Conference PaperPDF Available

臺灣離岸風電之前景與半潛式浮臺之發展

Authors:

Abstract

綠色能源產業近年受到各國重視,而臺灣位於季風區,擁有豐富而優良的風力能源,故政府也積極推動風力發電產業發展。由於陸域風機產生的噪音問題及可開發區域稀少,臺灣逐漸將發展重心轉向至電力潛力容量更大的離岸風電。本文先簡介台灣風電產業的發展,再討論目前離岸風電使用的固定式風機所面臨的瓶頸,然後進一步分析浮動式風機之優勢,及離岸風電產業之未來走向,包含浮動式在深水區能夠展現更低的成本,以及簡介臺灣海峽深水區尚未被涉足的豐富風力資源場址。最後,說明半潛式平臺優於浮筒式及張力腿式的諸多原因,並且介紹國內團隊聯合設計之15 MW半潛式浮式平臺,列舉其獨特的設計優點,期望能提供風電開發商優良的設計選擇,帶動國內產業供應鏈的發展,亦能為開發商參與風場競爭的方案加值。
臺灣離岸風電之前景與半潛式浮臺之發展
張宏駿*,馬開東*,王詮文**,劉潔**,蕭伊珊**,吳浩平 ***,徐一仁*,雲在*,江茂雄*
* 臺灣大學 程科學及海洋工程學系
** 台亞風能
*** 臺灣電力公司
摘要
綠色能源產業近年受到各國重 視,而臺灣位於季風區,擁有豐富而優良的風力能源,故政府也積極推動風
力發電產業發展。由於陸域風機產生的噪音問題及可開發區域稀少,臺灣逐漸將發展重心轉向至電力潛力容
更大的離岸風電。本文簡介台灣風電產業的發展,再討論目前離岸風電使用的固定式風機所 面臨的瓶頸,然
進一步分析浮動式風機優勢,及離岸風電產業之未來走向,包含浮動式在深水區能夠展現更低的成本,以
簡介臺灣海峽深水區尚未被涉足的豐富風力資源場址。最後,說明半潛式平臺優於浮筒式及張力腿式的諸多
原因,並且介紹國內團隊聯合設計之 15 MW 半潛式浮式平臺,列舉其獨特的設計優點,期望能提風電開發商
優良設計選擇,帶動國內產業供應鏈的發展,亦能為開發商參與風場競爭的方案加值。
關鍵詞:風力發電,離岸風電,浮動式風機,海洋平臺,半潛式浮臺
發電
離岸風電為台灣再生能源發展的重要標的之一,
根據國際工程顧問公司的統計,全球風速排名前 20
位中,台灣海峽就占了其中的 16 個海上風電場址,
這樣豐富的資源條件為台灣發展風力發電提供先天
優勢的機會。從 2016 年開始國內的離岸風電產業在
國家支持的示範計畫逐漸成形;然而,隨著國際趨
勢對於再生能源的需求日益提高且水深相對適合固
定式基礎的場址逐漸趨於飽和,故目標場址漸漸往
水深更深且風能潛勢更優質的場域開發。
在台灣風能潛勢較佳的目標場址中,多數坐落
於新竹、澎湖外海,而場址水深大多超過 65m。然
而,深水區的開發不僅將伴隨著固定式基礎用鋼量
增加而提高了開發成本,對於碼頭基礎設施以及施
工船隻的條件也更為嚴苛及受限於此同時浮式
基礎有著鋼材使用量穩定的優勢使其有與固定式基
礎競價的空間。
國內已有成熟的造船工業,風場開發的同時若
可以結合自主研發適合台灣海峽的浮動平台,更可
提高國內自主開發經驗且充實國內離岸風電產業的
量能。
為因應臺灣人民、企業用電的需求及能的穩
定性與使用的風險性,臺灣政府訂定於 2025 年實現
能源轉型與無核家園的前景,在無核家園的政策下,
旨在由再生能源取代核電,將再生能源從 2016 年約
5% 增加到 2025 年的 20% [3],預計臺灣的離岸風電
達到 5.7 GW,以緩解逐漸稀缺之陸域風機開發空間
與解放豐富的海上風力資源,風電開發商逐漸將重
心轉往海上發展。在 2016 年作為示範階段安裝了 2
4MW 風機於臺灣苗栗西海岸,而後在 2019 年增
加額外 30 臺風機的安裝,總容量為 120MW [4],隨
Formosa 2 2022 年完成了 47 8MW 風機,總
容量為 376MW [5],這兩個離岸風場的資金幾乎是
由外商公司所投資的,主因為臺灣政府實施全球最
高之躉購費率(Feed-in Tariff, FIT) 以吸引外商投資,
與英國的 15 FIT74.75 57.50 英鎊/MWh)和
德國的 12 FIT 相比,臺灣的 FIT 不僅更高,而且
適用期更長[6],未來將有更多風電廠商進駐。
1. 臺灣海域風能密度 [7]
向風
新竹、澎湖外海為我國西部海域中風能潛勢優
異的目標場域,但其水深大多超過 65m因此採用
浮動式平台是為解決深水議題並布局更佳風能資源
之可行方案。在成本評估階段,相較於採用固定式
基礎之開發案因受到鋼材使用量導致其成本與水深
成正比,浮動式平台的整體開發成本更加彈性。另
外,浮式平台如同船舶的特性使得平台可以先在港
口進行風機組裝並使用拖船運送至目標場址進行安
裝,風機故障時亦可一同拖回港邊進行維修,大幅
降低在海上安裝及拆除之危險性。以上特性同時兼
顧了新綠能開發也帶動國內本土離岸風電產業進步,
使台灣在開發綠色能源的里程中大大邁進一步。
成為
浮動式風力發電機顧名思義是將風力發電機放
置於一浮式平上,浮式平臺的概念設計是由石
油及天然氣產業所發展而來 [10]。技術上,浮動
的可行性是極高,因為藉由數十年的海上石油
鑽井平的經驗證實了浮動結構的長期可用性,浮
臺是由繫泊系統將浮式平臺固定於海上,為了採集
較陸域更加豐富且穩定的風力資源 [11] 常選擇位於
離岸 10 20 公里安裝,加上安裝於海上可採用更
大型的風機,當風機葉片的尺寸達兩倍長時,產出
的能源即可多達十倍 [12] ,具相當優良的經濟效率。
隨著離岸風電產業的興起,離岸風場無法避免
從淺水區轉往深水區發展,臺灣也不例外。目前臺
灣的離岸風場分布如圖 2,然隨著第三階段區塊開
發的的開放, 總建置容量 15GW 的風場容量將釋出,
風場的建置也勢必朝離岸更遠的的距離發展,浮動
式風機的發展將隨之發展。
2. 臺灣離岸風場分布 [13]
世界上商轉的浮動式風場有位於葡萄牙的
WindFloat Atlantic 及蘇格蘭的 WindFloat Kincardine
Hywind Scotland。但這不代表浮動式風機不具有
應用價值,反而證明了浮動式風場技術正慢慢趨向
成熟。世界各國以及臺灣正致力於浮動式風機的相
關研究,之所以發展浮式風機原因如下:
1. 浮式平臺不受離岸風場的水深限制
2. 在施工及安裝方面比固定式風機容易許多
3. 比較不會因為自然災害而有風機損壞及結構破
壞的情形
4. 在安裝浮式平臺的技術方面提供多種解決方案
5. 風機尺寸不受基礎結構限制 (由圖 3,可知風
機尺寸愈大,發電容量愈大)
因此,若欲在水深 65 公尺以上的海域建置離岸
風場,根據過去已建造完成之固定式離岸風機的經
驗可知,該工程除了需耗費龐大的資金與時間之外
海平面下面的結構亦非常昂貴且製造困難,加以需
使用租金非常高的安裝船,使用固定式風機的水下
基礎將不合乎成本效益,產生採用浮動式平臺
概念,以支撐一臺高度達到 200 公尺的風機。
3. 風機容量與成本價格之關係 [14]
之優
基於前章節所述,浮動式風機於水深大於 65
尺之海域會較固定式有更大的優勢,水深越深固定
式基礎的成本將大幅上升,難以符合開發成本
另外,浮動式相較於固定式對於承載更高瓦數
的風機的上限更高,而更高瓦數的風機即代表更低
的平均成本, Matt Shields 等人在 2021 所做的研究
[15] 提到,在一總風力資源為 1000MW 的風場,使
20MW 風機進行設置之成本將會較使用 6MW
機進行設置之成本下降,包含減少 20%的系統總成
本及 30%的運維成本,主要下降體現於更少的風機
支數以及下部結構,而運成本下降是因為當風機
支數下降,其需要維修的可能性也更低,也降低維
運船前往風場維護之頻率,如圖 45所示。
4. 總系統成本隨風機瓦數上升而下降 [15]
5. 運維成本隨風機瓦數上升而下降 [15]
對於台灣來說,附近海域的潛在風力能源較大
部分仍為水深 50 公尺以上的深水區,工業技術研究
院於 2015 提出一份台灣離岸風力潛能與優選離岸
區塊場址研究 [16],對離岸風力可開發量進行推估,
當水深達到 50~100 公尺時,臺灣佔海面積達到約
12000 平方公里,潛力容量可達到 90 GW,但考量
到海底纜線或航道等需要避開的區域,以及漁業衝
突或技術難度等因子影響開發量,最後估計之開發
量為 9 GW。而水深 5~50 公尺之水域綜合開發量估
計為 6.2 GW,這表示在台灣,深水區包含約淺水區
1.5 倍的風力資源。而這是以 20%開發率為計算因子,
而開發率會因浮式風電的技術上升而提高,使得深
水區的風力資源能得到更完整的開發。綜合以上所
述,浮動式風機的願景代表的是更低的成本下限以
及仍未曾被踏足的豐富風力資源,當淺水區的風力
資源被固定式風機開發完畢時,台灣的綠色能源勢
必要將目光投向下一階段的浮動式風機。
臺優
風機的發電原理,是藉由空氣流動吹向葉片帶
動軸承旋轉將風能轉換為動能,並透過軸承旋轉帶
動轉軸內部的磁場交變形成電場,將動能轉換為電
能的機制,經由海纜傳輸電力到陸上,理想上發電
機需為穩定速度的旋轉,才能將風能與電能之間的
轉換效率達到最大。由此可知,浮動式風機的浮臺
穩定度對風力發電的效率而言,也有著不容小覷的
影響力,例如離岸風機在發電時,若浮臺受到風浪
影響使整座風機產生不連續的晃動,則會導致浮臺
無法獲得最大受風的力量,進而影響發電的效率,
即便能夠透過葉片旋角系統去控制葉片的角度,但
對於整體發電效率而言,仍不及固定式風機的效率,
藉由半潛式浮臺的設計,除了浮臺本身就有相當高
的穩定性之外,在塔柱吃水部分的設計有更多的調
整空間,並且透過精密的氣液壓控制系統,隨著波
浪的起伏控制三個塔柱進水量使得浮動式風機浮在
海面上能夠十分穩定,對於發電的效率也能夠提升。
以上說明了半潛式浮臺在穩定性上的優點,如
果綜合比較四種不同型態的浮臺,整體而言,半潛
式浮臺是較為優異的選擇,因為其優點多而限制
性的缺點很少,目前在世界各國工業界以及學術界
所推出的設計概念,半潛式浮臺佔了絕大多數 [19]
以下簡單說明另外三種型態浮臺的主要缺點:
(1) 浮筒式: 浮臺吃水非常深,通常可以達到 90
米左右,臺灣海峽海水深度不夠,然而臺灣岸太
平洋海域雖然水深足夠,但是因為臺灣沿岸的港灣
深度最多也就只有10 米,沒有像挪威的深水峽灣
可以作為風機塔臺與葉片安裝所需要的平靜海面,
所以浮筒式在臺灣周邊海域完全無法安裝。
(2) 張力腿: 浮臺的安裝較為困難,主要原因
是安裝程序較為複雜,這種複雜性曾經在石油業界
造成重大事故,另外,張力腿要承受非常高的系泊
張力,造成對於錨碇的設計要求極高,錨碇成本也
因而提高,所以到目前為止,世界各國採用張力腿
式的設計概念算是少數。
(3) 駁船: 浮臺有其先天上的缺陷,因為其形
狀,船體在水面的體積較為龐大,所以受到風浪流
的作用力也會因而比較大在有颱風環境的海域這
成為一大缺點目前在世界各國採用的各種設計
概念中,駁船式也比較少被採用。
半潛
國立臺灣大學、臺灣國際造船(CSBC、財
團法人船舶中心(SOIC)的研究人員和工程師共同
組成了設計團隊,目標是進行承載 15MW 風機半潛
式浮臺臺大浮臺的開發設計(如圖 67所示),以
期提供風電開發商,於臺灣海峽中水深 60 公尺
100 公尺的風場規劃部署時,能以本土設計與建造
的浮臺結構為首選,除了可彰顯本土的技術能量,
亦能為開發商參與風場競爭的方案加值。
目前完成了浮臺的初步設計,浮臺是個帶有環
pontoon 3 柱半潛式浮臺,能夠承載大於 2200
噸的 15MW 風機,此設計擁有下述幾個優點 [19]
1. 容易施工建造:臺大浮臺的設計比較將近 20
種變化型,最終將圓形柱子進化成不規則六角
形立柱,這個改進可以讓造船廠施工建造的流
程變得極為流暢,不需要用彎板機耗時耗工地
建造大型圓柱,大量的銲接也都轉變成可採自
動或半自動的面銲接,不但簡化施工,且能夠
間接提高銲接品質。
2. 海面上的高度穩定性:透過安排三個柱體的最
佳位置和尺寸大小來增加水面面積的慣性矩,
以及在環形 pontoon 內使用海水作為永久壓載
來壓低整體重心,使得浮臺具有高穩定性,即
使在柱內幫浦未運送壓載水時,也能在風浪中
保持非常小的浮臺傾角,保持風機的最佳發電
效率。
3. 堅固的船體結構:浮臺形狀採用傳統環形 pon-
toon 加上立柱的布置方式,這在海洋石油業界
已經取得了超過五十年的經驗驗證。環形 pon-
toon 與水平支撐(horizontal bracings使整個
浮臺外殼變得極為堅固,此設計避免了複雜的
斜角支撐柱的使用,將疲勞斷裂的可能性降至
最低。
4. 高效率的壓載重量分佈:將主柱尺寸增加,使
得其額外的浮力可以用來支撐風機的重量。相
較於三柱直徑相同的設計,臺大浮臺的外柱不
需要額外的壓載來平衡主柱的風機重量。所有
柱體都只需要保持小量壓載海水,該壓載可用
於在工作運作階段來控制平臺傾角。由於外柱
沒有額外大量海水壓載,降低了浮臺重心,也
提高了浮臺穩定性。
5. 平緩的浮臺運動:寬大的 pontoon 可以直接提
供阻尼(damping以減緩浮臺的運動,如起
伏(heave)。Pontoon 內的永久壓載可以平衡
內外壓力差,壓載水的質量也進一步增加浮臺
穩定性,減緩浮臺在風浪中的運動。
6. 寬闊的甲板空間:主柱頂(甲板)和三根水平
支撐提供了寬敞而又連續的作業空間,初期海
上安裝時便利於施工人員進行施工程序。對於
設計壽命中偶爾需要的不定期維修,能提供運
維人員更好的工作環境。
6. 台灣的半潛式浮臺設計 -- 臺大浮臺(TaidaFloat)
7. 臺大浮臺在海上作業的電腦示意圖
結論
台灣的風力能源發展從 2000 年開始從陸域風機
開始嘗試,並在 2016 年一路進入離岸風電,而目前
離岸風電只以固定式為載體,但在 2025 年左右,開
發商將目光移向深水區時浮動式風機則會因成本
以及乘載風機之瓦數,而成為更好的選項。更大
的風機瓦數代表著更低的成本下限,且深水區蘊含
著較淺水區更大量的風力資源等待開發。
國立臺灣大學、臺灣國際造船(CSBC、財
團法人船舶中心(SOIC)共同設計了 15MW 半潛式
浮臺。在世界各國推出的浮臺設計之中,臺灣本土
設計的臺大浮臺擁有多項獨特的優點,有機會成
為風電開發商之選擇,期望能成為風電開發商之首
選,一能彰顯本土的技術能量,帶動國內產業供應
鏈的發展,亦能為開發商參與風場競爭的方案加值。
1. Hannah Ritchie, Max Roser. "Renewable Energy." Our
world in data (2022).
2. Chang, Tsang-Jung, et al. "Assessment of wind character-
istics and wind turbine characteristics in Taiwan." Renew-
able energy 28.6 (2003): 851-871.
3. Yu, Hsiang-Hua, et al. "A Monte Carlo simulation-based
decision support system for reliability analysis of Tai-
wan’s power system: Framework and empirical
study." Energy 178 (2019): 252-262.
4. Power Technology, Formosa 1 Offshore Wind Farm,
2019.
5. Sharm Ward, Formosa 2 Offshore Wind Farm Project.
Summary Environment & Social Impact Assessment,
ESIA Summary (2019): F2-PER-CON-F2-RP-EN-00001.
6. Norton Rose Fulbright, Contracts for Difference: Round
2 Results, 2017.
7. Industrial Technology Research Institute. "Policy and
Promotion of Offshore Wind Power in Taiwan. " Bureau
of Energy, MOEA.
8. Gove, Benedict, et al. "Wind farms and birds: an updated
analysis of the effects of wind farms on birds, and best
practice guidance on integrated planning and impact as-
sessment." RSPB/BirdLife in the UK. Technical document
T-PVS/Inf 15 (2013).
9. Tougaard, J., and M. A. Mikaelsen. "Taiwanese white dol-
phins and offshore wind farms." Scientific report from
DCE Danish centre for environment and energy No 245
(2017).
10. Thiagarajan, K. P., and H. J. Dagher. "A review of float-
ing platform concepts for offshore wind energy genera-
tion." Journal of offshore mechanics and Arctic engineer-
ing 136.2 (2014).
11. Failla, Giuseppe, and Felice Arena. "New perspectives in
offshore wind energy." Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 373.2035 (2015): 20140228.
12. Nasab, Navid Majdi, Jeff Kilby, and Leila Bakhtiaryfard.
"Effect of rotor length on generating power in horizontal
axis wind turbines." IOP Conference Series: Earth and
Environmental Science. Vol. 463. No. 1. IOP Publishing,
2020.
13. 4C Offshore, Events on Changhua Offshore Pilot Project
(COPP) TGC, Accessed 10th Feb 2021 .
14. George, J. "WindFloat design for different turbine
sizes." ULUniversity of Lisbon (2014).
15. Shields, Matt, et al. "Impacts of turbine and plant upsizing
on the levelized cost of energy for offshore wind." Ap-
plied Energy 298 (2021): 117189.
16. 呂學德、何無忌、呂威賢、胡哲魁、陳美蘭、連永
順(2015)。〈臺灣離岸風力潛能與優選離岸區塊
場址研究〉,「中華民國第三十六屆電力工程研討
會」論文。桃園:中原大學電機工程學系,12 12-
13 日。
17. Ma, Kai-tung, et al. "Mooring Designs for Floating Off-
shore Wind Turbines Leveraging Experience From the
Oil & Gas Industry." International Conference on Off-
shore Mechanics and Arctic Engineering. Vol. 85116.
American Society of Mechanical Engineers, 2021.
18. Kao, Shih-Ming, and Nathaniel S. Pearre. "Administra-
tive arrangement for offshore wind power developments
in Taiwan: Challenges and prospects." Energy Policy 109
(2017): 463-472.
19. Hsu, I-Jen, Glib Ivanov, Kai-Tung Ma, et al. “Optimiza-
tion of Semi-Submersible Hull Design For Floating Off-
shore Wind Turbines.” International Conference on Off-
shore Mechanics and Arctic Engineering. American Soci-
ety of Mechanical Engineers, OMAE2022-86751, June 5-
10, 2022.
20. Ma, Kai-Tung, et al. "Mooring Designs for Floating Off-
shore Wind Turbines Leveraging Experience from the Oil
& Gas Industry." International Conference on Offshore
Mechanics and Arctic Engineering. Vol. 85116. Ameri-
can Society of Mechanical Engineers, June 2021.
21. Ma, Kai-Tung, et al. Mooring system engineering for off-
shore structures. Gulf Professional Publishing, 2019.
ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
As wind energy developers start venturing into deeper waters with depths greater than 65 meters, the floating offshore wind turbines (FOWTs) are becoming the preferred solutions there over bottom-fixed structures. This paper summarizes the design of a semi-submersible platform for hosting a 15MW turbine. While semi-submersible origins from the oil & gas industry, the FOWT presents a different set of requisites and conditions for designing it. Recent existing and planned projects can be characterized by excessive use of steel and dimensions, compared to bottom-fixed structures. This paper aims to optimize the hull structure of a semi-submersible platform to be as cost-effective as possible while fulfilling the following design considerations: strength, vessel stability in still water and dynamic conditions, constructability, and operability. Meanwhile, the design is made to satisfy the rule requirements of major classification societies. Through a literature survey, data on existing semi-submersible projects is gathered and analyzed. The ratios of vessel displacement to hull steel weight relations are presented to show the trend. A high-level overview of class rules is given. An example platform, TaidaFloat, designed to carry a 15MW turbine is introduced. Its application is targeting a water depth from 65 to 100 meters with a deployment in Taiwan Strait in mind. The platform is designed against some limits and constraints, e.g. ensuring that it meets stability criteria. Its internal structural arrangement is preliminarily developed, and the steel weight is compared to recent projects. Features of the design are introduced, and their advantages are summarized.
Conference Paper
Full-text available
As renewable energy developers start venturing into deeper waters, the floating offshore wind turbines (FOWTs) are becoming the preferred solutions over fixed supporting structures. Many similarities can be identified between a FOWT and a floating oil & gas facility, such as floater concepts (spar, semi-submersible, tension leg platform, etc) and their mooring system designs. This paper focuses on the mooring designs for FOWTs by leveraging the extensive experience gained from the offshore oil & gas industry. Similarities and differences are highlighted in design criteria, mooring analysis, long-term integrity management, installation method and project execution. The established practices regarding mooring design and analysis are reviewed. Anchor radius is recommended based on water depth by referencing sample mooring designs from the oil & gas industry. Long-term mooring integrity and failure rates are summarized. Meanwhile, a few well-known issues are discussed, such as line break due to fatigue, corrosion on chain, and known issues with components such as clump weights. Regarding mooring installation, the established method for prelay and hook-up is reviewed. Finally, opportunities for cost reduction of mooring systems of FOWTs are presented related to project execution of large scale wind farms as well as potential areas of innovation, such as installation methods, use of synthetic fiber rope, and digitalization. In summary, the state-of-the-art practices from the oil & gas industry are reviewed and documented to benefit the developments of upcoming FOWT projects.
Book
Full-text available
• Understand the various types of mooring systems and the theories behind mooring analysis • Gain practical experience and lessons learned from worldwide case studies • Combine engineering fundamentals with practical applications to solve today's offshore challenges The mooring system is a vital component of various floating facilities in the oil, gas, and renewables industries. However, there is a lack of comprehensive technical books dedicated to the subject. Mooring System Engineering for Offshore Structures is the first book delivering in-depth knowledge on all aspects of mooring systems, from design and analysis to installation, operation, maintenance and integrity management. The book gives beginners a solid look at the fundamentals involved during mooring designs with coverage on current standards and codes, mooring analysis and theories behind the analysis techniques. Advanced engineers can stay up-to-date through operation, integrity management, and practical examples provided. This book is recommended for students majoring in naval architecture, marine or ocean engineering, and allied disciplines in civil or mechanical engineering. Engineers and researchers in the offshore industry will benefit from the knowledge presented to understand the various types of mooring systems, their design, analysis, and operations.
Article
Full-text available
The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Article
Turbine and plant upsizing are major trends in offshore wind deployment, although the quantitative impact on project costs has not been well-characterized. The uncertain value of continued wind turbine and project growth limits the ability of the supply chain to prepare for future technology trends, leading to challenges in the realization of larger projects. This analysis explores the levelized cost of energy impacts of turbine ratings between 6 and 20 MW and plant capacities between 250 and 2,500 MW for fixed-bottom offshore wind using techno-economic cost models for foundation, electrical, installation, and operation and maintenance costs, along with annual energy production. We consider a nominal set of technology assumptions for all scenarios to isolate economies of size and scale without additional benefits from decreasing turbine capital costs, quantity discounts for larger projects, or optimized technology solutions. These results indicate that using a 20-MW wind turbine in a 2,500-MW power plant array can reduce the levelized cost of energy by over 23% relative to the global average turbine and plant size installed in 2019; primarily because of reductions in the balance-of-system and operation and maintenance costs. We also identify improved installation vessels, optimized export systems, and novel operation and maintenance strategies as additional cost reduction opportunities. These results suggest that upsizing represents a significant cost reduction opportunity for offshore wind energy and will continue to be a main factor in shaping the future of the sector.
Article
Taiwan aims to greatly increase renewable energy generation by 2025; as such, an important topic is whether to increase the statutory planning reserve margin (PRM)to overcome high share of Variable Renewable Energy (VRE). Therefore, in this research, the goal is to investigate the use of loss of load expectation (LOLE)as a risk measure to provide insights into how the available power capacity, at a national level, can fail to meet the customer load. A Monte-Carlo-simulation-based framework was proposed to enable fast calculation of the LOLE. Considering a general national power system that consists various sources of renewable and conventional power, the proposed framework allows for a scenario-based calculation under the realistic situation that various conventional energy sources can be ramped up to dynamically meet losses of load. To make the methodology more user-friendly and applicable to power systems, a decision support system was developed. Moreover, a reliability analysis of Taiwan's power system was conducted to show how to evaluate the impact of energy policy by 2025. Sensitivity analyses on two scenarios (with and without limiting coal-fired power generation)on LOLE were done. Finally, recommendations related to the reliability of the power system under Taiwan's energy transition were provided.
Article
The purpose of this paper is to understand Taiwan's current developments in offshore wind power (OWP), particularly focusing on administrative challenges and the prospects of a mechanism to coordinate among governmental agencies. Despite the fact that the government of Taiwan has started to conduct research to advance technology related to offshore wind turbines, little attention has been paid to the establishment or adjustment of the legal framework and administrative mechanism that would permit effective and streamlined OWP development. Japan's administrative mechanisms are examined, and may be instructive; Lessons from the Japanese model include categorizing OWP under ocean policy rather than energy policy. Furthermore, a Headquarters for Ocean Policy was established as the highest coordinative and decision-making mechanism, and involves the Prime Minister, the Chief Cabinet Secretary, the Minister of Ocean Policy and others, and they usually meet on a regular basis. Thus, a coordinative mechanism similar to that of Japan, be it the newly established Ocean Council or the reinstatement of the Commission for the Promotion of Marine Affairs, could be a workable solution to address current challenges and difficulties faced by the development of OWP in Taiwan.
Article
Wind characteristics and wind turbine characteristics in Taiwan have been thoughtfully analyzed based on a long-term measured data source (1961–1999) of hourly mean wind speed at 25 meteorological stations across Taiwan. A two-stage procedure for estimating wind resource is proposed. The yearly wind speed distribution and wind power density for the entire Taiwan is firstly evaluated to provide annually spatial mean information of wind energy potential. A mathematical formulation using a two-parameter Weibull wind speed distribution is further established to estimate the wind energy generated by an ideal turbine and the monthly actual wind energy generated by a wind turbine operated at cubic relation of power between cut-in and rated wind speed and constant power between rated and cut-out wind speed. Three types of wind turbine characteristics (the availability factor, the capacity factor and the wind turbine efficiency) are emphasized. The monthly wind characteristics and monthly wind turbine characteristics for four meteorological stations with high winds are investigated and compared with each other as well. The results show the general availability of wind energy potential across Taiwan.
Formosa 2 Offshore Wind Farm Project
  • Sharm Ward
Sharm Ward, Formosa 2 Offshore Wind Farm Project. Summary Environment & Social Impact Assessment, ESIA Summary (2019): F2-PER-CON-F2-RP-EN-00001.
Wind farms and birds: an updated analysis of the effects of wind farms on birds, and best practice guidance on integrated planning and impact assessment
  • Benedict Gove
Gove, Benedict, et al. "Wind farms and birds: an updated analysis of the effects of wind farms on birds, and best practice guidance on integrated planning and impact assessment." RSPB/BirdLife in the UK. Technical document T-PVS/Inf 15 (2013).