Access to this full-text is provided by Wiley.
Content available from Ecology and Evolution
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2022;12:e9449.
|
1 of 13
https://doi.org/10.1002/ece3.9449
www.ecolevol.org
Received:9August2022
|
Revised:3O ctobe r2022
|
Accepted :6Octob er2022
DOI:10.1002 /ece3.9449
RESEARCH ARTICLE
Distinctive, fine- scale distribution of Eastern Caribbean
sperm whale vocal clans reflects island fidelity rather than
environmental variables
Felicia Vachon1 | Ana Eguiguren1 | Luke Rendell2 | Shane Gero3 | Hal Whitehead1
This is an op en access arti cle under the ter ms of the CreativeCommonsAttributionL icense,whichpe rmitsuse,dis tribu tionandreprod uctioninanymed ium,
provide dtheoriginalwor kisproperlycited.
© 2022 The Author s. Ecolog y and EvolutionpublishedbyJohnWiley&S onsLtd.
1Depar tmentofBiolog y,Dalhousie
University,Halifax,NovaScotia ,Canada
2SchoolofBiolog y,UniversityofSt.
Andrews,St.An drews,UK
3Depar tmentofBiolog y,Carleton
University,Ottawa,Ontario,Canada
Correspondence
FeliciaVachon,Depart mentofBiology,
DalhousieUniversity,Halifax,NS,Canada.
Email: fvachon@dal.ca
Funding information
AGOASanc tuar y;Anim alBehav ior
Societ y;NationalGeographicSociety,
Grant /AwardNumber:NGS -62320R-
19-2;NaturalSciencesandEngineer ing
Research Council of Canada
Abstract
Environmental variables are often the primar y drivers of species' distributions as
they define t heir niche. However, individuals , or groups of individuals , may some-
timesadoptalimitedrangewithinthislargersuitablehabitatasaresultofsocialand
culturalprocesses.ThisisthecaseforEasternCaribbeanspermwhales.Whileenvi-
ronmentalvariablesarereasonably successfulin describingthegeneral distribution
of sperm whales in the region, individuals from different cultural groups have distinct
distributionsaround theLesserAntillesislands. Using datacollected over 2 yearsof
dedicatedsurveysintheEasternCaribbean,weconductedhabitatmodelingandhab-
itatsuitabilityanalysestoinvestigatethemechanismsresponsibleforsuchfine-scale
distributionpatterns.Vocalclan-specificmodelsweredramaticallymoresuccessfulat
predictingdistributionthangeneralspeciesmodels,showinghowafailuretoincorpo-
ratesocialfactorscanimpedeaccuratepredictions.Habitatvariationbetweenislands
did not explain vocal clan distributions, suggesting that cultural group segregation
in the Easte rn Caribbea n sperm whale is dri ven by traditions of site/ island fidelit y
(mostlikelymaintainedthroughconformismandhomophily)ratherthanhabitattype
specialization.Ourresultsprovideevidenceforthekeyroleofculturalknowledgein
shaping habi tat use of sperm whal es within suitab le environmental co nditions and
highlighttheimportanceofculturalfactorsinshapingspermwhaleecology.Werec-
ommend that socialandculturalinformationbeincorporatedintoconservation and
managementasculturecansegregatepopulationsonfinespatialscalesintheabsence
ofenvironmentalvariability.
KEYWORDS
Caribbean,cet acean,conservation,culture,habitatmodeling,sitefidelity,spermwhale
TAXONOMY CLASSIFICATION
Behaviouralecology,Conser vationecology
2 of 13
|
VACHON e t al.
1 | INTRODUC TION
Itisnotuncommonforspeciestoonlyoccupyalimitedrangewithin
availablesuitable habitat. Whileenvironmentalvariables areoften
theprimar ydriverofspeciesdistribution(asafailuretomeetcertain
conditionswillreducefitness),socialfac torsmightalsolimitindivid-
uals'rangewithinawidersuitablehabitat.Thisistrueforterritorial
species (e.g., wolves, Canis lupus—O'Neiletal.,2020, chimpanzees,
Pan troglody tes verus—Herbingeretal.,2001),speciesthatshowsite
fidelit y (e.g., furseals,Arctocephalus gazella—Hoffman et al.,2006;
reef fishes, Thalassoma bifasciatum—Warner,1988), as wellas prey
typespecialists(e.g.,killerwhales,Orcinus orca— Filatova et al., 2019)
andhabitatspecialists(e.g.,bottlenosedolphins,Tursiops truncatus—
Kopps et al., 2 014 , elephants, Loxodonta africana— Fishlock
et al., 2016). In case s of prey or habit at specializat ion, individ uals
learntouse,andcanspecializeon,preyorhabitatfeaturesthatare
distrib uted differently from the prey or habitat features used by
other members ofthe same species, thereby resulting ina heter-
ogenous di stribution . Territori ality, site fidelit y,p rey type spe cial-
ization , and habitat spe cialization ar e often group-level processes
that can relate to kinship and/or social learning/culture (with culture
definedasbehaviororinformationsharedwithin acommunitythat
is acquired from conspecifics through some form of social learning;
Whitehead& Rendell, 2015). For i nstance, in dividuals mi ght learn
preyorhabitatpreferencesviasociallearningwithinculturalgroups
asisthecaseinkillerwhaleecotypes(reviewedinRieschetal.,2012)
and/orviavertic alt ransmissionfromp are ntsasisthecasewithbot-
tlenosedolphin“spongers”(Krützenetal.,2005).
However,althoughtheireffectondistributioncanbequitedra-
matic, so cial factors s uch as the ones des cribed above are r arely
include d in analyse s relating to ani mal conser vation. For in stance,
habitat models, which are a widespread tool in conservation as
they allow forthe identification ofcritical habit ats forspecies're-
covery and survivalandcan offerinvaluableinformationregarding
apopulation'shealth (Redfernet al.,2006),considerenvironmental
variablesindetail but rarelyinclude cultural and socialinformation
(exceptions:Eguigurenetal.,2019; Filatova et al., 2019).
As more and more evidence suggests that culture is widespread
in the anim al kingdom (e.g., Whit en, 2017), there is increasing in-
terest in the role of cultural transmission in determining species
distribution (Brakesetal.,2021).Thismightbeparticularlyimport-
antforspecies for which many group-levelbehaviors are culturally
transmitted, such as the sperm whale (Physeter macrocephalus)(e.g.,
Cantor et al., 2015).
Sperm wh ales are deep -diving ce taceans that l ive in all of the
world's oceans (Whitehead, 2003). They have a complex social
struc ture in whic h females an d calves live at l ower latitud es year-
round in s table matril ineally-bas ed social unit s of about 10 mem-
bers (Christal et al., 199 8). Interactions between individuals and
social unit s are thenrestricted to members of the samevocal clan,
a higher-order social s tructure defined by vocal dialec t, that can
occur in sympatry(Gero et al., 2016;Rendell&Whitehead,2003).
Vocal clans can include hundreds to tens of thousands of whales
(Rendell & Whitehead, 2003), are identified by distinctive usage
of stereot yped patter ns of clicks called co das (Gero et al., 2016;
Rendell&Whitehead,2003),andhavebeendocumentedworldwide
(Amano et al., 2014; Amorim et al., 2020; Gero et al., 2016;Huijser
et al., 2020; Rendell & Whitehead, 2003). B eyond acoust ic differ-
ences,spermwhalesfromdifferentvocalclansalsodisplaydifferent
social be haviors (Cant or & Whitehead , 2015),movement patterns
(Vachon et al., 2022;Whitehead&Rendell,2004),anddistributions
(Eguiguren et al., 2 019; Vachon et al., 2022).Becausevocalclanscan
liveinsympatry andgenetic variation is insufficienttoexplainthis
behavior al variatio n (Rendell et al. , 2012), it is believed t hat vocal
clans are cultural entities, with distinctivebehaviors being socially
learnedlargelywithinsocialunits(Cantoretal.,2015).Theexistence
oftheseculturallydrivenvocalclanshas impor tant implicationsfor
thebehavior,ecology,anddistributionofspermwhales,inasimilar
waytotheecotypes of killer whales (Riesch et al., 2012).Therefore,
consider ing conservat ion metrics such a s habitat use with out ac-
counting for culture might lead to misinterpretation as culture can
alter behavior and distribution and subdivide populations in unex-
pectedways(Brakesetal.,2021;Whiten,2017 ).
The popu lation of sperm w hales in the E astern Car ibbean has
been extensively studied but, until recently, at a relatively small
spatial sc ale (i.e., largel y around a single isla nd). Since 2005, T he
DominicaSpermWhale Projec t(DSWP)hasstudied over19sperm
whale social units around Dominica (Gero et al., 2014 ),gaining im-
portantinsightonspermwhalesocialstructureandbehavior(Gero
et al., 2014, 2016).In2019and2020,weextendedthisresearcharea
and condu cted surve ys to include a wid er range along t he Lesser
Antilleanchain(from St.Kitt sandNevistoGrenada).Fromthis,we
gained insightintothewayvocal clansinfluencedthespatial orga-
nization oftheEasternCaribbean spermwhalepopulation (Vachon
et al., 2022).EasternCaribbeanvocalclans(EC1andEC2)appearto
havever ydistinc tivesmall-scaledistributions, with EC1foundpre-
dominantlyaround Dominica,Guadeloupe andSt.Vincentandthe
GrenadinesandEC2foundaroundthetwocentralislands,St.Lucia
and Martinique. This is not unheard of as sperm whale vocal clans
inthe EasternTropicalPacifichave alsobeenshowntohavesome-
what different distributions over a somewhatsimilar scale of 100s
of kilometers (Eguiguren et al., 2019).However,thecauses ofsuch
segregationhavenotbeeninvestigateduntilnow.
Weproposetwocompetinghypothesestoexplainvocalclanis-
land segregation in the Eastern Caribbean.Thefirstis habitat spe-
cializati on, where islan ds vary in the amo unt of each vocal cla n's
preferred habit at type. In this case, foraging strategies specialized
tospecifichabitattypescouldbedrivingthedistributionofEastern
Caribbean spermwhale vocalclans. Assperm whales spendabout
75% of their time fo raging (Whiteh ead & Weilgart, 1991), differ-
ences in for aging strategies relating to environmental variation could
leadtolargedifferencesinoveralldistribution.Thesecondhypoth-
esis is voca l clan-spec ific tradit ions of island pref erences that ar e
arbitrarywithrespecttothehabitateachislandoffers.Thisisakinto
aclassicstu dyofmatingsitec hoiceinblueheadwr asse(Thalassoma
bifasciatum) by Warner (1988) which first showed that preferred
|
3 of 13
VACH ON e t al.
coralheadswereinphysicaltermsnodifferentfromunusedones,a
patternrobusttotranslocationwithpersistentpreferencessocially
maintainedbytraditions.InthecaseofCaribbeanspermwhales,the
differ ent Lesser Anti lles islands mig ht be analogous to th e differ-
ent wrasse mating sites, with individuals from different vocal clans
preferentiallystayinginthevicinityofcertainislandsforreasonsof
tradition(site/islandfidelity) rather than specific physical features.
Whiletranslocationexperimentsarenotpossibleforspermwhales,
wecanaskwhet herclan-specifichabi tatprefe rence sma pontovari-
ationintheamountofpreferredhabitatacrossislandstounderstand
whetherthesepreferencesarelikelytobetraditionalornot.
Therefore,inthispaper,weattempted todif ferentiatebetween
habitat specialization and site/island fidelity by modeling sperm
whale hab itat use in th e Eastern C aribbea n, assessin g the relati ve
importance ofisland geography and habitat characteristics in pre-
dicting sperm whale presence by identifying impor tant environ-
mentalvariablesforEC1andEC2whalesindependently,andtesting
whether the distribution of these variables varies significantly
acrosstheEC1andEC2“islands.”IfEasternCaribbeanspermwhales
are habit at specialis ts, we exp ect spec ific environ mental var iables
tobecloselylinked with EC1andEC2distributionsandthereto be
stark variationinatleastsomeofthesevariablesbet weenEC1and
EC2 “islands .”On t he contrar y,if E astern Ca ribbean spe rm whale
distribution is the result of culturally mediated island/site fidelity,
weexpectislandvicinitytobeabetterpredictorofEC1/EC2sperm
whale pre sence and enviro nmental vari ables to not be signi ficant
factorsinourmodels. Suchanapproach notonlyaimsforadeeper
understandingofagroup-livingandculturalspecies'distributionand
behavior,butalso yieldsa novel approach to integrateintoconser-
vationpolicy.
2 | METHODS
2.1 | Field methods
Data were collected between the months of February and April
2019 and Januar y and March 2 020 in the East ern Carib bean. We
surveye d sperm whale pres ence between the i slands of St. Kitt s
andNevisandGrenadaalongthreetransectlines(LeewardInshore:
5–7nauticalmilesfromcoast,LeewardOffshore: 15nauticalmiles
fromcoastandWindward Offshore:5–7nauticalmilesfromshore)
(Figure 1) from a 12 m aux iliary sailb oat using a two-element hy-
drophonearray (two high-frequency Magrec HPO3 elements with
low-cut f ilter set at 2 kHz) towed behind the vessel on a 100 m
cable. O nce encountered a coustically, fema le sperm whales we re
followed, u sing the towed hydrop hone with the d irection sen sing
software Click DetectoronPAMGUARD,forhourstodays.Codasto
identif yvocalclanswererecordedviaaFirefaceUCorUMC202HD
USBaudiointerfaceconnectedtoaPCcomputerrunningsoftware
PAMGuard(Gillespieetal.,2009),samplingat96 kHzandrecording
continuouslyduringsurveys.TheGPSlocationofourresearch ves-
selwas recorded on a GPS marine chartplotter(StandardHorizon
in 2019 and Raymarinein 2020) every5 min. Given thatwe could
identifysocialunitsinrealtimeusingphotoidentification(seeGero
et al., 2014),weintentionallyspentmoretimewithgroupsofwhales
for which we had little or no prior data and, if conditions allowed,
stayed with unknown groupsuntilwehadrepeatsof multiple indi-
vidual's flukesandhad obtained atleast 80codas(this allowedfor
highconfidenceinidentifyingthevocalclanthatthegroupbelonged
to)(Vachonetal.,2022).
2.2 | Assigning GPS coordinates to vocal clans
All individuals identified on the same daywere considered part of
the same g roup if they had coor dinated behavior an d movement
(Gero et al., 2014). Their co das were used to id entify the gr oup's
voc alcl anme mb ershipfollow ingm et hodsbyHe rs he tal.(2021)(see
Vachon et al., 2022).T heGP Spositionofou rresearchve sselwa sas-
signed to a vocal clan for the length of the encounter: From the time,
we first heard the characteristic echolocation clicks of sperm whales
until we could not hear them or chose to leave the whales due to
weather orlogisticalconstraints(Whitehead, 2003).Wedidnotin-
clude enc ounters with U nit 12 (potential EC 3 vocal clan) ( Vachon
et al., 2022)inthisanalysisaswehaverelativelylittledataregarding
theirdistributioncomparedwithEC1andEC2.WeconsideredGPS
locations for which we had EC3 presence as the presence of sperm
whalesbutdidnotincludethemaseitherEC1orEC2presence.
2.3 | Habitat model variables
We included s even topographic al variables (water depth—Depth,
slope— Slope, dist ance to neares t submarine c anyon—Canyon, dis-
tance to the escarpment— Escarp, distance to the abyss—Abyss,
distance to shelf— Shelf, and distance to the center of the nearest
channel between islands—Channel); six oceanographic variables
(eastward current speed— Ecurr, northward current speed— Ncurr,
zonalvelocityvariance—Zvelv,meridionalvelocityvariance—Mvelv,
inflow through the nearest channel— Inflow, and chlorophyll-a
concentration— Chla); and four general variables (latitude—Lat,
longitude— Long, nearest island— Island, and whether the posi-
tion is leeward or windward of the Lesser Antilles island chain—
Windward)—for a total of 17 potentia l variables ( Table S1), in our
ha bi t at mod els .Th ese pre dic torva ria ble swe re cho senas the yw ere
usefulindescribingspermwhalehabitatintheMediterraneanand
South Pa cific and/or are thoug ht to relate to the aggr egation of
spermwhale'sprey,mesopelagicsquid(Claroetal.,2020; Eguiguren
et al., 2019;Pirottaetal.,2011).
Bathymetric data were obtained from the 2020 General
Bathymetric Chart of the Oceans (https://www.gebco.net/data_
and_products/gridded_bathymetry_data/) and extracted using
ArcGIS.Slopewascalculated fromtheGEBCObathymetriclayer
usingArcGISSlopetoo l. Weu se dd is t an ce togeom or phicfeatu re s
canyon, escarpment,abyss, andshelf aspredictorvariablesasin
4 of 13
|
VACHON e t al.
the habit at models of Cl aro et al. (2020). Geo morphic fea tures'
definitionsandlocationswereobtainedfromHarriset al. (2014)
v ia B l u e Ha b i t a t (w w w . b l u e h a b i t a t s . o r g )(Figure 1).Oceanographic
variables—eastward current speed, northward current speed,
zonal velocity variance, and meridional velocity variance—
were obtained from the NOAA drifter-derived climatolog y of
global near-surface current s database (Laurindo et al., 2017).
Chlorop hyll-a concent ration was ex tracte d from the NOA A vis-
ible infr ared imaging ra diometer suite ( VIIRS) sate llite data and
averaged over the last 3 months prior to each dat a point to ac-
count for thelag between primary production and sperm whale
preyavailability(Jaquet, 1996). Measures of inflow through the
nearestchannelwereobtainedfromJohnsetal.(2002).Thefour
generalpredictors wereincluded toaccountforunexplained, or
unaccounted,environmentalvariation inourdata.Nearestisland
isacategoricalvariablethatcorrespondstothenearestislandto
a GPS point ( in geodesic di stance) and wa s extrac ted using the
NeartoolinArcGIS.Windward/leewardisabinaryvariablethat
describeswhetheraGPSpoint isleeward,east,(N)orwindward
(Y)oftheLesserAntillesislandchain.
The variables depth and slope wererecordedat 0.004° spatial
resolution; variables eastward current speed, northward current
speed, zonal velocity variance, and meridional velocity variance
wererecordedat0.25°resolution,andChlorophyll-aconcentration
was recorded at 0.036° resolution. As these resolutions are lower
than that of our GPS coordinates, we used ArcGIS tools Near and
Spatial jointoextracttheclosestvaluefore achvar iabletoeachGPS
coordinate.Webelievethattheresolutionatwhichthosevariables
are availab le will not negative ly affect our mo deling approac h as
theyhavelittlesmall-scalevariability.
FIGURE 1 Mapdisplayingthe
geomorphic features used to model
spermwhaledistributionintheEastern
Caribbean.Vesseltracksdisplayedindark
gray.
E, G
E, Ga
F
A
F
F
O
, NOAA, USGS
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
Shelf
Abyss
Canyons
Escarpment
Geomorphic features
Slope
±
050 10025 Kilometers
|
5 of 13
VACH ON e t al.
2.4 | Habitat modeling
WeusedGPSfixesfromtheresearchvessel'schartplottertakenat
5minintervalsasourunitsofanalysis.Eachdatapointcorresponds
to specific coordinates at a certain time, along with whether sperm
whaleswereacousticallyencounteredatthatpointandtime,aswell
astheclantowhichencounteredwhalesbelongedto(datasetavail-
able as supplementar y material, Data S1). We fittedfour different
habitat modelt ypes (Presence/Absence, EC1, EC2, and Vocal clan)to
ourdata using twoindependent setsofvariables(Environment and
Island)(Figure 2,definedbelow).Here,wedescribeeachmodeltype
andtherationalefortestingthemacrossthetwovariablesets.
1. Presence/Absence:Thismodeldescribedthegeneraldistribution
of sperm whales in the Lesser Antilles, regardless of vocal clan
member ship. The re sponse vari able was 0 for ac oustic abs ence
of sperm whale and 1 for acoustic presence of sperm whales.
This allowe d us to identify key v ariables for s perm whale hab -
itat in the Lesser Antilles and assess whether modeling sperm
whale distribution independently for each vocal clan resulted
in a significant improvement in predictive accuracy.
2. EC1/EC2: These models described the distribution of sperm
whales that were assigned to the EC1 and EC2 vocal clans, respec-
tively.FortheEC1model,theresponsewas0fortheacousticab-
sence of sperm whales or the presence of EC2 and/or EC3 whales
and1fortheacousticpresenceofEC1whales.Conversely,forthe
EC2 model, the response was 1 for the acoustic presence of EC2
whales and 0 otherwise. These models allowed us to compare
theperformance of vocalclan-specifichabitat models tothat of
generalhabitatmodels(i.e.,Presence/Absence)aswellas identify
importantenvironmentalvariablesforpredictingthepresenceof
EC1andEC2whales,respectively.Theseenvironmentalvariables
werethenusedinourhabitatsuitabilityanalysis(seebelow).
3. Vocal cl an: This model w as fitted to ide ntify the var iables that
best distinguishbetweenthepresenceofEC1andEC2.The re-
sponse was 0 for EC1 acoustic presence and 1 for EC2 acoustic
presen ce. Here, a high predi ctive accurac y would suggest t hat
individuals from different vocalclansprefer contrasting habitat
modelvariablesand,therefore,suggestanimportantcontribution
ofsocialfactors(i.e.,vocalclanmembership)tospermwhaledis-
tribution.The datasetusedfortheVocal clan model was smaller
than that for the Presence/Absence, EC1, and EC2 models since
weonly usedsperm whale presencedat apoints(1sinPresence/
Absencemodel).
We tested these four habitat model types independently on
two set s of variables: eit her a full set of enviro nmental varia bles
(Environmentset), ornearestislandvariables(Islandset),andcom-
pared their predictive performance. The Island set includes vari-
ables Island and Windward, while the environment set includes all
remaining 15 environmental predictors and Windward. Weex pect
models using the Environmentvariableset to per form muchbetter
than the ones using the Islandvariablesetifspermwhalesarehab-
itatspecialistandtheoppositeifpatternsofdistribution aredriven
bysite/islandfidelity.Toavoidconfusion,modelnamesontheirown
(e.g., Presence/Absence)willrefertothemodelsperformedusingthe
Environmentvariable set and models followedby“Island”will refer
to the models performed using the Islandvariables et(e.g.,Presence/
Absence Island).
Modeling approach
Habitat models were fitted using generalized estimating equations
(GEEs;Liang&Zeger,1986),inwhichvariableswereusedaspredictors
of sperm whale presence (Presence/Absence, EC1, and EC2 models) or
vocalclanmembership(Vocal clanmodel),followingPirottaetal.(2011)
and using package geepack inR(Højsgaard et al., 2005).Thisapproach
has been us ed in other cetace an distributi on studies (e.g., E guiguren
et al., 2019; Pirottaetal.,2014; Tepsich et al., 2014)andisappropriate
whendat aarerecordedcontinuouslyalongsurveytransects.Wechose
GEEsoverothermethodssincetheyexplicitlyaccountforautocorrela-
tion (Liang&Zeger,1986).Data point s were clumped into blocks that
corresponded to sperm whale encounters. Under this framework, resid-
ua l sar e allo w edt obec o rrel a tedw i thin b lock s , butw eas s u mei n d epen d -
encebetweenblocks.Weusedencountersasourblockingvariable as
FIGURE 2 Summaryofhabitatmodelingapproach.
Sperm whale data
Presence/Absence
0: Absence
1: Presence (EC1, EC2,
EC3)
EC1
0: Absence, EC2, EC3
1: EC1
EC2
0: Absence, EC1, EC3
1: EC2
Vocal clan
0: EC1
1: EC2
Environment Island Environment Island Environment Island Environment IslandVariable Type
Model Type
6 of 13
|
VACHON e t al.
itwassuccessfullyusedinsimilarstudies(Eguigurenetal.,2 019;Pirotta
et al., 2011),andwefoun dthistob eanappropriategrou pingvar iableas
theautocorrelationamongdatapointseventuallyconvergedat0within
each encounter (Figure S1 ).Wemodeledtherelationshipbetweenvari-
ablesandspermwhale presenceaslineartermsonly,asincludingnon-
linear relationships as in previous studies (Eguiguren et al., 2019;Pirotta
et al., 2011)onlyslightlyincreasedoverallfitandpredictiveaccuracy,at
thecostofinterpretability.
Westructuredourmodelingapproachintofivesteps(FigureS2,
described below), which were repeated independently for the
Presence/Absence, EC1, EC2, and Vocal clanmodels.Rcodeavailable
assupplementar ymaterial(CodeS1).
Preparing variables
We looked at the v ariables' distr ibutions and log ged ones, which
were highl y skewed. All var iables were th en standa rdized by sub-
tract ing the mean an d dividing by sta ndard deviatio n to facilitate
model convergence.
Removing collinearity
First,wecalculatedcorrelationcoefficientsbetweenallpairsofpre-
dictorvariables.Variableswhichhadcorrelationcoefficientsabove
0.4wereconsideredto be correlated and not includedinthesame
model.Fromthis,webuiltallpossiblecombinationsofuncorrelated
predictors into potential models, which were then tested for mul-
ticollinearityby measuring the generalized varianceinflationfactor
(GVIF)(carpackageinR).ModelswhichhadapredictorwithaGVIF
value above3were discarded,and all other potential models with
GVIFvaluesbelow3 wereusedasthefirst step in back ward step-
wise selection.
Model selection
Weused QIC (Pan, 2001), an extension of the Akaike Information
Criterion (AIC) that applies to GEE models, to compare models
using manu al backward stepwise sele ction (package MuMIn in R ,
Bartoń,2013).Westarte dfr omallthepotentialco mbi nat ionsofu n-
correlatedpredictors(step2)andcomparedtheirQIC(ΔQIC)aswe
removed a sin gle variabl e in turn. Th e model with t he lowest QI C
isthenused as the startingmodel for the nex tstep, repeating this
procedu re until the rem oval of any variab le in the model l eads to
anincreaseinQIC.ThehighertheabsolutevalueofΔQICbetween
models, the larger the gap in their predictive performance. As such,
wechosemodels withfewervariablesiftheir ΔQICwas10or less
fromtheoriginalmodeltoencouragevariableremoval.Thevariables
within the final model are then ordered according to how much their
removalincreasesQIC(fromhighesttolowest).
Model validation
The best models from step 3 were then further evaluated using
leave-one-out cross-validation where encounters were iteratively
removedfromthedata.Wecomparedthepercentageofdatapoints
thatwerecorrectlyassigned(predictiveaccuracy,Hastieetal.,2009)
betwee n the step 3 mo dels to that of th e same mode l minus one
variable. If the predictive accuracy of models with fewer variables
washigherthanthatoftheoriginalmodel,weremovedthatvariable
and sta rted this pr ocess again u ntil predic tive accurac y was high-
estforthemodelfromwhichwedidnotremovevariables.Thiswas
doneasstepwiseselectionusingQICcansometimesretainspurious
variables(Pirottaetal.,2011).
Model performance was then assessed in terms of how well mod-
elsfitthedata(goodness offit)by measuringthepropor tionofdat a
points co rrect lyassigne da sp re sencesorabs en ce s(orEC1/EC 2i nt he
vocal cla n models) using co nfusion matr ices (Fieldin g & Bell, 1997).
Totransformmodelpredictionsfromarangeof probabilitiestoabi-
nary (presence orabsence), weused the point of maximumdistance
betweenthe receivingoperating characteristic (ROC)curve and the
45-degree diagonal as the cut-off probability, usingthe R package
ROCR(Singet al., 2005). Additionally,wemeasuredmodelgoodness
offit bycalculatingtheareaundertheROCcurve(AUC), which also
reflectsoverallmodelperformance(Fielding&Bell,1997).
We finally compared the performance metrics described be-
tween models with Environment variables andIsland variables for
eachmodelt ype(Presence/Absence, EC1, EC2, and Vocal clan)tode-
terminewhetherdifferencesin distribution aredrivenprimarily by
habitatspecializationorsite/islandfidelit y.
Prediction maps
Todisplaytheresultsofourhabitatmodels,webuiltpredictionmaps
fromthebestpost-cross-validationPresence/Absence, EC1, EC2, and
Vocal clanmodels. Mapswerebuiltbyimportingour modelpredic-
tionsfromRintoArcGISPro.
2.5 | Habitat suitability analysis
Tofurtherestablish whethervocal clans have distinct distributions
asaresultofhabitatspecializationorsite/islandtraditions,wecon-
ducted a habitat suitability analysis for each Lesser Antilles island.
This was done by creating a 0.1 degree grid of GPS points that
extend ed 30 nautic al miles of fshore (repr esentative of o ur effor t,
Figure 1)leewardofeachislandandassigningthesepoints,andtheir
corresponding environmental variable values,tothe closestisland.
Fromthis,weobtainedarangeofvaluesforeachenvironmentalvar-
iable for eachisland whichwe couldthen compare between “EC1”
and “EC2” islands. Only environmental variables that were part of
the final EC1 and/or EC2modelswereincludedintheseanalysesas
theyweretheonesthatweresuggestedtoimpactvocalclandistri-
bution.Wecomparedtheenvironmentalconditionsbetweenislands
using t-te sts to test whet her each environme ntal variable sig nifi-
cantly differed betweenislands predominantlyusedby EC1andis-
landspredominantlyusedbyEC2.
We expecte d environme ntal variab les to be corre lated to pre-
ferred islands ifthe environmental variables themselves are driv-
ing vocal clan distribution (e.g., EC1 whales prefer canyons and
Dominica,GuadeloupeandSt.Vincent havemorecanyonsthanSt.
LuciaandMar tinique)anduncorrelatedifvocalclansaredistributed
|
7 of 13
VACH ON e t al.
arounddifferentislandduetositefidelitytraditions(e.g.,allislands
have similar a mounts of canyons b ut EC1 whale are only se en in
Dominica,Guadeloupe,andSt.Vincent).
3 | RESULTS
Overourtwofield seasons(Februar ytoApril2019and January to
March 2020 ), we spent 107 days at sea (Figure 1). Sper m whales
were located throughout the leeward transects, with higher con-
centrations found around Martinique, St. Lucia, and Dominica, but
were not hea rd to windward of t he islands. We had a tot al of 50
sperm whale encounters, 24 with EC1 groups, 22 with EC2 groups,
five with a n EC3 group, and o ne with both EC2 a nd EC3 (Vachon
et al., 2022),fromwhichwerecorded778 hofspermwhalevocaliza-
tions.Altogether,weobtained26,776GPScoordinatedatapoints.
3.1 | Habitat modeling
Refer to Figure 3forafullbreakdownofthePresence/Absence, EC1,
EC2, and Vocal clan habitat models at every selection step. Best
pre-cross-validation and post-cross-validation habitat models, as
well as corresponding results using the Islandv ariable set , can be
found in Table 1andTableS2withassociatedQIC,AUC,goodness
offit,andpredictiveaccuracy.Below,weexpandongeneralresults
fromeachmodeltype.
3.1.1 | Presence/Absencemodel
Thismodelhad50.62%predictiveaccuracyand69.8%goodnessof
fit in determining sperm whale presence, regardless of vocal clan,
using environmentalvariables. Sperm whaleswere more of ten en-
countere d in areas with low chl orophyll-a conc entration, clo se to
the continental shelf, relatively close to between-island channels
andfurtherawayfromcanyons(FigureS3).Thenegativecorrelation
betweenpresenceandchlorophyll-aconcentrationcouldbecaused
bytherelativelylowchlorophyll-aconcentrationsacrosstheLesser
Antilleschain, spatiallagbetweenWindwardproductivityandlee-
wardbiomassorthetemporallagbetweenprimaryproductivityand
cephalopod biomass (Jaquet, 1996; Pirot ta et al., 2011), alth ough
wetriedtoaccountforthisbyconsideringchlorophyll-aconcentra-
tion over the last 3 months as in Eguiguren et al. (2019). The final
FIGURE 3 Summaryofhabitatmodelingresultsforeachhabitatmodelateachstep(Environmentvariableset).
Presence/Absence
log transform Slope
GVIF removes 3 models
23 potenal models
Best backward model:
Pres ~ Windward +
Chla + Shelf + Zvelv +
Inflow + Channel +
Canyon
Removes: Windward,
Zvelv, Inflow
Pres ~ Chla + Shelf +
Channel + Canyon
Figure S4
EC1
log transform Slope
GVIF removes 3 models
23 potenal models
Best backward model:
Pres ~ Ecurr +
Windward + Escarp +
Abyss + Zvelv
Removes nothing
Pres ~ Ecurr +
Windward + Escarp +
Abyss + Zvelv
Figure S7
EC2
logtransform Slope
GVIF removes 6 models
20 potenal models
Best backward model:
Pres ~ Mvelv +
Windward + Inflow +
Chla + Channel + Depth
+ Zvelv
Removes: Inflow
Pres ~ Mvelv +
Windward + Chla +
Channel + Depth + Zvelv
Figure S8
Vocal clan
logtransform Slope
log transform Chla
GVIF removes 7 models
17 potenal models
Best backward model:
Pres ~ Ecurr + Channel
+ Zvelv
Removes: Channel
Pres ~ Ecurr + Zvelv
Figure S10
STEP 1:
Prepare variables
STEP 2:
Remove collinearity
Potenal models
STEP 3:
Model selecon
STEP 4:
Model validaon
Best model
STEP 5:
Predicon map
8 of 13
|
VACHON e t al.
Presence/Absence Islandmodel(Pres ~ Windward + Island)performed
better than thePresence/Absencemodel(Pres ~ Chla + Shelf + Chan
nel + Canyon) with ΔQIC of 2281.4. The Presence/Absence Island
modelhad59.61%predictiveaccuracyand65.8%goodnessoffitin
determining sperm whale presence and suggests that more sperm
whales oc cupy the water s off the cen tral islan ds of Dominic a and
Martinique (Figure S4),for reasonsnotfully explained bythe envi-
ronmentalvariablesthatweconsidered.
3.1.2 | EC1andEC2models
ModelingspermwhaledistributionindependentlyforEC1andEC2
increas ed model pre dictive accu racy, goodness of f it and lowered
QIC for both the models using environment and island variables
(Table 1).
EC1 whales prefer areas of low eastward current speed, low
zonal veloc ity variance, wit hin the escarpm ent designation, aw ay
from the abyss, leeward of the Lesser Antilles chain (Figure S5).
Bycontrast,EC2whales preferareaswith high meridional velocity
variance,lowchlorophyll-aconcentration,deeperintheocean,and
lowzonalvelocityvariance,closertochannelsleewardoftheLesser
Antilles chain (Figure S6).Unsurprisingly,variableWindward was im-
portant for both the EC1 and the EC2 models since sperm whales
werenotheardwindwardof the islandchain.Thisresult shouldbe
viewed ca utiously since th e leeward side of the is land chain was
muchmoreextensivelysurveyedthanthewindwardside(Figure 1).
Zonalvelocityvariance(Zve lv) was also impor tant forboth models
withEC1sperm whalesencounteredin areas ofhighzonalvelocity
variance and EC2 sperm whales encountered in areas with low zonal
velocityvariance(FiguresS5 and S6).
Thebest EC1model(Pres ~ Ecurr + Windward + Escarp + Abyss
+ Zvelv) and the best EC2 model(Pres ~ Mvelv + Windward + Chla
+ Channel + Depth + Zvelv) p erformed w orse than the EC1 Island
(Pres ~ Windward + Island)andEC2 Island(Pres ~ Windward + Island)
models with respective ΔQICof3115.5and501.4.Accordingtoour
predic tion maps, we exp ect EC1 sperm whal es to aggregate ne ar
Dominica,Guadeloupe,St.VincentandtheGrenadinesandSt.Kitts
and Nevis; a nd EC2 sperm wha les to aggregat e near St.Luc ia and
Martinique (Figures S7 and S8). Suc h predicti ons not only refl ect,
asexpected,thefieldobservationsthatwereusedtoconstructthis
model (Vachon et al., 2022),but also resultsfromthelong-termre-
searchoffDominicabytheDSWP,withEC2groupsseldomencoun-
tered off D ominica (onl y 2.5% of photo ide ntificati on encounter s;
Gero et al., 2016; Vachon et al., 2022).
3.1.3 | Vocalclanmodel
This model had great accuracy in distinguishing between EC1and
EC2 vocal cla n distribut ion using both th e Environment and Island
variablesets(92%and96.5%goodnessoffit,and49.7%and76.8%
predictive accuracy). EC1whales were more often encountered in
areas of low ea stward cu rrent spee d and high zonal ve locity var i-
ance, while EC2 whales were more often encountered in areas
of high east ward current speed and low zonal velocity variance
(Figure S9).
The Vocal clan Islandmod el (Pre s ~ Windward + Island)performed
better thantheVocal clanmodel(Pres ~ Ecurr + Zvelv)withΔQICof
5033.8,andEC1whalespredominantlyneartheislandsofDominica,
GuadeloupeandSt .VincentandtheGrenadinesandEC2 predomi-
nantlynearSt.LuciaandMartinique(FigureS10).
3.2 | Habitat suitability
The lower QIC and higher predictiveaccuracy of theEC1 Island,
EC2 Island, and Vocal clan Island models (Table 1) su g ges tth a tv ocal
TAB LE 1 Bestvariablecombinationsforeachmodelt ypewithassociatedQIC,ΔQIC,AUC,goodnessoffit,andpredictiveaccuracy
(post-stepwisecross-validation)
Model type Variable set QIC ΔQIC AUC
Goodness of
fit (%)
Predictive
accuracy (±SE)
Presence/
Absence
Env Chla + Shelf + Channel + Canyon 32,966.3 2281.4 0.71 69.8 50.62%(±0.02)
Island Windward + Island 30,684.9 - 0.69 65. 8 59.61%(±0.04)
EC1 Env Ecurr + Windward + Escarp +
Abyss + Zvelv
19,006. 3 311 5.5 0.79 7 7.1 56.65%(±0.03)
Island Windward + Island 15,890.8 - 0.86 72.9 72.05% (±0.04)
EC2 Env Mvelv + Windward + Chla + Channel +
Depth + Zve lv
16,52 2. 2 501.4 0.86 75.35 57.73% (±0.02)
Island Windward + Island 16,020.8 - 0.83 73.2 62.27%(±0.04)
Vocal clan Env Ecurr + Zvelv 6152.1 5033.8 0 .92 92.0 4 9.7 % (±0.05)
Island Island 1118. 3 - 0.99 96 .5 76.8%(±0.14)
Note:Usinghabitatmodelsandhabit atsuitabilit yanalyses,wepresentanddiscussaremarkableandunexpectedpatterninthedistributionof
EasternCaribbeansp ermwhales.UnliketheirPacificconspecifics ,EasternCaribbeanspermwhaleshaveshort-rangemovementsanddisplayisland
fidelityacrossmultipleyears.Suchfine-scaledistributionappear stobeculturallydrivenwithdifferentculturalgroups(calledvoc alclans)occupying
distinctiveislandsalongtheLesserAntillesasaresultoftraditionsofsitefidelit yratherthanenvironmentalvariation.
|
9 of 13
VACH ON e t al.
clandistributionmightbebetterexplainedby site/islandfidelity
than theuse of specific habitat variables. Ourhabitatsuitability
results also corroborated this conclusion as the environmental
variables that wereconsidered significant predictors of EC1 and
EC2 presence in the EC1 and EC2modelsdidnotsignificantlydif-
fer bet ween EC1 and EC2 islands, apa rt from Abyss and Depth
(t = −4.01, p-value = .007 and t = 3.6 8, p-value= .010, respec-
tively;Figure 4).Altogetherthissuggeststhatspermwhalesfrom
differ ent vocal clans do not us e different islan ds because they
haveaunique,orsignificantlydifferent,selectionofphysicalhabi-
tat properties.
Similar results were obtained if we only used surveyed grid
poi nt sr atherth antheex trapolated30n au tica lmileoffshore0 .1d e-
greegridtoc arryoutthisanalysis(FigureS11).
4 | DISCUSSION
In this stu dy,we a ttempted to tes t the competing hy potheses of
habitatspecialization and traditionalsite/islandfidelity in explain-
ingthe starkdif ferentiationinEC1and EC2vocalclandistributions
intheEasternCaribbean. Our resultssuggest that site/islandfidel-
ity,ratherthanenvironmentalvariation, isthemaindriver ofsperm
whale dis tribution in t he Lesser Antil les, with dif ferent process es
operating at the species and vocal clan levels.
At the species level, sperm whales use areas that are close to
the continental shelf and channels (Presence/Absencemodel).Such
correlations between sperm whale distribution and topography
have been documented for sperm whales elsewhere (e.g., Claro
et al., 2020;Pirottaetal.,2011;Wong&Whitehead,20 14)andmost
FIGURE 4 Habitatsuitabilit yofEC1(aquamarine)andEC2(red)islandsaccordingtosignificantenvironmentalvariablerangewithina0.1
degreegridextending30nauticalmilesleewardofeachisland.NosignificantdifferencesinvariablevaluesbetweenEC1andEC2islands.
0%
25%
50%
75%
100%
Habitat type
Shelf Escar pment SlopeCanyonAbyss
0.02
0.04
0.06
Meriodional velocity variance
−0.4
−0.2
0.0
Eastward current speed
0.025
0.050
0.075
Zonal velocity variance
−3000
−2000
−1000
0
Depth (m)
0.1
0.2
0.3
0.4
St.Kitts & Nevis Montserrat Antigua Guadeloupe Dominica Martinique St.Lucia St.Vincent & Grenadines Grenada
Chlorophyll−a concentration
10 of 13
|
VACHON e t al.
probablyreflectfoodavailabilityasverticalwatermovementassoci-
atedwithslopedareas likely promotesprimaryandsecondarypro-
ductivity (Tynanetal., 2005). However,such coarsemodelsfail to
capturethevariabilitycreatedbydifferencesinunitmovement,clan
membership,andforagingsuccessatfinerspatialscales(asreported
byJaquet & Whitehead,1996inthe SouthPacific)and seemedto
beimpacted, even at this scale, by thewhales' bias towardcertain
islands with the Presence/Absence Island model per formingbetter
than the Presence/Absence (Table 1).
Th e d r a mati c i n creas e i nthe p e r f o r m ance o fvo c a l c lan- s p e cific
models over a general species presence model is one of the most
strikingresult sofourstudy.ThepreferenceoftheEC2vocalclan
forSt.LuciaandMartiniqueandtheEC1vocalclanforDominica,
Guadeloupe, and St. Vincent and the Grenadinesdoesnotrelate
toenvironmentalvariables,astheydonotsignificantlyorsubstan-
tiallydif feracrossislands(Figure 4),butratherseemtobecaused
bysite/islandfidelitywiththeEC1 Island, EC2 Island, and Vocal clan
Islands models performing much better than theircounterpart s
(Table 1).In this case, culture, viaconformism and homophilyto
island preference traditions,wouldact as a barriertopopulation
mixture(e.g.,Centolaetal.,2007; Riesch et al., 2012).Wesuggest
thatindividualspermwhalesstayinthevicinit yofspecificislands
becausethosearetheislandswheretheywereraised,wherethey
learnedto forage,where their closeassociates and family mem-
bers can beencountered, and wherethey can avoidinteractions
with mem bers of other voc al clans. Confo rmism and hom ophily
have alread y been repor ted in East ern Caribb ean sperm w hales
with highly stereotypical vocal repertoires (conformity, Konrad
et al., 2018)andindividualsexclusivelyassociatingwithmembers
oftheirownvocalclan(homophily,Geroetal.,2016).Itisalsonot
surprising that individual sperm whales could learn island prefer-
encesfromothermembersoftheirsocialunitsasotherbehaviors
areculturallymaintainedwithin vocal clans (e.g.,socialvocaliza-
tions [Gero et al., 2016; Rendell &W hitehead,2003], dive syn-
chrony[Cantor&Whitehead,2015], movement patterns [Vachon
et al., 2022; Whitehead & Rendell, 2004], and social structures
[Cantor & Whitehead, 2015]) andsince cultural transmission has
been suggested asthemost likely mechanism for the emergence
of vocal clans themselves (Cantor et al., 2015).
4.1 | Limitations
Thisstudyislimitedinitstemporalscope.WhileEC1and EC2distri-
bution patternswerestableoverthe2 yearsofthisstudy,andwhile
theyappeartohavebeenstablesince2005(Geroet al.,2014 , 2016;
Vachon et al., 2022), shift s could stil l occur over longe r timesca les,
as it did in the Galapagos (Cantor et al., 2016). However,while the
location of Eastern Caribbean voc al clans might change in future,
the mechanisms responsible for their spatial segregation are likely
toremainthesame.Thisstudy might also belimited bytheenviron-
mental variablesthatwereincludedinhabitatmodels. However,this
isunlikely as we cover a wide arrayofenvironmental variable types
(geomorphicfeatures, oceanographicprocesses,and biological pro-
cesses),includingvariablesthatwerepreviouslyconsideredimportant
forspermwhalehabitat(e.g.,Claroetal.,2020; Eguiguren et al., 2019 ;
Pirottaetal.,2011)andenvironmentalvariablesarerarelytotallyun-
correlated.Futureresearch couldinvestigatesperm whaleprey den-
sity (e.g., fromsquid species survey and scat samples) and examine
how prey den sity varies w ith the prese nce of differen t vocal clans
and/orthe proximity ofdifferent islands. Measures ofsperm whale
preydensityremainundocumentedintheLesserAntilles.
4.2 | Implications for conservation
Theperformanceofourhabitatmodelswasgreatlyimprovedbythe
inclusionofaculturalindicator.Wesuggestthatthelowpredictive
accuracy of our Presence/Absencemodeliscausedbyconfound-
ing varia bles across vo cal clans , something t hat could als o explain
whyotherspermwhalehabitatmodelssometimesfailtoreachhigh
predictiveaccuracywhencomparedtoothercetaceanspecies(e.g.,
Claro et al., 2020; Tepsich et al., 2 014).
Ourresultshighlight how cultural factors canleadtoimport-
ant, management-relevantvariations in the way populationseg-
ments use any given habitat, evenat relatively small geographic
scales foralarge, highlymobile,and pelagicanimal.Inthis case,
tradit ions of site/island fi delity appea r to be a more import ant
determinant of sperm whale distribution within suitable habitat
than are env ironmental var iables. Adding t his cultural len s, not
only allowedfor a betterunderstanding of population structure,
but also habitat use—two crucial variables in conservation and
management.
Likemanyotherpopulations,EasternCaribbeansperm whalesare
now facing unprecedented anthropogenic threats related to global
warming, increased ocean noise, and other human activities (e.g.,
Weilgar t, 2007; Whitehead et al., 2008). Sperm whales studied off
Dominica (predominantly EC1 units) were declining at a 4.5%/year
ratebetween2010and2015(Gero&Whitehead,2016),andthesame
might be tr ue for sperm whale s inhabiting the ot her Lesser Antill es
islands.Under these circumstances, it iscritical to builddetailed hab-
itat models which capture both impor tant culturaland environmental
variables. These habitat models cannot only be used to help protect
the population asawhole,but also identif y areasofhigh importance
foreachculturalgroup.Thisalignswithrecentconservationshiftaway
fromsolelygeneticdiversitytotheincorporationofculturaldiversit yas
animport antcomponentofpopulations'health(Brakesetal.,2021)and
supports the recognition of sperm whale vocal clans as independent
evolutionarilysignificantunits(ESU)forconservationandmanagement.
4.3 | Implications for sperm whale ecology/
psychology
This studyaimed at incorporating both environmental and cultural
variability into the commonly used ecological and conservation
|
11 of 13
VACH ON e t al.
approachofhabitatmodeling.Byindependentlymodelingvocalclan
distribution,wewereabletogainamoredetailedinsightintosperm
whale population structure, the mechanisms responsible for their
distribution, and greatly increase habitat model accuracy. Our re-
sultssug gestthatspermwhalehabit atuseintheEasternCaribbean
ispredominantlyshapedbyculturalinformationratherthanenviron-
mental cues. Given the matrilineal social structure of these groups,
this not only highlights the importance of older females, moth-
ers, aunts, and grandmothers as repositories of knowledge within
social uni ts and voca l clans (as is the ca se in elephant s—McCo mb
et al., 2001),butalsoimpliesthatspermwhalesareabletorecognize
and commu nicate fine -scal e cultural b oundarie s in the absen ce of
physical barriers or environmentalgradient s. Over long timescales,
these bo undaries ar e unlikely to be im permeabl e (as few EC2 en-
countershavebeendocumentedinDominica;Geroetal.,2016)and
might change (e.g., Eastern Tropical Pacific vocal clan turnover—
Cantor et al., 2016), b ut nonetheles s remain cultural ly driven. As
such,ourfindings haveimplicationsbeyondtheEasternCaribbean,
and beyond s perm whales, to ou r understand ing of cultural spe-
cies.Itiscrucialtoassessthedistribution,andbehavior,ofcomplex
species inalltheircomplexity(genetic,environmental,cultural, and
theirintersections)toproperlyconserveandunderstandthem.
AUTHOR CONTRIBUTIONS
Shane Gero:Methodology(supporting);writing–reviewandedit-
ing (equal). Luke Rendell: Fundin g acquisition (le ad); investigatio n
(suppor ting); wr iting – revi ew and editing (e qual). Hal Whitehead:
Fundingacquisition(supporting); investigation(supporting);super-
vision (le ad); writing – review and e diting (equal). Felicia Vachon:
Conceptualization(lead);datacuration(lead);formalanalysis(lead);
funding acquisition (supporting); investigation (lead); methodol-
ogy(lead);project administration(lead);visualization(lead); writing
–originaldraft (lead).Ana Eguiguren:Formalanalysis (supporting);
investigation (supporting); methodology (supporting); resources
(equal);writing–reviewandediting(equal).
ACKNOWLEDGMENTS
This research wouldnot have been possible without support from
ourpar tners:CARIMAMandtheUniversityoftheWestIndies,and
funders: the National Geographic Society (NGS-62320R-19-2),the
AGOA Sanct uary, the Natura l Sciences and Eng ineering Rese arch
Council of Canada (NSERC), and the Animal Behavior Society.We
would also thank the crew that came on Balaena in 2019 and 2020 to
helpwithdatacollectionaswellasDr.EnricoPirottaforgivingadvice
onhabitat modeling. This research was conducted with permission
fromthe Departmentof Fisheries ofSt.Lucia,the Departmentof
Marine ResourcesofSt.KittsandNevis,theFisheriesDepar tment
ofGrenada,theMinistr yofAgricultureofMontserrat ,theFisheries
Division of Dominica, the Ministry of Agriculture, Forestry and
Fisheries of St. Vincent and the Grenadines and the Canadian
CouncilonAnimalCare(CACC).Wearealsogratefultothepastand
current fundersofThe DominicaSperm WhaleProjectwhosecon-
tributionsenabledthedelineationoftheclans.
CONFLICT OF INTEREST
Wehavenoconflictofinteresttodisclose.
DATA AVAIL AB ILI T Y STATE MEN T
Data are available as supplementary material and on Dr yad at:
https://doi.org/10.5061/dryad.mcvdnck4c.
ORCID
Felicia Vachon https://orcid.org/0000-0002-5883-6009
REFERENCES
Amano, M., Kourogi, A., Aoki, K., Yoshioka, M., & Mori, K. (2014).
Differences in spermwhalecodasbetwe entwowaters off Japan:
Possiblegeographicseparationofvocalclans.Journal of Mammalogy,
95(1),169–175.h t t p s : / / d o i . o r g / 1 0 . 1 6 4 4 / 1 3 - M A M M - A - 1 7 2
Amorim , T.O. S ., Rendell, L., Di Tullio, J., Secchi, E. R., Castro, F.R., &
Andriolo, A. (2020). Coda repertoire and vocal clans of sperm
whales in the western Atlantic Ocean. Deep Sea Research Part
I: Oceanographic Research Pap ers, 160, 103254. h t t p s: //d o i .
org /10.1016/j.dsr.2020.10325 4
Barto ń, K. (2013). MuMIn: Multi- model inference. In R pack age version
1.10.0. (Vol. 1). R p ackage version 1.42 .1. https://CRAN.R-proje
ct.org/packa ge=MuMIn
Brakes, P., Carroll, E. L., Dall, S. R. X., Keith, S. A., McGregor, P. K.,
Mesnic k, S. L., N oad, M. J., Re ndell, L ., Robbins , M. M., Rut z, C.,
Thornton,A., Whiten,A., Whiting, M. J., Aplin,L .M .,Bearhop,S .,
Ciucci, P.,Fishlock, V.,Ford, J. K. B.,NotarbartolodiSciara ,G., …
Garlan d, E. C. (2021). A de epening und erstand ing of animal cul-
ture suggests lessons for conservation. Proceedings of the Royal
Society B: Biological Sciences, 288(1949), 20202718. h t t p s: //d o i .
org/10.1098/rspb.2020.2718
Cantor, M., S hoemaker, L. G ., Cab ral, R. B ., Flores , C. O., Varga , M., &
Whitehead,H.(2015).Multilevelanimalsocietiescanemergefrom
cultural transmission. Nature Communications, 6(1), 8091. h t t p s: //
doi.org/10.1038/ncomm s9091
Cantor, M., & W hitehead, H . (2015). How does so cial behavior di ffer
among sperm whale clans? Marine Mammal Science, 31(4), 1275–
1290. https: //doi.org/10.1111/mms.12218
Cantor,M.,Whitehead, H., Gero,S.,& Rendell,L.(2016).Culturalturn-
over among G alápagos sperm whales. Royal Society Open Science,
3(10),160615.https://doi.org/10.1098/rsos.160615
Centola, D., González-Avella, J. C., Eguíluz, V. M., & San Miguel, M.
(2007).Homophily,culturaldrift, and theco-evolutionofcultural
groups. The Journal of Conflict Resolution, 51(6),905–929.
Christ al, J., Whiteh ead, H., & Lett evall, E. (1998). Sperm w hale social
units: Variation and change. Canadian Journal of Zoology, 76(8),
1431– 144 0.
Claro,B.,Pérez-Jorge,S.,&Frey,S.(2020).Seafloorgeomorphicfeatures
asan alternative approach into modellingthedistributionof ceta-
ceans. Ecological Informatics, 58, 101092. ht tp s://doi.org /10.1016/ j.
ecoinf.2020.101092
Eguiguren,A.,Pirotta,E.,Cantor,M.,Rendell,L.,&Whitehead,H.(2019).
Habitatuseofculturally distinct Galápagossperm whalePhyseter
macrocephalus clans. Marine Ecology Progress Series, 609, 257– 270.
https://doi.org/10.3354/meps1 2822
Fielding,A.H.,&Bell,J.F.(1997).Areviewofmethodsfortheassessment
of prediction errors in conservation presence/absence models.
Environmental Conservation, 24(1),38–49.htt ps://doi.org /10.1017/
S0376892997000088
Filatova,O.A .,Shpak,O.V.,Ivkovich,T.V.,Volkova, E.V.,Fedutin, I.D.,
Ovsyan ikova, E. N. , Burdin, A . M., & Hoy t, E. (2019). Lar ge-sc ale
habitatsegregationoffish-eatingandmammal-eatingkillerwhales
12 of 13
|
VACHON e t al.
(Orcinus orca)inthewesternNorthPacific.Polar Biology, 42(5),931–
941. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 0 0 3 0 0 - 0 1 9 - 0 2 4 8 4 - 6
Fishlock,V.,Caldwell,C., &Lee,P.C.(2016).Elephantresource-usetra-
ditions. Animal Cognition, 19(2),429–433 .ht tps ://doi.org/10.1007/
s 1 0 0 7 1 - 0 1 5 - 0 9 2 1 - x
Gero, S. , Bøttche r,A ., Whiteh ead, H., & Ma dsen, P. T.(2016). So cially
segreg ated, sympatri c sperm whale cla ns in the Atlantic O cean.
Royal Societ y Open Science, 3(6),160 061.
Gero, S., Milligan, M., Rinaldi, C ., Francis, P., Gordon, J., Carlson, C.,
Steffen ,A., Tyack, P.,Evans,P.,& Whitehead, H. (2014). Behavior
andsocialstruc tureofthespermwhalesofDominica,WestIndies.
Marine Mammal Science, 30(3), 905–922. https: //doi.org/10 .1111/
mms.120 86
Gero, S., & Whitehead, H. (2016). Critical decline of the Eastern
Carib bean sperm w hale populat ion. PLoS One, 11(10), e0162019.
https://doi.org/10.1371/journal.pone.0162019
Gillespie, D., Mellinger, D., Gordon, J., McLaren , D., Redmond,
P., McHugh, R., Trinder, P., Deng, X., & Thode, A . (2009).
PAMGUARD: Semiautomated, op en source software for real-
time acoustic detection and localisation of cetaceans. The
Journal of the Acoustical Society of Am erica, 125, 2547. ht t ps : //d o i .
org /10.11 21/1.4808713
Harris, P. T., Macmillan-Lawler, M., Rupp, J., & Baker, E. K. (2014).
Geomorphologyoftheoceans.Marine Geology, 352, 4– 24. h t t ps : //
doi.org/10.1016/j.margeo.2014.01.011
Hastie , T.,T ibshirani , R., & Friedma n, J. (Eds.). (20 09). The elements of
statistical learning. Springer. https://doi.org/10.1007/978-0-
3 8 7 - 8 4 8 5 8 - 7 _ 1
Herbinger, I., Boesch, C., & Rothe, H. (2001). Territory characteris-
ticsamong threeneighboringchimpanzeecommunitiesintheTaï
National Park, Côte d'Ivoire. International Journal of Primatology,
22(2),143–167.https://doi.org/10.1023/A:10 0566 3212997
Hersh, T. A., Gero, S ., Rendell, L., & Whitehead, H. (2021).
Using identity calls to detect structure in acoustic dat aset.
Methods in Ecology and Evolution, 12, 1668–1678. ht t p s : //d oi .
org /10.1111/2041-210X .1364 4
Hoffm an, J. I., Trathan , P. N ., & Amos, W. (20 06). Geneti c tagging r e-
veals extreme site fidelity in territorial male Antarctic fur seals
Arctocephalus gazella. Molecular Ecology, 15(12), 38 41–3 847.
https ://doi.or g/10.1111/ j.1365-294X .2 006.03 05 3. x
Højsgaard,S .,Halekoh, U., &Yan, J.(2005). The RPackagegeepackfor
generalized estimating equations. Journal of Statistical S oftware,
15(1),1–11.https://doi.org/10.18637/jss.v015.i02
Huijser,L.A.E.,Estrade,V.,Webster,I.,Mouysset,L.,C adinouche,A .,&
Dulau-Drouot,V.(2020). Vocal reper toiresand insightsintosocial
struc ture of sperm whales (Physeter macrocephalus) in Mauriti us,
southwe stern Ind ian Ocean. Marine Mammal Science, 36( 2), 638–
657.http s://doi.o rg /10.1111 /mms.12673
Jaquet,N.(1996).Howspatialandtemporalscalesinfluenceunderstand-
ing of sper m whale dis tributi on: A review. Mammal Review, 26 (1),
5 1 – 6 5 . h tt ps ://doi.or g/10.1111/ j.1365-2907.1996 .tb0 0146 .x
Jaquet, N., & Whitehead, H. (1996). Scale-dependent correlation of
spermwhaledistributionwithenvironmentalfeaturesandproduc-
tivityin theSouth Pacific. Marine Ecology Progress Series, 135, 1– 9.
https://doi.org/10.3354/meps1 35001
Johns,W.E.,Townsend,T.L.,Fratantoni,D.M.,&Wilson,W.D.(2002).
On the Atl antic inflow to th e Caribbea n Sea. Deep Sea Research
Part I: Oceanographic Resea rch Papers, 49(2), 211–243.h t tp s : //d o i.
o r g / 1 0 . 1 0 1 6 / S 0 9 6 7 - 0 6 3 7 ( 0 1 ) 0 0 0 4 1 - 3
Konrad,C.M.,Frasier,T.R.,Rendell,L.,Whitehead,H.,&Gero,S.(2018).
Kinship and as sociation d o not explain vo cal reper toire vari ation
among individual sperm whales or social units. Animal Behaviour,
145, 131– 140. https://doi.org/10.1016/j.anbehav.2018.09.011
Kopps, A . M., Ackermann, C. Y., Sherwin, W.B ., Allen, S. J.,Bejder,L.,
&K rützen, M. (2014). Cultural transmission of tool usecombined
withhabitat specializationsleadsto fine-scalegeneticstructure in
bottlenose dolphins.Proceedings of the Royal Society B: Biological
Sciences, 281(1782),1–8.
Krützen,M.,Mann,J.,Heithaus,M.R.,Connor,R.C.,Bejder,L.,Sherwin,
W.B.,& Marler,P.(2005).Culturaltransmissionoftool useinbot-
tlenose dolphins. Proceedings of the National Academy of Science s of
the United States of America, 102(25),8939–8943.
Laurindo,L .C .,Mariano, A. J.,& Lumpkin,R.(2017).Animprovednear-
surfacevelocity climatologyfortheglobal oceanfromdrifterob-
servations. Deep Sea Re search Part I: Oce anographic Rese arch Papers,
124, 73– 92. https://doi.org/10.1016/j.dsr.2017.04.009
Liang, K .-Y.,& Zeger, S. L.(1986).Longitudinal data analysis using gen-
eralized linear models. Biometrika, 73(1), 13–22. h t t p s :// d oi .
org/10.2307/2336267
McComb , K., Moss, C ., Durant, S. M ., Baker, L., & Sayia lel, S. (2001).
Matriarchs as repositories of social knowledge in African elephants.
Science, 292(5516),491–494.
O'Neil, S. T., Vucetich, J. A., Beyer, D. E., Hoy, S. R., & Bump, J. K.
(2020). Territoriality drives preemptive habitat selection in re-
covering wolves: Implications for carnivore conservation.
The Journal of Animal Ecolog y, 89(6), 14 33 –14 47. h t tp s : //d o i.
org /10.1111/1365-265 6.13199
Pan, W. (2001). Akaike's information criterion in generalized es-
timating equations. Biometrics, 57(1), 120–125. h t tp s : //d o i .
org/10.1111/j.0006-341x.2001.00120.x
Pirotta, E., Matthiopoulos, J., MacKenzie, M., Scott-Hayward, L., &
Rendell, L. (2011). Modelling sperm whale habitat preference:
A novel approach combining transect and follow data . Marine
Ecology Progress Series, 436, 257– 272. https://doi.org/10.3354/
meps09236
Pirott a, E., Thompson , P. M., Miller, P. I., Brookes, K . L., Cheney, B.,
Barton,T.R.,Graham,I.M.,&Lusseau,D.(2014).Scale-dependent
foraging ecolog y of a marine top predator modelled using pas-
sive acous tic data. Functional Ecology, 28(1 ), 20 6–217. h t t ps : //d o i .
org /10.1111/1365-2435.12146
Redfern ,J.V.,Ferguson,M.C.,Becker,E.A.,Hyrenbach,K.D.,Good,C.,
Barlow,J.,Kaschner,K.,Baumgartner,M.F.,Forney,K.A.,Ballance,
L.T.,Fauchald,P.,Halpin, P.,Hamazaki, T.,Pershing,A .J.,Qian,S .
S.,Read,A.,Reilly,S.B.,Torres,L.,&Werner,F.(2006).Techniques
forcetacean–habitatmodeling.Marine Ecology Progress Series, 310,
271– 29 5. https://doi.org/10.3354/meps3 10271
Rendell,L.,Mesnick,S.L.,Dalebout,M.L.,Burtenshaw,J.,&Whitehead,
H. (2012). C an genetic d ifferen ces expla in vocal dial ect vari ation
in sperm whales, Physeter macrocephalus? Behavior Genetics, 42(2),
332– 3 43 . h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 1 9 - 0 1 1 - 9 5 1 3 - y
Rendell, L. E., & Whitehe ad, H. (2003). Vocal clans in sperm whales
(Physeter macrocephalus).Proceedings of th e Royal Society of London.
Series B: Biological Sciences, 270 (1512), 225–231. h t t ps : //d o i .
org /10.1098/rsp b.2002. 2239
Riesch, R., Barrett-Lennard, L. G ., Ellis, G. M., Ford, J. K. B ., &
Deecke, V. B. (2012). Cultur al traditions and the evolution of
reproductive isolation: Ecological speciation in killer whales?
Biological Journal of the Linnean Society, 106 (1), 1–17. ht t p s :// do i .
org /10.1111/j .1095-8 312 .2 012.0 1872 .x
Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005).
ROCR:VisualizingclassifierperformanceinR.Bioinformatics,
21(20),3940–3941.https://doi.org/10.1093/bioinformatics/
bti623
Tepsich,P.,Rosso,M.,Halpin,P.N.,&Moulins,A .(2014).Habitatprefer-
encesoftwodeep-divingcetaceanspeciesinthenorthernLigurian
Sea. Marine Ecology Progress Series, 508, 247–260. h t t p s :// do i .
org/10.3354/meps1 0851
Tynan,C.T.,Ainley,D.G.,Barth,J.A.,Cowles,T.J.,Pierce,S.D.,&Spear,
L.B.(2005).Cet acean distributions relativetooceanprocessesin
the nor thern California Current Syste m. Deep Sea Research Part
|
13 of 13
VACH ON e t al.
II: Topical Studies in Oceanography, 52(1), 145–167. h t t p s: //d o i .
org/10.1016/j.dsr2.2004.09.024
Vachon, F., Hersh, T. A., Rendell, L., Gero, S., & Whitehead, H. (2022).
Oceannomadsor Islandspecialists?Culturally drivenhabitatpar-
titioningcontrast sin scalebetween geographicallyisolatedsperm
whale populations. Royal Societ y Open Science, 9(5),211737.ht t p s : //
doi.org/10.1098/rsos.211737
Warner, R. R. (1988). Traditionality of mating-site preferences in
a coral reef fish. Nature, 335(6192), 719–721. ht t p s : //d o i.
org /10.103 8/335719a0
Weilgar t, L. S. (2007 ). The impact s of anthropogeni c ocean noise on
cetaceans and implications for management. Review, 85(11),1091–
1116.https://doi.org/10.1139/Z07-101
Whitehead, H. (2003). Sperm whales: Social evolution in the ocean.
UniversityofChicagoPress.
Whitehead, H., McGill, B., & Worm, B . (200 8). Diver sity of deep-
water cetaceans in relation to temper ature: Implications for
ocean war ming. Ecology Letters, 11(11), 1198–1207. ht t p s : //d oi .
org /10.1111/j .1461- 0248. 20 08 .0 123 4. x
Whitehead,H.,&Rendell,L.(20 04).Movements,habitatuseandfeeding
success of culturalclans ofSouth Pacific spermwhales. Journal of
Animal Ecology, 73(1),19 0–196.
Whitehead, H., & Rendell, L. (2015). The cultural lives of whales and dol-
phins.UniversityofChicagoPress.
Whitehe ad, H., & Weilgar t, L. (1991). Patterns of v isually obser vable
behaviour and vocalizations in groups of female sperm whales.
Behaviour, 118(3/4),275–296.
Whiten , A. (2017). A seco nd inherit ance syste m: The exten sion of bi-
ologythroughculture.Inter face Focus, 7(5), 20160142.h t t p s :// d oi .
org /10.1098/rsfs. 2016 .0142
Wong, S. N. P.,& Whitehead,H. (2014).Seasonal occurrence of sperm
whales (Physeter macrocephalus) around Kelvin Seamount in the
Sargasso Sea in relation to oceanographic processes. Deep Sea
Research Part I: Oceanographic Research Papers, 91, 10–16.h t t p s ://
doi.org/10.1016/j.dsr.2014.05.001
SUPPORTING INFORMATION
Additional supporting information can be found online in the
Suppor tingInformationsectionattheendofthisarticle.
How to cite this article: Vachon, F., Eguiguren, A., Rendell, L.,
Gero,S.,&Whitehead,H.(2022).Distinctive,fine-scale
distributionofEasternCaribbeanspermwhalevocalclans
reflectsislandfidelityratherthanenvironmentalvariables.
Ecology and Evolution, 12, e94 49. https://doi.org/10.1002/
ece3 .9449
Available via license: CC BY
Content may be subject to copyright.
Content uploaded by Ana Eguiguren
Author content
All content in this area was uploaded by Ana Eguiguren on Nov 09, 2022
Content may be subject to copyright.