., 2020;Pirottaetal.,2011;Wong&Whitehead,20 14)andmost
FIGURE 4 Habitatsuitabilit yofEC1(aquamarine)andEC2(red)islandsaccordingtosignificantenvironmentalvariablerangewithina0.1
degreegridextending30nauticalmilesleewardofeachisland.NosignificantdifferencesinvariablevaluesbetweenEC1andEC2islands.
0%
25%
50%
75%
100%
Habitat type
Shelf Escar pment SlopeCanyonAbyss
0.02
0.04
0.06
Meriodional velocity variance
−0.4
−0.2
0.0
Eastward current speed
0.025
0.050
0.075
Zonal velocity variance
−3000
−2000
−1000
0
Depth (m)
0.1
0.2
0.3
0.4
St.Kitts & Nevis Montserrat Antigua Guadeloupe Dominica Martinique St.Lucia St.Vincent & Grenadines Grenada
Chlorophyll−a concentration
10 of 13 
|
   VACHON e t al.
probablyreflectfoodavailabilityasverticalwatermovementassoci-
atedwithslopedareas likely promotesprimaryandsecondarypro-
ductivity (Tynanetal., 2005). However,such coarsemodelsfail to
capturethevariabilitycreatedbydifferencesinunitmovement,clan
membership,andforagingsuccessatfinerspatialscales(asreported
byJaquet & Whitehead,1996inthe SouthPacific)and seemedto
beimpacted, even at this scale, by thewhales' bias towardcertain
islands with the Presence/Absence Island model per formingbetter
than the Presence/Absence (Table 1).
Th e d r a mati c i n creas e i nthe p e r f o r m ance o fvo c a l c lan- s p e cific
models over a general species presence model is one of the most
strikingresult sofourstudy.ThepreferenceoftheEC2vocalclan
forSt.LuciaandMartiniqueandtheEC1vocalclanforDominica,
Guadeloupe, and St. Vincent and the Grenadinesdoesnotrelate
toenvironmentalvariables,astheydonotsignificantlyorsubstan-
tiallydif feracrossislands(Figure 4),butratherseemtobecaused
bysite/islandfidelitywiththeEC1 Island, EC2 Island, and Vocal clan
Islands models performing much better than theircounterpart s
(Table 1).In this case, culture, viaconformism and homophilyto
island preference traditions,wouldact as a barriertopopulation
mixture(e.g.,Centolaetal.,2007; Riesch et al., 2012).Wesuggest
thatindividualspermwhalesstayinthevicinit yofspecificislands
becausethosearetheislandswheretheywereraised,wherethey
learnedto forage,where their closeassociates and family mem-
bers can beencountered, and wherethey can avoidinteractions
with mem bers of other voc al clans. Confo rmism and hom ophily
have alread y been repor ted in East ern Caribb ean sperm w hales
with highly stereotypical vocal repertoires (conformity, Konrad
et al., 2018)andindividualsexclusivelyassociatingwithmembers
oftheirownvocalclan(homophily,Geroetal.,2016).Itisalsonot
surprising that individual sperm whales could learn island prefer-
encesfromothermembersoftheirsocialunitsasotherbehaviors
areculturallymaintainedwithin vocal clans (e.g.,socialvocaliza-
tions [Gero et al., 2016; Rendell &W hitehead,2003], dive syn-
chrony[Cantor&Whitehead,2015], movement patterns [Vachon
et al., 2022; Whitehead & Rendell, 2004], and social structures
[Cantor & Whitehead, 2015]) andsince cultural transmission has
been suggested asthemost likely mechanism for the emergence
of vocal clans themselves (Cantor et al., 2015).
4.1  | Limitations
Thisstudyislimitedinitstemporalscope.WhileEC1and EC2distri-
bution patternswerestableoverthe2 yearsofthisstudy,andwhile
theyappeartohavebeenstablesince2005(Geroet al.,2014 , 2016;
Vachon et al., 2022), shift s could stil l occur over longe r timesca les,
as it did in the Galapagos (Cantor et al., 2016). However,while the
location of Eastern Caribbean voc al clans might change in future,
the mechanisms responsible for their spatial segregation are likely
toremainthesame.Thisstudy might also belimited bytheenviron-
mental variablesthatwereincludedinhabitatmodels. However,this
isunlikely as we cover a wide arrayofenvironmental variable types
(geomorphicfeatures, oceanographicprocesses,and biological pro-
cesses),includingvariablesthatwerepreviouslyconsideredimportant
forspermwhalehabitat(e.g.,Claroetal.,2020; Eguiguren et al., 2019 ;
Pirottaetal.,2011)andenvironmentalvariablesarerarelytotallyun-
correlated.Futureresearch couldinvestigatesperm whaleprey den-
sity (e.g., fromsquid species survey and scat samples) and examine
how prey den sity varies w ith the prese nce of differen t vocal clans
and/orthe proximity ofdifferent islands. Measures ofsperm whale
preydensityremainundocumentedintheLesserAntilles.
4.2  | Implications for conservation
Theperformanceofourhabitatmodelswasgreatlyimprovedbythe
inclusionofaculturalindicator.Wesuggestthatthelowpredictive
accuracy of our Presence/Absencemodeliscausedbyconfound-
ing varia bles across vo cal clans , something t hat could als o explain
whyotherspermwhalehabitatmodelssometimesfailtoreachhigh
predictiveaccuracywhencomparedtoothercetaceanspecies(e.g.,
Claro et al., 2020; Tepsich et al., 2 014).
Ourresultshighlight how cultural factors canleadtoimport-
ant, management-relevantvariations in the way populationseg-
ments use any given habitat, evenat relatively small geographic
scales foralarge, highlymobile,and pelagicanimal.Inthis case,
tradit ions of site/island fi delity appea r to be a more import ant
determinant of sperm whale distribution within suitable habitat
than are env ironmental var iables. Adding t his cultural len s, not
only allowedfor a betterunderstanding of population structure,
but also habitat use—two crucial variables in conservation and
management.
Likemanyotherpopulations,EasternCaribbeansperm whalesare
now facing unprecedented anthropogenic threats related to global
warming, increased ocean noise, and other human activities (e.g.,
Weilgar t, 2007; Whitehead et al., 2008). Sperm whales studied off
Dominica (predominantly EC1 units) were declining at a 4.5%/year
ratebetween2010and2015(Gero&Whitehead,2016),andthesame
might be tr ue for sperm whale s inhabiting the ot her Lesser Antill es
islands.Under these circumstances, it iscritical to builddetailed hab-
itat models which capture both impor tant culturaland environmental
variables. These habitat models cannot only be used to help protect
the population asawhole,but also identif y areasofhigh importance
foreachculturalgroup.Thisalignswithrecentconservationshiftaway
fromsolelygeneticdiversitytotheincorporationofculturaldiversit yas
animport antcomponentofpopulations'health(Brakesetal.,2021)and
supports the recognition of sperm whale vocal clans as independent
evolutionarilysignificantunits(ESU)forconservationandmanagement.
4.3  | Implications for sperm whale ecology/
psychology
This studyaimed at incorporating both environmental and cultural
variability into the commonly used ecological and conservation
   
|
11 of 13
VACH ON e t al.
approachofhabitatmodeling.Byindependentlymodelingvocalclan
distribution,wewereabletogainamoredetailedinsightintosperm
whale population structure, the mechanisms responsible for their
distribution, and greatly increase habitat model accuracy. Our re-
sultssug gestthatspermwhalehabit atuseintheEasternCaribbean
ispredominantlyshapedbyculturalinformationratherthanenviron-
mental cues. Given the matrilineal social structure of these groups,
this not only highlights the importance of older females, moth-
ers, aunts, and grandmothers as repositories of knowledge within
social uni ts and voca l clans (as is the ca se in elephant s—McCo mb
et al., 2001),butalsoimpliesthatspermwhalesareabletorecognize
and commu nicate fine -scal e cultural b oundarie s in the absen ce of
physical barriers or environmentalgradient s. Over long timescales,
these bo undaries ar e unlikely to be im permeabl e (as few EC2 en-
countershavebeendocumentedinDominica;Geroetal.,2016)and
might change (e.g., Eastern Tropical Pacific vocal clan turnover—
Cantor et al., 2016), b ut nonetheles s remain cultural ly driven. As
such,ourfindings haveimplicationsbeyondtheEasternCaribbean,
and beyond s perm whales, to ou r understand ing of cultural spe-
cies.Itiscrucialtoassessthedistribution,andbehavior,ofcomplex
species inalltheircomplexity(genetic,environmental,cultural, and
theirintersections)toproperlyconserveandunderstandthem.
AUTHOR CONTRIBUTIONS
Shane Gero:Methodology(supporting);writing–reviewandedit-
ing (equal). Luke Rendell: Fundin g acquisition (le ad); investigatio n
(suppor ting); wr iting – revi ew and editing (e qual). Hal Whitehead:
Fundingacquisition(supporting); investigation(supporting);super-
vision (le ad); writing – review and e diting (equal). Felicia Vachon:
Conceptualization(lead);datacuration(lead);formalanalysis(lead);
funding acquisition (supporting); investigation (lead); methodol-
ogy(lead);project administration(lead);visualization(lead); writing
–originaldraft (lead).Ana Eguiguren:Formalanalysis (supporting);
investigation (supporting); methodology (supporting); resources
(equal);writing–reviewandediting(equal).
ACKNOWLEDGMENTS
This research wouldnot have been possible without support from
ourpar tners:CARIMAMandtheUniversityoftheWestIndies,and
funders: the National Geographic Society (NGS-62320R-19-2),the
AGOA Sanct uary, the Natura l Sciences and Eng ineering Rese arch
Council of Canada (NSERC), and the Animal Behavior Society.We
would also thank the crew that came on Balaena in 2019 and 2020 to
helpwithdatacollectionaswellasDr.EnricoPirottaforgivingadvice
onhabitat modeling. This research was conducted with permission
fromthe Departmentof Fisheries ofSt.Lucia,the Departmentof
Marine ResourcesofSt.KittsandNevis,theFisheriesDepar tment
ofGrenada,theMinistr yofAgricultureofMontserrat ,theFisheries
Division of Dominica, the Ministry of Agriculture, Forestry and
Fisheries of St. Vincent and the Grenadines and the Canadian
CouncilonAnimalCare(CACC).Wearealsogratefultothepastand
current fundersofThe DominicaSperm WhaleProjectwhosecon-
tributionsenabledthedelineationoftheclans.
CONFLICT OF INTEREST
Wehavenoconflictofinteresttodisclose.
DATA AVAIL AB ILI T Y STATE MEN T
Data are available as supplementary material and on Dr yad at:
https://doi.org/10.5061/dryad.mcvdnck4c.
ORCID
Felicia Vachon https://orcid.org/0000-0002-5883-6009
REFERENCES
Amano, M., Kourogi, A., Aoki, K., Yoshioka, M., & Mori, K. (2014).
Differences in spermwhalecodasbetwe entwowaters off Japan:
Possiblegeographicseparationofvocalclans.Journal of Mammalogy,
95(1),169–175.h t t p s : / / d o i . o r g / 1 0 . 1 6 4 4 / 1 3 - M A M M - A - 1 7 2
Amorim , T.O. S ., Rendell, L., Di Tullio, J., Secchi, E. R., Castro, F.R., &
Andriolo, A. (2020). Coda repertoire and vocal clans of sperm
whales in the western Atlantic Ocean. Deep Sea Research Part
I: Oceanographic Research Pap ers, 160, 103254. h t t p s: //d o i .
org /10.1016/j.dsr.2020.10325 4
Barto ń, K. (2013). MuMIn: Multi- model inference. In R pack age version
1.10.0. (Vol. 1). R p ackage version 1.42 .1. https://CRAN.R-proje
ct.org/packa ge=MuMIn
Brakes, P., Carroll, E. L., Dall, S. R. X., Keith, S. A., McGregor, P. K.,
Mesnic k, S. L., N oad, M. J., Re ndell, L ., Robbins , M. M., Rut z, C.,
Thornton,A., Whiten,A., Whiting, M. J., Aplin,L .M .,Bearhop,S .,
Ciucci, P.,Fishlock, V.,Ford, J. K. B.,NotarbartolodiSciara ,G., …
Garlan d, E. C. (2021). A de epening und erstand ing of animal cul-
ture suggests lessons for conservation. Proceedings of the Royal
Society B: Biological Sciences, 288(1949), 20202718. h t t p s: //d o i .
org/10.1098/rspb.2020.2718
Cantor, M., S hoemaker, L. G ., Cab ral, R. B ., Flores , C. O., Varga , M., &
Whitehead,H.(2015).Multilevelanimalsocietiescanemergefrom
cultural transmission. Nature Communications, 6(1), 8091. h t t p s: //
doi.org/10.1038/ncomm s9091
Cantor, M., & W hitehead, H . (2015). How does so cial behavior di ffer
among sperm whale clans? Marine Mammal Science, 31(4), 1275–
1290. https: //doi.org/10.1111/mms.12218
Cantor,M.,Whitehead, H., Gero,S.,& Rendell,L.(2016).Culturalturn-
over among G alápagos sperm whales. Royal Society Open Science,
3(10),160615.https://doi.org/10.1098/rsos.160615
Centola, D., González-Avella, J. C., Eguíluz, V. M., & San Miguel, M.
(2007).Homophily,culturaldrift, and theco-evolutionofcultural
groups. The Journal of Conflict Resolution, 51(6),905–929.
Christ al, J., Whiteh ead, H., & Lett evall, E. (1998). Sperm w hale social
units: Variation and change. Canadian Journal of Zoology, 76(8),
1431– 144 0.
Claro,B.,Pérez-Jorge,S.,&Frey,S.(2020).Seafloorgeomorphicfeatures
asan alternative approach into modellingthedistributionof ceta-
ceans. Ecological Informatics, 58, 101092. ht tp s://doi.org /10.1016/ j.
ecoinf.2020.101092
Eguiguren,A.,Pirotta,E.,Cantor,M.,Rendell,L.,&Whitehead,H.(2019).
Habitatuseofculturally distinct Galápagossperm whalePhyseter
macrocephalus clans. Marine Ecology Progress Series, 609, 257– 270.
https://doi.org/10.3354/meps1 2822
Fielding,A.H.,&Bell,J.F.(1997).Areviewofmethodsfortheassessment
of prediction errors in conservation presence/absence models.
Environmental Conservation, 24(1),38–49.htt ps://doi.org /10.1017/
S0376892997000088
Filatova,O.A .,Shpak,O.V.,Ivkovich,T.V.,Volkova, E.V.,Fedutin, I.D.,
Ovsyan ikova, E. N. , Burdin, A . M., & Hoy t, E. (2019). Lar ge-sc ale
habitatsegregationoffish-eatingandmammal-eatingkillerwhales
12 of 13 
|
   VACHON e t al.
(Orcinus orca)inthewesternNorthPacific.Polar Biology, 42(5),931–
941. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 0 0 3 0 0 - 0 1 9 - 0 2 4 8 4 - 6
Fishlock,V.,Caldwell,C., &Lee,P.C.(2016).Elephantresource-usetra-
ditions. Animal Cognition, 19(2),429–433 .ht tps ://doi.org/10.1007/
s 1 0 0 7 1 - 0 1 5 - 0 9 2 1 - x
Gero, S. , Bøttche r,A ., Whiteh ead, H., & Ma dsen, P. T.(2016). So cially
segreg ated, sympatri c sperm whale cla ns in the Atlantic O cean.
Royal Societ y Open Science, 3(6),160 061.
Gero, S., Milligan, M., Rinaldi, C ., Francis, P., Gordon, J., Carlson, C.,
Steffen ,A., Tyack, P.,Evans,P.,& Whitehead, H. (2014). Behavior
andsocialstruc tureofthespermwhalesofDominica,WestIndies.
Marine Mammal Science, 30(3), 905–922. https: //doi.org/10 .1111/
mms.120 86
Gero, S., & Whitehead, H. (2016). Critical decline of the Eastern
Carib bean sperm w hale populat ion. PLoS One, 11(10), e0162019.
https://doi.org/10.1371/journal.pone.0162019
Gillespie, D., Mellinger, D., Gordon, J., McLaren , D., Redmond,
P., McHugh, R., Trinder, P., Deng, X., & Thode, A . (2009).
PAMGUARD: Semiautomated, op en source software for real-
time acoustic detection and localisation of cetaceans. The
Journal of the Acoustical Society of Am erica, 125, 2547. ht t ps : //d o i .
org /10.11 21/1.4808713
Harris, P. T., Macmillan-Lawler, M., Rupp, J., & Baker, E. K. (2014).
Geomorphologyoftheoceans.Marine Geology, 352, 4– 24. h t t ps : //
doi.org/10.1016/j.margeo.2014.01.011
Hastie , T.,T ibshirani , R., & Friedma n, J. (Eds.). (20 09). The elements of
statistical learning. Springer. https://doi.org/10.1007/978-0-
3 8 7 - 8 4 8 5 8 - 7 _ 1
Herbinger, I., Boesch, C., & Rothe, H. (2001). Territory characteris-
ticsamong threeneighboringchimpanzeecommunitiesintheTaï
National Park, Côte d'Ivoire. International Journal of Primatology,
22(2),143–167.https://doi.org/10.1023/A:10 0566 3212997
Hersh, T. A., Gero, S ., Rendell, L., & Whitehead, H. (2021).
Using identity calls to detect structure in acoustic dat aset.
Methods in Ecology and Evolution, 12, 1668–1678. ht t p s : //d oi .
org /10.1111/2041-210X .1364 4
Hoffm an, J. I., Trathan , P. N ., & Amos, W. (20 06). Geneti c tagging r e-
veals extreme site fidelity in territorial male Antarctic fur seals
Arctocephalus gazella. Molecular Ecology, 15(12), 38 41–3 847.
https ://doi.or g/10.1111/ j.1365-294X .2 006.03 05 3. x
Højsgaard,S .,Halekoh, U., &Yan, J.(2005). The RPackagegeepackfor
generalized estimating equations. Journal of Statistical S oftware,
15(1),1–11.https://doi.org/10.18637/jss.v015.i02
Huijser,L.A.E.,Estrade,V.,Webster,I.,Mouysset,L.,C adinouche,A .,&
Dulau-Drouot,V.(2020). Vocal reper toiresand insightsintosocial
struc ture of sperm whales (Physeter macrocephalus) in Mauriti us,
southwe stern Ind ian Ocean. Marine Mammal Science, 36( 2), 638–
657.http s://doi.o rg /10.1111 /mms.12673
Jaquet,N.(1996).Howspatialandtemporalscalesinfluenceunderstand-
ing of sper m whale dis tributi on: A review. Mammal Review, 26 (1),
5 1 6 5 . h tt ps ://doi.or g/10.1111/ j.1365-2907.1996 .tb0 0146 .x
Jaquet, N., & Whitehead, H. (1996). Scale-dependent correlation of
spermwhaledistributionwithenvironmentalfeaturesandproduc-
tivityin theSouth Pacific. Marine Ecology Progress Series, 135, 1– 9.
https://doi.org/10.3354/meps1 35001
Johns,W.E.,Townsend,T.L.,Fratantoni,D.M.,&Wilson,W.D.(2002).
On the Atl antic inflow to th e Caribbea n Sea. Deep Sea Research
Part I: Oceanographic Resea rch Papers, 49(2), 211–243.h t tp s : //d o i.
o r g / 1 0 . 1 0 1 6 / S 0 9 6 7 - 0 6 3 7 ( 0 1 ) 0 0 0 4 1 - 3
Konrad,C.M.,Frasier,T.R.,Rendell,L.,Whitehead,H.,&Gero,S.(2018).
Kinship and as sociation d o not explain vo cal reper toire vari ation
among individual sperm whales or social units. Animal Behaviour,
145, 131– 140. https://doi.org/10.1016/j.anbehav.2018.09.011
Kopps, A . M., Ackermann, C. Y., Sherwin, W.B ., Allen, S. J.,Bejder,L.,
&K rützen, M. (2014). Cultural transmission of tool usecombined
withhabitat specializationsleadsto fine-scalegeneticstructure in
bottlenose dolphins.Proceedings of the Royal Society B: Biological
Sciences, 281(1782),1–8.
Krützen,M.,Mann,J.,Heithaus,M.R.,Connor,R.C.,Bejder,L.,Sherwin,
W.B.,& Marler,P.(2005).Culturaltransmissionoftool useinbot-
tlenose dolphins. Proceedings of the National Academy of Science s of
the United States of America, 102(25),8939–8943.
Laurindo,L .C .,Mariano, A. J.,& Lumpkin,R.(2017).Animprovednear-
surfacevelocity climatologyfortheglobal oceanfromdrifterob-
servations. Deep Sea Re search Part I: Oce anographic Rese arch Papers,
124, 73– 92. https://doi.org/10.1016/j.dsr.2017.04.009
Liang, K .-Y.,& Zeger, S. L.(1986).Longitudinal data analysis using gen-
eralized linear models. Biometrika, 73(1), 13–22. h t t p s :// d oi .
org/10.2307/2336267
McComb , K., Moss, C ., Durant, S. M ., Baker, L., & Sayia lel, S. (2001).
Matriarchs as repositories of social knowledge in African elephants.
Science, 292(5516),491–494.
O'Neil, S. T., Vucetich, J. A., Beyer, D. E., Hoy, S. R., & Bump, J. K.
(2020). Territoriality drives preemptive habitat selection in re-
covering wolves: Implications for carnivore conservation.
The Journal of Animal Ecolog y, 89(6), 14 33 –14 47. h t tp s : //d o i.
org /10.1111/1365-265 6.13199
Pan, W. (2001). Akaike's information criterion in generalized es-
timating equations. Biometrics, 57(1), 120–125. h t tp s : //d o i .
org/10.1111/j.0006-341x.2001.00120.x
Pirotta, E., Matthiopoulos, J., MacKenzie, M., Scott-Hayward, L., &
Rendell, L. (2011). Modelling sperm whale habitat preference:
A novel approach combining transect and follow data . Marine
Ecology Progress Series, 436, 257– 272. https://doi.org/10.3354/
meps09236
Pirott a, E., Thompson , P. M., Miller, P. I., Brookes, K . L., Cheney, B.,
Barton,T.R.,Graham,I.M.,&Lusseau,D.(2014).Scale-dependent
foraging ecolog y of a marine top predator modelled using pas-
sive acous tic data. Functional Ecology, 28(1 ), 20 6–217. h t t ps : //d o i .
org /10.1111/1365-2435.12146
Redfern ,J.V.,Ferguson,M.C.,Becker,E.A.,Hyrenbach,K.D.,Good,C.,
Barlow,J.,Kaschner,K.,Baumgartner,M.F.,Forney,K.A.,Ballance,
L.T.,Fauchald,P.,Halpin, P.,Hamazaki, T.,Pershing,A .J.,Qian,S .
S.,Read,A.,Reilly,S.B.,Torres,L.,&Werner,F.(2006).Techniques
forcetacean–habitatmodeling.Marine Ecology Progress Series, 310,
271– 29 5. https://doi.org/10.3354/meps3 10271
Rendell,L.,Mesnick,S.L.,Dalebout,M.L.,Burtenshaw,J.,&Whitehead,
H. (2012). C an genetic d ifferen ces expla in vocal dial ect vari ation
in sperm whales, Physeter macrocephalus? Behavior Genetics, 42(2),
332– 3 43 . h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 1 9 - 0 1 1 - 9 5 1 3 - y
Rendell, L. E., & Whitehe ad, H. (2003). Vocal clans in sperm whales
(Physeter macrocephalus).Proceedings of th e Royal Society of London.
Series B: Biological Sciences, 270 (1512), 225–231. h t t ps : //d o i .
org /10.1098/rsp b.2002. 2239
Riesch, R., Barrett-Lennard, L. G ., Ellis, G. M., Ford, J. K. B ., &
Deecke, V. B. (2012). Cultur al traditions and the evolution of
reproductive isolation: Ecological speciation in killer whales?
Biological Journal of the Linnean Society, 106 (1), 1–17. ht t p s :// do i .
org /10.1111/j .1095-8 312 .2 012.0 1872 .x
Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005).
ROCR:VisualizingclassifierperformanceinR.Bioinformatics,
21(20),3940–3941.https://doi.org/10.1093/bioinformatics/
bti623
Tepsich,P.,Rosso,M.,Halpin,P.N.,&Moulins,A .(2014).Habitatprefer-
encesoftwodeep-divingcetaceanspeciesinthenorthernLigurian
Sea. Marine Ecology Progress Series, 508, 247–260. h t t p s :// do i .
org/10.3354/meps1 0851
Tynan,C.T.,Ainley,D.G.,Barth,J.A.,Cowles,T.J.,Pierce,S.D.,&Spear,
L.B.(2005).Cet acean distributions relativetooceanprocessesin
the nor thern California Current Syste m. Deep Sea Research Part
   
|
13 of 13
VACH ON e t al.
II: Topical Studies in Oceanography, 52(1), 145–167. h t t p s: //d o i .
org/10.1016/j.dsr2.2004.09.024
Vachon, F., Hersh, T. A., Rendell, L., Gero, S., & Whitehead, H. (2022).
Oceannomadsor Islandspecialists?Culturally drivenhabitatpar-
titioningcontrast sin scalebetween geographicallyisolatedsperm
whale populations. Royal Societ y Open Science, 9(5),211737.ht t p s : //
doi.org/10.1098/rsos.211737
Warner, R. R. (1988). Traditionality of mating-site preferences in
a coral reef fish. Nature, 335(6192), 719–721. ht t p s : //d o i.
org /10.103 8/335719a0
Weilgar t, L. S. (2007 ). The impact s of anthropogeni c ocean noise on
cetaceans and implications for management. Review, 85(11),1091–
1116.https://doi.org/10.1139/Z07-101
Whitehead, H. (2003). Sperm whales: Social evolution in the ocean.
UniversityofChicagoPress.
Whitehead, H., McGill, B., & Worm, B . (200 8). Diver sity of deep-
water cetaceans in relation to temper ature: Implications for
ocean war ming. Ecology Letters, 11(11), 1198–1207. ht t p s : //d oi .
org /10.1111/j .1461- 0248. 20 08 .0 123 4. x
Whitehead,H.,&Rendell,L.(20 04).Movements,habitatuseandfeeding
success of culturalclans ofSouth Pacific spermwhales. Journal of
Animal Ecology, 73(1),19 0–196.
Whitehead, H., & Rendell, L. (2015). The cultural lives of whales and dol-
phins.UniversityofChicagoPress.
Whitehe ad, H., & Weilgar t, L. (1991). Patterns of v isually obser vable
behaviour and vocalizations in groups of female sperm whales.
Behaviour, 118(3/4),275–296.
Whiten , A. (2017). A seco nd inherit ance syste m: The exten sion of bi-
ologythroughculture.Inter face Focus, 7(5), 20160142.h t t p s :// d oi .
org /10.1098/rsfs. 2016 .0142
Wong, S. N. P.,& Whitehead,H. (2014).Seasonal occurrence of sperm
whales (Physeter macrocephalus) around Kelvin Seamount in the
Sargasso Sea in relation to oceanographic processes. Deep Sea
Research Part I: Oceanographic Research Papers, 91, 10–16.h t t p s ://
doi.org/10.1016/j.dsr.2014.05.001
SUPPORTING INFORMATION
Additional supporting information can be found online in the
Suppor tingInformationsectionattheendofthisarticle.
How to cite this article: Vachon, F., Eguiguren, A., Rendell, L.,
Gero,S.,&Whitehead,H.(2022).Distinctive,fine-scale
distributionofEasternCaribbeanspermwhalevocalclans
reflectsislandfidelityratherthanenvironmentalvariables.
Ecology and Evolution, 12, e94 49. https://doi.org/10.1002/
ece3 .9449
... Several bathymetric and oceanographic covariates (Table 1) were obtained for each segment, based on their potential to influence sperm whale distribution (e.g. Waring et al., 1993;Praca et al., 2009;Pirotta et al., 2011;Tepsich et al., 2014;Mannocci et al., 2015;Breen et al., 2016;Claro et al., 2020;Vachon et al., 2022). Salinity was not included due to its close relationship with temperature in the Gulf Stream (Pauthenet et al., 2022) and its likely correlation with SST. ...
... Although not included in the spring DSM model, whales in the second cruise also tended to be detected in regions of low slope; the mean slope for detections made in spring (0.66 o ) was not significantly different to the mean slope in winter (0.61 o ) (t 236 = 1.43, p = 0.16). Although steep slope has been found to be a key driver for sperm whale presence in other regions (Praca et al., 2009;Mannocci et al., 2015;Tepsich et al., 2014), the MAPS surveys support the findings from other studies that have not found such a strong influence (Waring et al., 1993;Pirotta et al., 2011;Breen et al., 2016;Claro et al., 2020;Vachon et al., 2022). However, it should be noted that several sperm whales were detected during MAPS on the continental slope during off-effort surveying, and as relatively little dedicated on-effort surveying was dedicated to that region, more effort should be spent there before concluding that the region only supports low densities of sperm whales. ...
... In addition to latitude and longitude, several bathymetric and oceanographic parameters were used to generate the DSM (Table 1) and were selected on the basis of their potential to influence sperm whale distribution and their availability for the whole survey area. These parameters have been linked to sperm whale distribution in other studies, and included depth (Cañadas et al., 2005;Pirotta et al., 2011;Mannocci et al., 2017b;Pace et al., 2018;Pirotta et al., 2020), slope (Cañadas et al., 2005;Praca and Gannier, 2008;Pirotta et al., 2011;Pirotta et al., 2020), aspect (Pirotta et al., 2011;Pirotta et al., 2020), SST (Cañadas et al., 2005;Praca and Gannier, 2008;Pirotta et al., 2011;Pirotta et al., 2020), chlorophyll (Jaquet et al., 1996;Praca and Gannier, 2008;Mannocci et al., 2017b), distance to isobath (including 0, 200 and 1,000 m; Praca and Gannier, 2008;Pace et al., 2018;Sahri et al., 2020;Avila et al., 2022), distance to bathymetric features (such as canyons, escarpments, ridges, seamounts, shelves, slopes, terraces and troughs; Mannocci et al., 2017b;Sahri et al., 2020;Vachon et al., 2022), mixed layer thickness (Avila et al., 2022) and local currents (Vachon et al., 2022). Dynamic oceanographic parameters, such as SST, chlorophyll, depth of mixed layer and water speed/direction, can vary at timescales from seconds to decades. ...
... In addition to latitude and longitude, several bathymetric and oceanographic parameters were used to generate the DSM (Table 1) and were selected on the basis of their potential to influence sperm whale distribution and their availability for the whole survey area. These parameters have been linked to sperm whale distribution in other studies, and included depth (Cañadas et al., 2005;Pirotta et al., 2011;Mannocci et al., 2017b;Pace et al., 2018;Pirotta et al., 2020), slope (Cañadas et al., 2005;Praca and Gannier, 2008;Pirotta et al., 2011;Pirotta et al., 2020), aspect (Pirotta et al., 2011;Pirotta et al., 2020), SST (Cañadas et al., 2005;Praca and Gannier, 2008;Pirotta et al., 2011;Pirotta et al., 2020), chlorophyll (Jaquet et al., 1996;Praca and Gannier, 2008;Mannocci et al., 2017b), distance to isobath (including 0, 200 and 1,000 m; Praca and Gannier, 2008;Pace et al., 2018;Sahri et al., 2020;Avila et al., 2022), distance to bathymetric features (such as canyons, escarpments, ridges, seamounts, shelves, slopes, terraces and troughs; Mannocci et al., 2017b;Sahri et al., 2020;Vachon et al., 2022), mixed layer thickness (Avila et al., 2022) and local currents (Vachon et al., 2022). Dynamic oceanographic parameters, such as SST, chlorophyll, depth of mixed layer and water speed/direction, can vary at timescales from seconds to decades. ...
Article
Full-text available
Acoustic surveys for sperm whales (Physeter macrocephalus) were conducted in the Mediterranean Sea in summer 2018 as part of the vessel-based component of the ACCOBAMS Survey Initiative (ASI). Equal-spaced zigzag transects provided uniform coverage of key sperm whale habitats and were surveyed using a towed hydrophone array deployed from a research vessel at speeds of 5-8 knots. A total of 14,039 km of tracklines were surveyed in the western basin, Hellenic Trench and Libyan waters, with an acoustic coverage of 10% realised for sperm whales. During these surveys, 254 individual sperm whales were detected on the trackline, with an additional 66 individuals off-track. Sperm whales were only seen ten times on-track, with an additional 16 off-track sightings. Estimates of slant range to echolocating whales were used to derive density estimates through both design- and model-based distance sampling methodologies. An acoustic availability of 0.912 (sd = 0.036) was derived from via published models. When correcting for availability bias, a design-based abundance estimates of 2,673 individuals (95% CI 1,739-4,105; CV = 0.21) was derived for the surveyed blocks, which incorporated most known sperm whale habitat in the Mediterranean Sea. The equivalent model-based estimate was 2,825 whales (2,053-3,888; CV = 0.16). Over 97% of detected whales were in the western basin, with highest densities in the Algerian and Liguro-Provencal Basins between Algeria and Spain/France. In the eastern basin, detections were sparse and concentrated along the Hellenic Trench. A density surface modelling (DSM) exercise identified location and benthic aspect as being the most instructive covariates for predicting whale abundance. Distance sampling results were used in a power analysis to quantify the survey effort required to identify population trends. In the most extreme scenario modelled (10% per annum decline with decennial surveys), the population could have dropped by 90% before the decline was identified with high statistical power. Increasing the regularity of surveys would allow population trends to be detected more expediently. Mediterranean sperm whales are listed as Endangered on the IUCN’s Red List and the need for urgent conservation measures to reduce injury and mortality remains paramount for this unique sub-population.
... trait strength of evidence references coda dialect excellent [20,[33][34][35][36]39] geographical extent excellent [20,29,39] small-scale distributions (10's km) good [25,44] large-scale movements (days-years) good [28,29] small-scale movements (hours) good [23,29] feeding success good [23] changes in feeding success with El Niño ok [23] reproductive rates ok [24] diving synchrony (babysitting) ok [26] homogeneity of social relationships within social units ok [26] duration of social relationships indication [26] diet indication [27] 1 ...
... The known Dominica whales were rarely found far from Dominica, and different islands had either very predominantly EC1 or very predominantly EC2 social units [29]. Differences in distribution between the clans could not be explained by differences in habitat features, but rather the vicinity of clans to particular islands themselves (most likely caused by the traditions of social units, closely linked to their clan membership) [44]. As a dramatic example, the waters off Martinique, just 30 km from EC1-dominated Dominica, contain almost entirely EC2 social units. ...
Article
Full-text available
Sperm whale society is structured into clans that are primarily distinguished by vocal dialects, which may be symbolic markers of clan identity. However, clans also differ in non-vocal behaviour. These distinctive behaviours, as well as clan membership itself, are learned socially, largely within matrilines. The clans can contain thousands of whales and span thousands of kilometres. Two or more clans typically use an area, but the whales only socialize with members of their own clan. In many respects the closest parallel may be the ethno-linguistic groups of humans. Patterns and processes of human prehistory that may be instructive in studying sperm whale clans include: the extreme variability of human societies; no clear link between modes of resource acquisition and social structure; that patterns of vocalizations may not map well onto other behavioural distinctions; and that interacting societies may deliberately distinguish their behaviour (schismogenesis). Conversely, while the two species and their societies are very different, the existence of very large-scale social structures in both sperm whales and humans supports some primary drivers of the phenomenon that are common to both species (such as cognition, cooperation, culture and mobility) and contraindicates others (e.g. tool-making and syntactic language).
... Although not included in the spring DSM model, whales detected during Cruise 2 also tended to be detected in regions of low slope; the mean slope for detections made in spring (0.66 o ) was not significantly different to the mean slope in winter (0.61 o ) (t236 = 1.43, p = 0.16). Although high slope has been found to be a key driver for sperm whale presence in other regions (Praca et al. 2009, Mannocci et al. 2015, Tepsich et al. 2014, the MAPS surveys support the findings from other studies that have not found such a strong influence (Waring et al. 1993;Pirotta et al. 2011;Breen et al. 2016;Claro et al. 2020;Vachon et al. 2022). It is possible that the presence of warmer Gulf Stream waters over the regions of steepest slope in the study area did not provide ideal habitat for sperm whales. ...
... Many cetacean species are highly mobile and frequently move across arbitrary national or other jurisdictional boundaries. Even within a single species, we find variation in residency and ranging patterns (e.g., sperm whales, Vachon et al. 2022; killer whales, Ford 2019; common bottlenose dolphins (Tursiops truncatus), Oudejans et al. 2015). Yet, researchers in different regions of the world often have vastly different levels of access to resources (financial, technical, etc.), which can result in a patchy understanding of a species throughout its full range. ...
Chapter
Full-text available
The world’s cetaceans (like most of biodiversity) are in crisis, and the need for well-informed conservation action has never been greater. Scientific advancements over the last few decades have provided much insight on the reproductive anatomy, physiology, and behavior of whales, dolphins, and porpoises. Our goal in this chapter is to link scientific findings to practical actions that will improve resilience and conservation prospects of cetaceans. We provide an overview of human activities and their impacts on cetacean reproduction and review the progress (or lack thereof) toward conserving species, with a particular focus on those for which sociality and culture may be important to population recovery. For all cetaceans, it is important to preserve or, where necessary and feasible, reestablish the ecological, demographic, and social conditions that allow the animals to reproduce successfully in their natural environment. The better we understand and integrate knowledge concerning cetacean reproductive health into conservation strategies, the better the chances of achieving species recovery, protecting biodiversity, and preventing future extinctions.
Article
Full-text available
The sperm whale ( Physeter macrocephalus ) is a deep-diving cetacean with a global distribution and a multi-leveled, culturally segregated, social structure. While sperm whales have previously been described as ‘ocean nomads’, this might not be universal. We conducted surveys of sperm whales along the Lesser Antilles to document the acoustic repertoires, movements and distributions of Eastern Caribbean (EC) sperm whale cultural groups (called vocal clans). In addition to documenting a potential third vocal clan in the EC, we found strong evidence of fine-scale habitat partitioning between vocal clans with scales of horizontal movements an order of magnitude smaller than from comparable studies on Eastern Tropical Pacific sperm whales. These results suggest that sperm whales can display cultural ecological specialization and habitat partitioning on flexible spatial scales according to local conditions and broadens our perception of the ecological flexibility of the species. This study highlights the importance of incorporating multiple temporal and spatial scales to understand the impact of culture on ecological adaptability, as well as the dangers of extrapolating results across geographical areas and cultural groups.
Article
Full-text available
Acoustic analyses can be powerful tools for illuminating structure within and between populations, especially for cryptic or difficult to access taxa. Acoustic repertoires are often compared using aggregate similarity measures across all calls of a particular type, but specific group identity calls may more clearly delineate structure in some taxa. We present a new method—the identity call method—that estimates the number of acoustically distinct subdivisions in a set of repertoires and identifies call types that characterize those subdivisions. The method uses contaminated mixture models to identify call types, assigning each call a probability of belonging to each type. Repertoires are hierarchically clustered based on similarities in call type usage, producing a dendrogram with ‘identity clades’ of repertoires and the ‘identity calls’ that best characterize each clade. We validated this approach using acoustic data from sperm whales, grey‐breasted wood‐wrens and Australian field crickets, and ran a suite of tests to assess parameter sensitivity. For all taxa, the method detected diagnostic signals (identity calls) and structure (identity clades; sperm whale subpopulations, wren subspecies and cricket species) that were consistent with past research. Some datasets were more sensitive to parameter variation than others, which may reflect real uncertainty or biological variability in the taxa examined. We recommend that users perform comparative analyses of different parameter combinations to determine which portions of the dendrogram warrant careful versus confident interpretation. The presence of group‐characteristic identity calls does not necessarily mean animals perceive them as such. Fine‐scale experiments like playbacks are a key next step to understand call perception and function. This method can help inform such studies by identifying calls that may be salient to animals and are good candidates for investigation or playback stimuli. For cryptic or difficult to access taxa with group‐specific calls, the identity call method can aid managers in quantifying behavioural diversity and/or identifying putative structure within and between populations, given that acoustic data can be inexpensive and minimally invasive to collect.
Article
Full-text available
A key goal of conservation is to protect biodiversity by supporting the long-term persistence of viable, natural populations of wild species. Conservation practice has long been guided by genetic, ecological and demographic indicators of risk. Emerging evidence of animal culture across diverse taxa and its role as a driver of evolutionary diversification, population structure and demographic processes may be essential for augmenting these conventional conservation approaches and decision-making. Animal culture was the focus of a ground-breaking resolution under the Convention on the Conservation of Migratory Species of Wild Animals (CMS), an international treaty operating under the UN Environment Programme. Here, we synthesize existing evidence to demonstrate how social learning and animal culture interact with processes important to conservation management. Specifically, we explore how social learning might influence population viability and be an important resource in response to anthropogenic change, and provide examples of how it can result in phenotypically distinct units with different, socially learnt behavioural strategies. While identifying culture and social learning can be challenging, indirect identification and parsimonious inferences may be informative. Finally, we identify relevant methodologies and provide a framework for viewing behavioural data through a cultural lens which might provide new insights for conservation management.
Article
Full-text available
According to the ideal‐free distribution (IFD), individuals within a population are free to select habitats that maximize their chances of success. Assuming knowledge of habitat quality, the IFD predicts that average fitness will be approximately equal among individuals and between habitats, while density varies, implying that habitat selection will be density dependent. Populations are often assumed to follow an IFD, although this assumption is rarely tested with empirical data, and may be incorrect when territoriality indicates habitat selection tactics that deviate from the IFD (e.g. ideal‐despotic distribution or ideal‐preemptive distribution). When territoriality influences habitat selection, species' density will not directly reflect components of fitness such as reproductive success or survival. In such cases, assuming an IFD can lead to false conclusions about habitat quality. We tested theoretical models of density‐dependent habitat selection on a species known to exhibit territorial behaviour in order to determine whether commonly applied habitat models are appropriate under these circumstances. We combined long‐term radiotelemetry and census data from grey wolves Canis lupus in the Upper Peninsula of Michigan, USA to relate spatiotemporal variability in wolf density to underlying classifications of habitat within a hierarchical state‐space modelling framework. We then iteratively applied isodar analysis to evaluate which distribution of habitat selection best described this recolonizing wolf population. The wolf population in our study expanded by >1,000% during our study (~50 to >600 individuals), and density‐dependent habitat selection was most consistent with the ideal‐preemptive distribution, as opposed to the ideal‐free or ideal‐despotic alternatives. Population density of terrestrial carnivores may not be positively correlated with the fitness value of their habitats, and density‐dependent habitat selection patterns may help to explain complex predator–prey dynamics and cascading indirect effects. Source–sink population dynamics appear likely when species exhibit rapid growth and occupy interspersed habitats of contrasting quality. These conditions are likely and have implications for large carnivores in many systems, such as areas in North America and Europe where large predator species are currently recolonizing their former ranges.
Article
Full-text available
Sperm whales communicate using codas (stereotyped click sequences). Females and juveniles live in long‐term social units, and units with similar coda repertoires share vocal clan membership. Vocal clans exhibit culturally defined differences in their multilevel social structure. Here, we aimed to identify different social units among sperm whales in Mauritius in the southwestern Indian Ocean, and to describe and compare their coda repertoires to investigate the presence of different vocal clans. We conducted six boat‐based surveys between 2008 and 2013, during which 101 different individuals were photo‐identified. Analysis of associations between 22 resighted individuals divided them into four candidate social units, but a lack of resightings impedes solid delineation of social units. Based on number and rhythm of clicks, at least 24 discrete coda types were detected among 4,767 analyzed codas using two different classification methods. Comparison of coda repertoires recorded from seven sperm whale groupings revealed the possible existence of two sympatric vocal clans, but the size differences of recorded repertoires warrant caution of interpretation. To further evaluate social structuring and the presence of different vocal clans in this region, future surveys should aim at obtaining long‐term sighting and acoustic data, and cover a more extensive area.
Article
Full-text available
Top predators strongly impact the structure of ecosystems through the top-down cascading effects on prey species. Killer whales (Orcinus orca), the top predators in marine ecosystems, are increasing their presence in the Arctic following the ice cover loss. The impact of killer whales on marine ecosystems differs dramatically across ecotypes: 'resident' R-type killer whales feed mostly on large fish, while 'transient' T-type whales feed mostly on marine mammals. We analyze the differences in geographical distribution of killer whale ecotypes in the western North Pacific in order to predict the potential effects of climate change on their range and the consequential impact on Arctic ecosystems. We show that R-type whales prevail in the coastal waters of eastern Kamchatka, Commander and Kuril Islands and in the central Okhotsk Sea, while T-type whales dominate the coastal waters of Chukotka and the coastal Okhotsk Sea. The most prominent difference between these areas is depth: in the regions where R-type whales prevail, deep waters occur close to shore, while the regions dominated by T-type whales are represented by wide shallows covered with ice in winter. We propose several hypotheses to explain this large-scale segregation, including distribution of prey species and ice cover. Habitat preferences suggest that range expansion in the Arctic induced by climate change will likely involve mostly T-type killer whales and consequently increase the predation pressure on marine mammals to a greater extent than on fish stocks. This should be considered in further studies and prediction models highlighting Arctic marine ecosystems change.
Article
Bathymetric proxies tend to indicate the relationships between the distribution of cetaceans and the seafloor in species distribution models (SDMs). Usually, seafloor features are described arbitrary to explain these relationships. Currently, a global seafloor geomorphic features dataset is available, with an objective identification and full representation for each seafloor geomorphic feature. Models based on common bathymetric proxies were compared with models with seafloor predictors, by a standardized ensemble SDM framework. Occurrences of two species with different foraging strategies and relationships with the seabed were selected: the sperm whale (Physeter macrocephalus) and the striped dolphin (Stenella coeruleoalba).. For sperm whales, GLM models had a significant better performance with seageomorphic features than with the common bathymetric proxies. In GAM and MARS models, the performance was similar for both seabed features and bathymetric proxies' models. In relation to striped dolphins, all models obtained had a significant better performance with seafloor features than with bathymetric proxies, regardless the modelling technique. The models showed preference of sperm whales for areas distant from the continental shelf and continental rise areas which consists of submarine canyons with adjacent submarine fans. Striped dolphins showed a clear preference for continental slope areas. The modelling based on seafloor geomorphic features support the hypothesis that the use of this type of predictors can improve the modelling performance and provide a complementary understanding of the relationship between cetaceans and the seafloor.
Article
Ecological niche is traditionally defined at the species level, but individual niches can vary considerably within species. Research on intra-specific niche variation has been focussed on intrinsic drivers. However, differential transmission of socially learned behaviours can also lead to intra-specific niche variation. In sperm whales Physeter macrocephalus, social transmission of information is thought to generate culturally distinct clans, which at times occur sympatrically. Clans have distinct dialects, foraging success rates, and movement patterns, but whether the niches of clan members are also different remains unknown. We evaluated the differences in habitat use of clans off the Galápagos Islands, using data collected over 63 encounters between 1985 and 2014. During encounters, we recorded geographic positions, determined clan identity through analysis of group vocalizations and individual associations, and used topographical and oceanographic variables as proxies of sperm whale prey distribution. We used logistic generalized additive models, fitted with generalized estimating equations to account for spatiotemporal autocorrelation, to predict clan identity as a function of the environment descriptors. Oceanographic variables marginally contributed to differentiating clans. Clan identity could be predicted almost entirely based on geographic location. This fine-scale, within-region spatial partitioning likely derives from whales preferring areas where members of their clans occur over temporal scales of a few months to a few years. By identifying differences in clans’ space use, we have uncovered another level of sperm whale life that is likely influenced by their cultural nature.
Article
Vocal learning often results in distinct dialects among individuals or groups, but the forces selecting for these phenomena remain unclear. Female sperm whales, Physeter macrocephalus, and their dependent offspring live in matrilineally based social units, and the units associate within sympatric clans. The clans have distinctive dialects of codas (patterns of clicks), as do, to a lesser extent, the units within clans. We examined the similarity of coda repertoires of individuals and units from the eastern Caribbean and related these to patterns of kinship and social association. Similarity in coda repertoires was not discernibly correlated with close kinship or association rates for either individuals or units (matrix correlation coefficients <0.12 for all tests using whole repertoires and data from all units). This supports the prevailing hypothesis that these vocalizations are culturally transmitted. The lack of correlation also indicates that vocal learning may occur broadly within clans, rather than preferentially from close kin or close social associates within social units, or that biases in vocal learning at lower levels of social structure are diffused by clan-level processes, such as conformity. Finally, an absence of signals of kinship in vocalization patterns suggests that a different mechanism, perhaps familiarity through repeated association, mediates kin selection among sperm whales.