Content uploaded by Christian Wehenkel
Author content
All content in this area was uploaded by Christian Wehenkel on Oct 28, 2022
Content may be subject to copyright.
Forests2022,13,1791.https://doi.org/10.3390/f13111791www.mdpi.com/journal/forests
Article
FieldTrialstoAssesstheGrowth,Survival,andStomatal
DensitiesofFiveMexicanPineSpeciesandTheirHybrids
underCommonPlantationConditions
RicardoSilasSánchez‐Hernández
1
,CarmenZulemaQuiñones‐Pérez
2
,JoséCiroHernández‐Díaz
3
,
JoséÁngelPrieto‐Ruíz
4
andChristianWehenkel
3,
*
1
MaestríaInstitucionalenCienciasAgropecuariasyForestales(MICAF),UniversidadJuárezdelEstadode
Durango(UJED),Durango34120,Mexico
2
TecnológicoNacionaldeMéxicoCampusValledelGuadiana(TecNM‐ITVG),VillaMontemorelos,
Durango34371,Mexico
3
InstitutodeSilviculturaeIndustriadelaMadera(ISIMA),UniversidadJuárezdelEstadodeDurango
(UJED),Durango34120,Mexico
4
FacultaddeCienciasForestalesyAmbientales(FCFA),UniversidadJuárezdelEstadodeDurango(UJED),
Durango34120,Mexico
*Correspondence:wehenkel@ujed.mx
Abstract:Understandinghybridizationisimportantforpracticalreasons,asthepresenceofhybrid
treesinseedstandscaninfluencethesuccessofnaturalregenerationandreforestation.Hybridiza‐
tioncreatesnewgenecombinations,whichcanpromoteorenhanceadaptationtoneworchanging
environments.Inthepresentresearch,weaimed,forthefirsttime,toevaluateandcomparethe
growthandsurvivalof541putativehybridseedlingsand455seedlingsofthepureparentaltrees
ofPinusarizonica,P.durangensis,P.engelmannii,P.leiophylla,andP.teocote,intworeciprocaltrials
ofduration27monthsintheSierraMadreOccidental(SMO),Durango,Mexico.Wealsoexamined
thepossiblecorrelationbetweenneedlestomataldensityandseedlinggrowthandsurvival.The
overallanalysisofthedatashowedthatthemeanheighttotheapicalbudwassignificantlyhigher
(p=0.01)inthehybridsthaninthepuretrees.Consideringbothtrials,thesurvivalrateofP.arizonica
(p=0.002)andP.durangensis(p=0.01)hybridswassignificantlyhigherthanthatofthepuretrees.
Thegrowthparametersweresignificantlycorrelatedwiththemeanstomataldensity(p<0.01).Sto‐
mataldensityandsurvivalattheseedstandlevelweresignificantlyandpositivelycorrelatedinthe
hybrids,butnotinthepuretrees.Insummary,Pinus
hybridsgenerallyexhibitedthesameability
asthepurespecies(orsometimesagreaterability)towithstandweatherconditions,survive,and
groweffectivelyinbothgrowthtrials.ThesystematicuseofnaturalpinehybridsinMexicocould
thereforebeconsideredapossibleoptionforsustainablemanagementandasacomponentofadap‐
tivesilviculture.
Keywords:naturalhybridization;Pinusarizonica;Pinusdurangensis;Pinusengelmannii;Pinus
leiophylla;Pinusteocote
1.Introduction
Naturalhybridizationisacommonphenomenoninplants[1],asmorethan25%of
plantshybridizenaturally[2].Interspecificgenetransferoccursduringhybridization,
whichmayintroducemoredifferentgeneticmaterialthanthatgenerateddirectlybymu‐
tations[3].Understandinghybridizationisimportantforpracticalreasons,asthepres‐
enceofhybridsinseedstandscaninfluencethesuccessofnaturalregenerationandrefor‐
estation[4,5].Inthesamegenerationofhybrids,viability,fertility,andvigorcanvary
widelyacrossindividuals,withsomeofthemhavingthesamevalues,lowervalues,or
Citation:Sánchez‐Hernández,R.S.;
Quiñones‐Pérez,C.Z.;
Hernández‐Díaz,J.C.;
Prieto‐Ruíz,J.Á.;Wehenkel,C.
FieldTrialstoAssesstheGrowth,
Survival,andStomatalDensitiesof
FiveMexicanPineSpeciesandTheir
HybridsunderCommonPlantation
Conditions.Forests2022,13,1791.
https://doi.org/10.3390/f13111791
AcademicEditor:MichaelP.Strager
Received:25August2022
Accepted:24October2022
Published:28October2022
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2022bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(https://cre‐
ativecommons.org/licenses/by/4.0/).
Forests2022,13,17912of14
evenhighervaluesthantheirparents[4].DifferentcasesofnaturalhybridizationofMex‐
icanpinespecieshavebeenobserved[6].
Hernández‐Velascoetal.[7]detectedsignificantdifferencesinthesurvival,diame‐
ter,andheightbetweenseedlingsofthepureparentaltreesandputativehybridseedlings
offiveveryimportanttimberspeciesinMexico,i.e.,Pinusarizonica,P.durangensis,P.engel‐
mannii,P.leiophylla,andP.teocote[8],whichweregrownfor15monthsinnurserycondi‐
tions.Theseedofthespecieswascollectedfromseedstandsinthemunicipalitiesof
Tepehuanes,Otáez,andSantiagoPapasquiaro,inthestateofDurango,Mexico.Because
thecontrolledconditionsinnurseriesarecompletelydifferentfromthoseinnaturalfield
environments,thesameauthors[7]recommendedfurtherstudiestodeterminetheper‐
formanceofeachhybridinfieldconditions,particularlyinregionswhereslowergrowing
parentaltreesarefound,aswellasinextremeenvironments.Thisisbecausehybridization
createsnewgenecombinationsthatcanpromoteorenhanceadaptationtoneworchang‐
ingenvironments[9].
Provenancetrialsareusefulfordetectingassociationsbetweengenetic,geographic,
andclimaticfactors[10].However,thesetrialsaretime‐consumingandusuallyonlyallow
forthemeasurementofphenotypicdifferencesbetweenindividualsandpopulationsun‐
dercommonconditions.Onlyreciprocaltrialsallowforthecontributionofphenotypic
plasticityandtheinteractionsbetweengenotypeandenvironmenttoberevealed[11,12].
Someforestplantspecieshavewidedistributionranges,astheypossessadaptive
strategiesthatallowthemtosurviveandgrowinecologicallydifferentareas[13].Oneof
thesestrategiesisthemorphologicalalterationofleaves,asaconsequenceofstress‐related
effects[14].Thestomataaremicroscopicstructurespresentonthesurfaceofleaves.Inthe
caseofconifers,thestomatahaveaprotectivefunctionastheysurroundacentralpore
andlimitaccesstomesophyllcells.Environmentalfactorssuchaslightintensity,atmos‐
phericCO2concentration,andinternalcontrolsystemsregulatethedevelopmentofthe
stomata[15].Plantscanaltertheopeningofthestomatalpores,moderatinggasexchange
betweentheleafinteriorandtheatmosphere[16].Themorphologyanddistributionof
stomatavaryinresponsetoenvironmentalchangesandareprimarilydirectedbygenetic
traitsandphenotypicplasticity,representinglong‐termadaptationsofplantspecies
[15,17].Characteristicsofthestomata,suchassize,density,andresponsivenesstoenvi‐
ronmentalfactorsarekeycomponentsinfluencingplantgrowth[18].
Thepresentresearchaimed,forthefirsttime,toevaluateandcomparethegrowth
andsurvivalofputativehybridseedlingsandseedlingsofthepureparentalspeciesof
Pinusarizonica,P.durangensis,P.engelmannii,P.leiophylla,andP.teocote,intworeciprocal
trialsintheSierraMadreOccidental(SMO),inthestateofDurango,Mexico.Thestudy
alsoaimedtoexaminethepossiblecorrelationbetweenthestomataldensityoftheneedles
andthegrowthandsurvivaloftheseedlings.Thegrowthofbothtypesofseedlingsmay
notbestatisticallydifferent[19];however,theremaybesignificantdifferencesbetween
thegrowthofputativehybridseedlingsandseedlingsofthepureparentaltreesinthe
fieldintermsofeitherhybridvigor[20]orhybriddepression[5].Inaddition,stomatal
densitymayalsoinfluencepineseedlinggrowthandsurvival[17].
2.MaterialsandMethods
2.1.StudySite
Twofieldtrials(1hectareeach)wereestablishedinJuly2018tocomparethegrowth
ofputativehybridseedlingsandseedlingsofthepureparentaltreesinthefield(referred
toashybridseedlingsandpureseedlings).Theplantingdistancebetweentheseedlings
was2×2m.Regardlessofthespeciesandthetypeofplant(hybridorpure),eachplant
wasrandomlyincludedinbothtrials.Thetrialareaswereclearedoftreevegetationand
protectedbya1.8mhighwirefence,beforetheseedlingswereplanted.Thetrialsincluded
atotalof2552seedlings,whichwereproduced,evaluated,andclassifiedeitherashybrids
Forests2022,13,17913of14
(1297,mostlyconsistingofbackcrosses,withsmallernumbersofF2andsubsequenthy‐
bridgenerations,butnoF1hybrids)orpurespecies(1255).Theseedlingswerefirstgrown
togetherfor15monthsinthenursery[7]andthenfor27monthsinthefield.
ThefirsttrialwasestablishedintheCiénegadeSalpicaelAguaejido,inthearea
knownasLaMesaAlta,atanelevationof2710m(25.06N,−105.77W).Theothertrialwas
establishedintheLagunadeLaChaparraejido,intheareaknownasLaMesaSeca,atan
elevationof2610m(25.12N,−105.70W).Bothsitesarelocatedwithinthemunicipalityof
SantiagoPapasquiaro,stateofDurango,Mexico(Figure1).
Figure1.Locationofthetwostudysiteswheretheseedlingsofinterestwereplantedandare
growing.
Bothsitesarecomposedofpine–oakforests.Thetopographyoftheareaconsistsof
highandlowmountainranges.Duringtheperiod1961–1990,themeanannualtempera‐
turewas10.5°CinMesaSecaand9.6°CinMesaAlta;themeanannualprecipitationwas
803mminMesaSecaand903mminMesaAlta.Thesoilcharacteristicsdifferlittlebe‐
tweenthetwosites(Table1).ThepresenceofPappogeomyscastanopsBaird,arodentthat
consumesplantsorpartsofplants[21],wasdetectedinbothsites.
m
m
Forests2022,13,17914of14
Table1.SoilcharacteristicsinbothreciprocaltrialsinthemunicipalityofSantiagoPapasquiaro,
stateofDurango,Mexico.
CharacteristicMesaAltaMesaSeca
TexturalclassSandyclayloamLoam
Organicmatter(OM,%)4.64High1.94Median
Nitrogen(N‐NO3
,
kg/ha)12.327.39
Phosphorus(ppm)9.667.39
Potassium(ppm)220116
Magnesium(ppm)198114
Zinc(ppm)2.064.12
pH1:2water5.885.25
CaCO3(ppm)1698774
CEC(meq/100g)10.995.35
CEC=cationexchangecapacity.
InOctober2020,seedlingsurvivalwascalculatedforeachpurespeciesandhybrid
andpertrial,asapercentageofthetotalnumberofindividualsplantedinbothtrialsin
July2018(Table2).
Table2.Descriptivestatisticsofthebasaldiameter(mm)ofthesurvivingseedlingsofthefivepure
Pinusspeciesandtheirhybrids,ineachseparatetrialandbothtrialstogether,after27monthsinthe
field.
SpeciesMesaAltaMesaSecaBothTrialsTogether
NMedianMeanSdNMedianMeanSdNMedianMeanSd
PA‐H513.1ab13.10.8521.5ab21.55.21013.6ab15.94.9
PA‐P39.6b9.60.6411.0b11.01.4710.3ab10.31.0
PD‐H1810.6b11.43.65814.8b15.15.57613.2b14.25.3
PD‐P1411.6b11.52.72014.6b15.35.23412.6ab13.74.7
PE‐H5619.9a19.49.021124.4a24.67.426723.6a23.58.0
PE‐P7820.1a20.27.821823.3a23.67.129622.5a22.67.4
PL‐H717.3ab19.35.91820.3ab20.16.72520.0b19.96.4
PL‐P422.1a22.55.81314.6b17.36.91718.7b18.56.9
PT‐H4916.2ab15.96.411416.7b16.96.316316.6b16.66.3
PT‐P2415.3ab15.95.47715.3b16.85.910115.3b16.65.7
H13515.4a15.85.140619.5a19.66.254117.4a18.06.2
P12315.7a15.94.533215.8a16.85.345515.9a16.35.2
Sd=standarddeviation,N=numberofPinusseedlings,PA‐P=Pinusarizonica,PD‐P=P.durangen‐
sis,PE‐P=P.engelmannii,PL‐P=P.leiophyllaandPT‐P=P.teocote.PA‐H=hybridsofPinusarizonica
×P.durangensisgeneticallymoresimilartoP.arizonica;PD‐H=hybridsofP.durangensis×P.arizonica
geneticallymoresimilartoP.durangensisandP.durangensis×P.engelmanniigeneticallymoresimilar
toP.durangensisPE‐H=hybridsofP.engelmannii×P.arizonicageneticallymoresimilartoP.engel‐
mannii;PL‐H=hybridsofP.leiophylla×P.teocotegeneticallymoresimilartoP.leiophylla;PT‐H=P.
leiophylla×P.teocotegeneticallymoresimilartoP.teocote;differentlettersindicatesignificantdiffer‐
ences(α=0.025).
2.2.EvaluationofDifferencesintheDevelopmentofHybrid/PureIndividualsintheField
Intotal,541hybridseedlingsand455pureseedlingsofthefivespeciesunderstudy
wereanalyzed(258fromMesaAltaand738fromMesaSeca)(Table2).Thebasaldiameter
(atplantcollar)wasmeasuredusingadigitalVernierscale,witharesolutionoftenthsof
amillimeter(AVEDISTANT,LCD6);plantheightattheapicalgrowthbudandmaximum
needleheight(fromthebasetothetopoftheneedles)weremeasuredusingaflexometer,
witharesolutionofmillimeters(UlineAccu‐Lock,H‐1766)(Tables2–4).Needlelengthin
Forests2022,13,17915of14
youngseedlingsisconsideredagoodindicatoroffuturegrowth[22].AccordingtoSquil‐
lanceandSilen[23],pineneedlelengthispositivelycorrelatedwithheightgrowthand
thuswithproductivity.
Table3.Descriptivestatisticsofheighttotheapicalbud(cm)ofPinusseedlingsperspeciesand
theirhybrids,ineachtrialandbothtrialstogether,aftergrowingfor27monthsinthefield.
SpeciesMesaAltaMesaSecaBothTrialsTogether
N
MedianMeanSd
N
MedianMeanSd
N
MedianMeanSd
PA‐H522.2ab22.25.9516.0ab16.05.11018.0ab20.15.5
PA‐P330.0a30.07.6418.3ab18.38.8724.2ab24.28.3
PD‐H1833.2a34.614.15831.3a32.712.27631.5a33.212.6
PD‐P1431.3a31.410.52035.6a36.914.73432.8a34.613.2
PE‐H5614.2b16.512.721115.9b16.66.726715.2b16.78.4
PE‐P7814.2b15.16.221815.8b17.68.329615.3b16.97.8
PL‐H730.0a30.87.41834.1a33.39.12531.2a32.68.6
PL‐P443.3a40.813.31333.0a34.48.21737.0a35.99.6
PT‐H4933.7a35.212.611430.0a31.310.916332.0a32.511.5
PT‐P2434.5a36.114.77734.7a36.017.210134.5a36.016.6
H13526.7a27.910.540625.5a26.08.854122.0a24.612.9
P12330.7b30.710.533227.5a28.611.445519.5b23.314.1
Sd=standarddeviation,N=numberofPinusseedlings,PA‐P=Pinusarizonica,PD‐P=P.durangen‐
sis,PE‐P=P.engelmannii,PL‐P=P.leiophyllaandPT‐P=P.teocote.PA‐H=hybridsofPinusarizonica
×P.durangensisgeneticallymoresimilartoP.arizonica;PD‐H=hybridsofP.durangensis×P.arizonica
geneticallymoresimilartoP.durangensisandP.durangensis×P.engelmanniigeneticallymoresimilar
toP.durangensis;PE‐H=hybridsofP.engelmannii×P.arizonicageneticallymoresimilartoP.engel‐
mannii;PL‐H=hybridsofP.leiophylla×P.teocotegeneticallymoresimilartoP.leiophylla;PT‐H=P.
leiophylla×P.teocotegeneticallymoresimilartoP.teocote;differentlettersindicatesignificantdiffer‐
ences(α=0.025).
Table4.Descriptivestatisticsofthemaximumheighttothetopoftheneedles(cm)ofPinusseed‐
lingsperspeciesandtheirhybrids,ineachtrialandbothtrialstogether,aftergrowingfor27months
inthefield.
SpeciesMesaAltaMesaSecaOverall,BothTrials
N
MedianMeanSd
N
MedianMeanSd
N
MedianMeanSd
PA‐H531.4b31.45.9523.0ab23.06.91027.2ab28.66.4
PA‐P331.6b31.63.6427.7ab27.72.2729.7ab29.72.8
PD‐H1844.5a46.413.45842.0a43.912.97642.0a44.513.0
PD‐P1442.1a40.413.72046.0a47.714.23442.9a44.714.2
PE‐H5632.8b32.98.821133.0b34.38.526733.0b34.08.6
PE‐P7832.0b32.49.221833.2b34.69.629633.0b34.09.5
PL‐H734.0a36.89.31838.7a39.310.32538.4ab38.69.9
PL‐P446.6a44.716.11342.0a40.18.81743.0ab41.210.5
PT‐H4940.2a40.312.311436.2a37.410.416336.0a37.010.8
PT‐P2439.6a41.513.97739.5a42.116.710135.1a36.912.4
H13536.6a37.59.940634.6a35.69.754135.3a36.59.7
P12338.4a38.111.333237.7a38.410.445536.7a37.39.9
Sd=standarddeviation,N=numberofPinusseedlings,PA‐P=Pinusarizonica,PD‐P=P.durangen‐
sis,PE‐P=P.engelmannii,PL‐P=P.leiophyllaandPT‐P=P.teocote.PA‐H=hybridsofPinusarizonica
×P.durangensisgeneticallymoresimilartoP.arizonica;PD‐H=hybridsofP.durangensis×P.arizonica
geneticallymoresimilartoP.durangensisandP.durangensis×P.engelmanniigeneticallymoresimilar
toP.durangensis;PE‐H=hybridsofP.engelmannii×P.arizonicageneticallymoresimilartoP.engel‐
mannii;PL‐H=hybridsofP.leiophylla×P.teocotegeneticallymoresimilartoP.leiophylla;PT‐H=P.
Forests2022,13,17916of14
leiophylla×P.teocotegeneticallymoresimilartoP.teocote;differentlettersindicatesignificantdiffer‐
ences(α=0.025).
2.3.CalculationofStomatalDensityinNeedles
Inbothstudysites,twoneedlesperseedlingwerecollectedfrom245individuals
(randomlychosen)ofthethreemostfrequentspecies(P.engelmannii,P.durangensis,and
P.teocote)ofthefiveinitiallyconsideredspecies(astherequirednumberofreplicateswas
notobtainedfortheothertwospecies).Theneedlesampleswereexaminedunderabin‐
ocularstereoscope(EUROMEX:ED‐1402‐S)tocalculatethestomataldensity.Therowsof
stomataandthenumberofstomatawithinanareaofonesquaremillimeterwerecounted
onboththeabaxialandadaxialsidesoftheneedles.Thestomataldensityofeachfacewas
calculatedbymultiplyingthenumberofstomatapermm2bythenumberofrows.These
valuesweresummedtoobtainthedensityperneedle.Werepeatedthisprocesswitha
secondneedleandthencalculatedthemeandensity.Thevaluesofcentraltendencyand
dispersionofthestomataldensitywereestimated(Table4).
2.4.StatisticalAnalysis
Multiplemediancomparisonsofthebasaldiameter,heightattheapicalbud,maxi‐
mumheighttothetopoftheneedlesandsurvivalweremade,andtherespectivepvalues
werecalculatedforhybridandpurespeciesseedlings(TablesS1–S3).Thecomparisons
wereconductedusingNemenyitests(posthoc.kruskal.nemenyi.test)andthePMCMR
packageoftheRsoftwareversion1.4.1103[24](α=0.025).
Spearman’sanalysiswasusedtoexaminethepossiblecorrelation(rs)betweenthe
stomataldensityandseedlingdiameter,height,andsurvivalinbothtrialsofhybridand
pureseedlings.Correlationvaluesandtheirsignificance(p)wereestimatedconsidering
α=0.025.
Theaveragesurvival(%)oftheseedlingsperseedstandwascomputed.Significant
differencesinthesurvivalofthepureandhybridseedlingswerecheckedusingtheDelta
index(δ)andthecorrespondingpvalue(TableS4).Aδvalueofzeroindicatestwocollec‐
tivesofindividualswithidenticalsurvivalrates,andaδvalueofoneindicatescompletely
differentsurvivalrate(0vs.100%survival)[25,26].Thecorrelationsbetweensurvivaland
stomataldensityandthecorrespondingpvalueswerealsocalculated.
3.Results
3.1.GrowthParametersandSurvival
Consideringbothtrialstogetherandeachtrialseparately,nosignificantdifference
betweenthebasaldiameterofthehybridandpureseedlingswasdetected.Comparison
ofthediameterofthedifferentspeciesrevealedthatPinusengelmanniiseedlingsweresig‐
nificantlylargerthantheP.durangensis,P.leiophyilla,andP.teocoteseedlings(Table2).
Consideringbothtrialstogetherandseparately,nosignificantdifferencesinthe
heightstotheapicalbudbetweenhybridandpureindividualsofthecorrespondingspe‐
cieswereobserved.Overall,forbothtrials,themedianheighttotheapicalbudofthe
hybridindividualswassignificantlylargerthanthatofthepureseedlings(Table3).
Consideringbothtrialstogetherandseparately,comparisonofthemedianvaluesfor
thehybridandpurespeciesseedlingsofP.engelmanniirevealedsignificantlylowervalues
ofthemaximumheighttothetopoftheneedlesofthisspeciesrelativetothehybridand
pureP.durangensisandP.teocoteseedlings.Ontheotherhand,therewasnosignificant
differencebetweenhybridsandpureseedlingsofeachspeciesinmaximumheighttothe
topoftheneedles(Table4).
Consideringbothtrialstogether,weobservedsignificantdifferencesinsurvival(δ)
betweenhybridandpurespeciesindividualsofP.arizonicaandP.durangensis(45%vs.
12%and40%vs.27%).However,wedidnotobserveanysignificantdifferencesinthe
Forests2022,13,17917of14
analysisoftheoverallsurvivalofhybridandpureseedlings(δ=0.23,p=0.99).Consider‐
ingthetrialsseparately,themeansurvivalrateoftheP.arizonicahybridswassignificantly
higherthanthatofthepureindividuals,butthemeansurvivalofthehybridP.durangensis
wasonlyhigherintheMesaSecatrial.Overallinbothtrials,purePinusarizonicaseedlings
exhibitedthelowestsurvivalinthefield(12%),andtheδwassignificantrelativetothe
otherhybridsandpureseedlings.PureP.durangensisseedlingspresentedsignificantδ
relativetothehybridsandpureseedlingsofP.engelmannii(26%,46%,and42%).Individ‐
ualsofpureP.teocote(34%)andhybridsofP.engelmannii(46%)alsopresentedsignificant
δ(Table5).
Table5.NumberofPinusseedlings(N)growinginthefieldinbothprovenancetrials,betweenJuly
2018andOctober2020(classifiedashybridsandpurespecies).Differentlettersineachsurvival
columnindicatesignificantdifferencesinthesurvivalrate.
Species
MesaAltaMesaSecaMeanSurvival
(%)
N2018N2020Survival
(%)N2018N2020Survival
(%)2020
PA‐H11545a11545b45ab
PA‐P29310b29414d12c
PD‐H941819b945861ab40a
PD‐P661421b652030c26b
PE‐H2945619b29321172a46a
PE‐P3547822b35721861ab42a
PL‐H35720b341852b36ab
PL‐P27415b281347b31ab
PT‐H2164923b21511452b38a
PT‐P1502416b1507751b34ab
H64913521a64940663a42a
P62812320a62733253a36a
PA‐P=Pinusarizonica,PD‐P=P.durangensis,PE‐P=P.engelmannii,PL‐P=P.leiophyllaandPT‐P=
P.teocote;PA‐H=hybridsofPinusarizonica×PinusdurangensisgeneticallymoresimilartoP.arizon‐
ica;PD‐H=hybridsofP.durangensis×P.arizonicageneticallymoresimilartoP.durangensis(13live
individuals)andP.durangensis×P.engelmanniigeneticallymoresimilartoP.durangensis(63live
individuals);PE‐H=hybridsofP.engelmannii×P.arizonicageneticallymoresimilartoP.engel‐
mannii;PL‐H=hybridsofP.leiophylla×P.teocotegeneticallymoresimilartoP.leiophylla;PT‐H=P.
leiophylla×P.teocotegeneticallymoresimilartoP.teocote;differentlettersindicatesignificantdiffer‐
ences(α=0.025).
3.2.StomatalDensityandGrowthintheField
Consideringbothtrialstogether,thestomataldensitydidnotdiffersignificantlybe‐
tweentheseedlingsofthesamepurespeciesandtherespectivehybrids.However,sto‐
mataldensitywassignificantlyhigherinthehybridandpureindividualsofP.engelmannii
(145.7inhybridsand146.6inpureindividuals)thanintheothertwospecies(p<0.001)
(Table6).
Forests2022,13,17918of14
Table6.Descriptivestatisticsoftheestimatedstomataldensity(stomata/mm2)foreachpurespecies
analyzedandthehybridsinbothprovenancetrials.
SpeciesN
MesaAlta
N
MesaSecaTotalNMedianMeanSd
PD‐H12162894.0b94.617.1
PD‐P1061696.5b97.724.6
PE‐H272956144.3a145.733.6
PE‐P303565142.0a146.635.6
PT‐H232447109.5b111.324.2
PT‐P151833108.0b112.230.3
H6269131119.7a122.434.6
P5559114127.0a129.638.0
Sd=standarddeviation,N=numberofPinusseedlings,PD‐P=Pinusdurangensis,PE‐P=P.engel‐
mannii,PT‐P=P.teocote;PD‐H=hybridsofP.durangensis×P.arizonicageneticallymoresimilarto
P.durangensisandP.durangensis×P.engelmanniigeneticallymoresimilartoP.durangensis;PE‐H=
hybridsofP.engelmannii×P.arizonicageneticallymoresimilartoP.engelmannii;PT‐H=P.leiophylla
×P.teocotegeneticallymoresimilartoP.teocote.N=numberofindividuals;differentlettersindicate
significantdifferencesinthemedianstomatadensity(α=0.025).
Inallthreespecies,themeanstomataldensitywassignificantlycorrelatedwiththe
basaldiameter,heighttotheapicalbud,maximumheighttothetopoftheneedles,and
survival(p<0.01).Stomataldensitywassignificantlypositivelycorrelatedwiththebasal
diameter,butnegativelycorrelatedwithbothheightsinthethreespecies.Inthehybrid
seedlings,stomataldensitywassignificantlypositivelycorrelatedwithsurvivalatthe
seedstandlevel.Incontrast,therewasnosignificantcorrelationbetweenthesetwovari‐
ablesinthepureseedlings.However,forthepureseedlings,aparabolic‐likefunctionwith
anegativequadraticcoefficientofthesurvivalratewithstomataldensitywasobserved
(withmaximumsurvivalrateatabout120stomata/mm2).Thesetwovariableswerenot
significantlycorrelatedinthepureseedlings.Consequently,verylowandveryhighsto‐
mataldensitycorrespondtolowersurvivalofthepureseedlings(Figure2andTable7).
Wedidnotdetectasignificantrelationshipbetweenstomataldensityandseedlinggrowth
orsurvivalwithinanyofthethreespeciesortheirhybrids.
rs=0.34
rs=−0.36
Forests2022,13,17919of14
Figure2.Correlationsbetweenstomataldensity(N/mm2)andbasaldiameter(mm),heighttoapical
bud(cm),maximumheighttothetopoftheneedles(cm)perindividual,andsurvivalbyseedstand
inindividualsofthethreeselectedpurespecies(Pinusdurangensis,P.engelmannii,andP.teocote)and
theirhybrids(P.durangensis×P.arizonica,P.durangensis×P.engelmannii,P.engelmannii×P.arizonica,
andP.tecote×P.leiophylla).Meanvalues(cyanandredlines)andthe95%confidencelevelintervals
forpredictions(greyarea)arebasedongeneralizedadditivemodels(GAM).
Table7.Spearman’scorrelation(rs)(andp‐value)betweenthestomataldensityandthebasaldiam‐
eter,heighttotheapicalbud,andmaximumheighttothetopoftheneedlesperseedling.Inaddi‐
tion,Spearman’scorrelations(rs)(andp‐value)betweenthestomataldensityandsurvivalinseed‐
lingsofthethreeselectedpurepinespecies(Pinusdurangensis,P.engelmannii,andP.teocote)and
theirhybrids(P.durangensis×P.arizonica,P.durangensis×P.engelmannii,P.engelmannii×P.arizonica,
andP.teocote×P.leiophylla)(α=0.025)areshownforeachtrial.
Variablersp‐Value
Basaldiameter+0.343×10⁻⁷
Heighttoapicalbud−0.365×10⁻⁸
Maximumheighttothetopoftheneedles−0.230.0006
Survival(hybridseedlings)+0.4910⁻⁸
Survival(pureseedlings)−0.0020.98
4.Discussion
4.1.SeedlingGrowthandSurvival
Weobservedsignificantdifferencesinthegrowthoftheheightandbasaldiameter
andahighersurvivalrateinPinusengelmanniirelativetotheotherspecies.Thesediffer‐
encescanbeattributedtothefactthatatthefirststageofdevelopment,P.engelmannii,as
apioneerspecies,rapidlyincreasesindiameterandneedles,andtoalesserextentin
height,anddisplaysacespitosegrowthhabit[27,28].Thegreatersurvivalofthisspecies
isalsoduetoitsresistancetodrought(meanannualprecipitationfrom670to830mm[9])
andtothefactthatitusuallygrowsonplateaus,slopes,valleys,andterraces,atelevations
ofbetween1500and2700m[29,30].Thesameappliestothemoredrought‐resistantspe‐
ciesofP.leiophyllaandP.teocote[9],whichareoftenassociatedwithP.engelmannii[8].
AlthoughP.arizonicaisoneofthemostimportanttimberspeciesintheSMO[31],survival
oftheseseedlingswaslowerthanthatofotherspeciesinbothtrials(Table5).Thisspecies
hasspecificgrowthrequirements,includingapHof4.9±0.3[32],densetreecover[33,34],
andameanannualprecipitationofbetween870and1200mm[9].Theseconditionsdid
notoccurinthestudyarea,astreecoverissparseinbothsites,andthelevelofprecipita‐
tionwaslowintheyearpriortodatacollection.
rs=−0.23rs(Hybrid)=0.49
rs(Pure)=−0.002
Forests2022,13,179110of14
Ingeneral,thegrowthofhybridseedlingswassimilartothatofthepureseedlings
inthetrials(Tables2–4).Onlytheoverallmedianheighttotheapicalbudofhybridseed‐
lingswasslightly,butsignificantly,greaterthanthemedianheightofthepureseedlings
(Table3).Thishasalsobeenobservedinhybridsofotherspecies,suchasPinusoocarpa×
P.pringei[19]andP.arizonica×P.engelmannii[29],andadulthybridtreesofPinusluzmariae
×P.herrerae,whichweretallerthanpureP.luzmariaetrees[35].However,hybridsgenerally
showintermediatevaluesofheightanddiameterrelativetothe(pure)parents[36].
Inaddition,thesurvivalofhybridsofP.arizonicaandofP.durangensiswassignifi‐
cantlyhigherthanthatofthepurespecies(Table5),whichmayindicatehybridvigor
(heterosis).Intheory,heterosisoccursfordifferentreasons:heterozygousindividualsdis‐
playhigherlevelsoffitnessthanhomozygousindividuals,thusfavoringthesurvivalof
hybrids[37].Individualswithhigherindividualheterozygosityshowmorestablegrowth,
beinglessaffectedbyenvironmentalfactors[20],becausehybridshavegreatergeneticvar‐
iability,whichallowsthemtoadapttoagreaternumberofecosystemsandconditions[5].
Anotherreasonforhybridvigorisoverdominance,whichoccurswhenheterozygous
individualsaremorevigorousthanhomozygousindividuals,givingrisetosuperiorhy‐
brids[37,38].Dominanceoccurswhenlesshomozygousindividualshave,bydefinition,
lowervaluesofinbreedingandlowerinbreedingdepression[39–41].
However,themostlikelycauseofhybridvigoristhattheenvironmentalconditions,
inbothtrials,weremoresuitableforthehybridswithP.engelmanniigenes(P.arizonica×
P.engelmannii,P.durangensis×P.engelmannii)(Table5).
Finally,aftergrowingfor27monthsinthefield,themeansurvivalrateofseedlings
was35%(Table2).ThisislowerthantheratedeterminedbyMejíaetal.[42],whostudied
seedlingsofPinusofdifferentspeciesandagesintheSMO,whereonlyplantingstrees
olderthaneightyearshadasurvivalrateoflessthan60%.Thisisalsolowerthantherate
reportedbyBenítez[43],whocalculatedameansurvivalof60%inPinusengelmanniiplan‐
tationsinDurango,Mexico.However,itwassimilartothatintheplantationsstudiedby
TorresRojo[44],withameansurvivalrateof38%,andtosomeofthePinusengelmannii
plantationsstudiedbyPrietoRuízetal.[45].Possiblecausesoflowsurvivalintheplant‐
ingsites(bothtrials)includethepresenceofPappogeomyscastanopsBairdandlowrainfall
during2019(429mm),theyearpriortodatacollection[46].
4.2.StomatalDensity
Stomataldensitywasthehighestinthedrought‐tolerantP.engelmannii[26,30](Table
7).Thisfindingisconsistentwiththoseofotherstudiesthathavereportedahighersto‐
mataldensityand/ornumberofstomatalrowsinP.ponderosa[47]andinsomeMediter‐
raneanpinesunderdroughtconditions[48–50].AccordingtoAfasetal.[51]andShu[47],
ahigherstomataldensitycouldenableincreasedleafgasexchangeduringshort,favorable
periodsandgreatercontrolofwaterlossandgasexchangeunderdroughtstressinharsh
dryconditions.Stomataldensitydependsondifferentenvironmentalfactors,suchaswa‐
terstress[52]andchangesinambientCO2concentration[53].Despitetheinfluenceof
environmentalfactors,stomataldensityisstronglycontrolledbygeneticfactors[54].
Thestomataldensitywaspositivelyandsignificantlycorrelatedwiththebasaldiam‐
eterandnegativelycorrelatedwithheightinthepinespeciesanalyzed(Table7,Figure2).
InastudyofanF1hybridbetweenQuercusroburandQ.robursubsp.Slavonica,Gailinget
al.[55]alsoobservedapositive,significantcorrelationbetweenthestomataldensityand
basaldiameter;however,thecorrelationbetweenstomataldensityandheightwasalso
positive.Weobtainedtheoppositeresultregardingheight,whichcanbeexplainedbythe
lowerheightgrowthofP.engelmanniithanofP.durangensisandP.teocote(Tables3and
4).However,P.engelmanniihasthehigheststomataldensity(Table6).Thesameauthors
[55]alsostatedthat(i)stomataldevelopmentisregulatedbydifferentgeneticandenvi‐
ronmentalsignalsand(ii)inQ.robur,thealleleofaparticularquantitativetraitlocusas‐
sociatedwithhigherstomataldensitywasgenerallycorrelatedwithtallerplantsandan
Forests2022,13,179111of14
increaseinsize,indicatingpleiotropicgeneeffectsoraclosegeneticlinkage,asalsore‐
portedbyChebibandGuillaume[56].
Inthepresentstudy,inadditiontoinfluencinggrowth,stomataldensitywasalso
positivelycorrelatedwiththesurvivalofthehybridseedlings.However,forthepure
seedlings,plottingthesurvivalrateagainstthestomataldensityyieldedaparabolic‐like
curve(Figure2andTable7).Thus,onaverage,hybridswithahighstomataldensitysur‐
vivedbetterthanpureseedlingswithasimilarhighstomataldensity,whichcouldbe
explainedbydifferencesinothertraitsnotstudiedhere.Theseothertraitscouldhave
contributedtoenhancingtheadaptivecapacityofthehybridsbyenablingthemtocope
withenvironmentalconditionsinbothtrialsmoresuccessfullythanthepureindividuals.
Significantvariationinstomataldensityhasbeendetectedbetweenclonesandhybridsof
Populusspecies,anditsrespectivecorrelationwithbiomassproduction[57]andlightcon‐
ductance[58],indicatingthatstomataldensitymayvaryamongclonesorpurespecies,as
wellasamonghybrids;suchvariationwillenablethetreestoadapttothesurrounding
environmentalconditions.
5.Conclusions
Thebasaldiameter,heighttotheapicalbud,andmaximumheighttothetopofthe
needlesvariedweaklybetweenhybridandpureseedlingsofdifferentpinespecies.A
greaterheighttotheapicalbudandsurvivalofhybridsweredetectedinPinusarizonica
andP.durangensisthaninthepurespecies.Aftergrowingfor27monthsinthefield,the
hybridsgenerallydisplayedthesamecapacityasthepureseedlings(andinsomecasesa
greatercapacity)towithstandweatherconditions,survive,andgroweffectively.These
differencesareexpectedtoincreaseovertimeinthefield.Thus,thereisnoreasontoex‐
cludethesehybridsfromtheforestmanagementplans.
Werecommendcontinuingtomonitorthesetrialsinordertodeterminethelong‐
termviabilityofthehybridandpureseedlings.Becauseofthespatialandtemporallimi‐
tationsofthestudy,wealsosuggestreplicatingthistypeoftrialwithotherspeciesandin
othersites,asthereisawidevariationinthechancesofdetectinghybridvigor.
Theresultsofthisresearchwillhelpforestmanagerstoselectthemostappropriate
speciesandtheirhybridsforreforestationorplantations,thuscontributingtosustainable
forestprotection,conservation,andmanagement,includingadaptivesilviculture,andto
satisfyingthegrowingdemandforwoodintheforestrysector.
SupplementaryMaterials:Thefollowingsupportinginformationcanbedownloadedat:
https://www.mdpi.com/article/10.3390/f13111791/s1,SupplementaryTableS1:Differencebetween
basaldiametersmediansofPinusspeciesinmillimetersandp‐valuescalculatedinKruskal‐Wallis
multipletesting(bothtrials);α=0.025.;TableS2:Differencesbetweenthemedianheighttotheapical
budofPinusspeciesincentimeters,andthecorrespondingp‐values,calculatedinKruskal‐Wallis
multipletests(overallforbothtrials);α=0.025;TableS3:Differencebetweenthemediansofthemax‐
imumheighttothetopoftheneedlesofPinusspecies,incentimeters,andp‐valuescalculatedinKrus‐
kal‐Wallismultipletests(overallforbothtrials);α=0.025;TableS4:Deltaindex(δ)andcorresponding
p‐valuesindeltatestsforthesurvivalofPinusspecies(bothtrialscombined),α=0.025.
AuthorContributions:Conceptualization,C.W.;formalanalysis,R.S.S.‐H.;investigation,R.S.S.‐H.;
methodology;supervision,C.W.;writingoftheoriginaldraft,R.S.S.‐H.andC.W.;writing—review‐
ingandediting,C.W.,C.Z.Q.‐P.,J.C.H.‐D.,andJ.Á.P.‐R.Allauthorshavereadandagreedtothe
publishedversionofthemanuscript.
Funding:ThisstudywassupportedbytheCouncilofScienceandTechnologyofthestateofDu‐
rango(COCYTED);FinanceCode21571/2020.WewouldliketothanktheScienceandTechnology
Council(CONACYT)forapostgraduatescholarship,whichactedasanincentivetocarryoutthe
study.Thefundingbodieshadnoroleinthestudydesign,datacollectionandanalysis,decisionto
publish,orpreparationofthemanuscript.
Forests2022,13,179112of14
Acknowledgments:WearethankfultotheadministrationoftheejidosCiénegadeSalpicaelAgua
yLagunadelaChaparra,municipalityofSantiagoPapasquiaro,stateofDurango,México(1005)
(EngineerFernandoSalazarJiménez)fortheirhelpfulassistance.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Rieseberg,L.H.Hybridoriginsofplantspecies.Annu.Rev.Ecol.Syst.1997,28,359–389.https://doi.org/10.1146/annurev.ecol‐
sys.28.1.359.
2. Mallet,J.Hybridization,ecologicalracesandthenatureofspecies:Empiricalevidencefortheeaseofspeciation.Philos.Trans.
R.Soc.BBiol.Sci.2008,363,2971–2986.https://doi.org/10.1098/rstb.2008.0081.
3. Wright,J.W.Hybridizationbetweenspeciesandraces.Unasylva1964,18,30–39.
4. Arnold,M.L.;Hodges,S.A.Arenaturalhybridsfitorunfitrelativetotheirparents?TrendsEcol.Evol.1995,10,67–71.
https://doi.org/10.1016/S0169‐5347(00)88979‐X.
5. Rieseberg,L.H.;Carney,S.E.Planthybridization.NewPhytol.1998,140,599–624.
6. Gernandt,D.S.;AguirreDugua,X.;Vázquez‐Lobo,A.;Willyard,A.;MorenoLetelier,A.;PérezdelaRosa,J.A.;Piñero,D.;
Liston,A.Multi‐locusphylogenetics,lineagesorting,andreticulationinPinussubsectionAustrales.Am.J.Bot.2018,105,711–
725.https://doi.org/10.1002/ajb2.1052.
7. Hernández‐Velasco,J.;Hernández‐Díaz,J.C.;Vargas‐Hernández,J.J.;Hipkins,V.;Prieto‐Ruíz,J.Á.;Pérez‐Luna,A.;Wehenkel,
C.NaturalhybridizationinseedstandsofsevenMexicanPinusspecies.NewFor.2022,53,487–509
https://doi.org/10.1007/s11056‐021‐09868‐9.
8. Rzedowski,J.VegetacióndeMéxico;ComisiónNacionalparaelConocimientoyUsodelaBiodiversidad:México,México,2006.
9. Rieseberg,L.H.;Raymond,O.;Rosenthal,D.M.;Lai,Z.;Livingstone,K.;Nakazato,T.;Durphy,J.L.;Schwarzbach,A.E.;Do‐
novan,L.A.;Lexer,C.MajorEcologicalTransitionsinWildSunflowersFacilitatedbyHybridization.Science2003,301,1211–
1216.https://doi.org/10.1126/science.1086949.
10. Lindgren,D.;Ying,C.C.Amodelintegratingseedsourceadaptationandseeduse.NewFor.2000,20,87–104.
https://doi.org/10.1023/A:1006708213824.
11. Hereford,J.AQuantitativeSurveyofLocalAdaptationandFitnessTrade‐Offs.Am.Nat.2009,173,579–588.
https://doi.org/10.1086/597611.
12. deKort,H.;Mergeay,J.;vanderMijnsbrugge,K.;Decocq,G.;Maccherini,S.;KehletBruun,H.H.;Honnay,O.;Vandepitte,K.
AnevaluationofseedzonedelineationusingphenotypicandpopulationgenomicdataonblackalderAlnusglutinosa.J.Appl.
Ecol.2014,51,1218–1227.https://doi.org/10.1111/1365‐2664.12305.
13. Poyatos,R.;Martínez‐Vilalta,J.;Čermák,J.;Ceulemans,R.;Granier,A.;Irvine,J.;Köstner,B.;Lagergren,F.;Meiresonne,L.;
Nadezhdina,N.;etal.PlasticityinhydraulicarchitectureofScotspineacrossEurasia.Oecologia2007,153,245–259.
https://doi.org/10.1007/s00442‐007‐0740‐0.
14. Trewavas,A.AspectsofPlantIntelligence.Ann.Bot.2003,92,1–20.https://doi.org/10.1093/aob/mcg101.
15. Hetherington,A.M.;Woodward,F.I.Theroleofstomatainsensinganddrivingenvironmentalchange.Nature2003,424,901–
908.https://doi.org/10.1038/nature01843.
16. Kollist,H.;Nuhkat,M.;Roelfsema,M.R.G.Closinggaps:Linkingelementsthatcontrolstomatalmovement.NewPhytol.2014,
203,44–62.https://doi.org/10.1111/nph.12832.
17. Woodward,F.I.EcophysiologicalstudiesontheshrubVaccinium‐MyrtillusL.takenfromawidealtitudinalrange.Oecologia
1986,70,580–586.
18. Chen,S.;Bai,Y.;Zhang,L.;Han,X.Comparingphysiologicalresponsesoftwodominantgrassspeciestonitrogenadditionin
XilinRiverBasinofChina.Environ.Exp.Bot.2005,53,65–75.
19. LópezUpton,J.;VelazcoFiscal,V.;JassoMata,J.;RamírezHerrera,C.;VargasHernández,J.HibridaciónnaturalentrePinus
oocarpayP.pringlei.ActaBotánicaMex.2001,57,51–66.
20. Livshits,G.;Kobyliansky,E.Lerner’sconceptofdevelopmentalhomeostasisandtheproblemofheterozygositylevelinnatural
populations.Heredity1985,55,341–353.https://doi.org/10.1038/hdy.1985.117.
21. Gunn,D.;Hirnyck,R.;Shewmaker,G.;Takatori,S.;Ellis,L.T.ControlandoalastuzasdeIdaho.UniversityofIdahoExtension
CIS1213‐S.2016.Availableonline:https://www.extension.uidaho.edu/publishing/pdf/CIS/CIS1213‐S.pdf(accessedon21Octo‐
ber2021).
22. McDonald,P.M.;Skinner,C.N.;Fiddler,G.O.Ponderosapineneedlelength:Anearlyindicatorofreleasetreatmenteffective‐
ness.Can.J.For.Res.1992,22,761–764.
23. Squillance,A.E.;Silen,R.R.Racialvariationinponderosapine.For.Sci.Monogr.1962,2,27.
24. RCoreTeam.R:ALanguageandEnvironmentforStatisticalComputing;RFoundationforStatisticalComputing:Vienna,Austria,
2021.Availableonline:https://www.R‐project.org/(accessedon24October2021).
25. Gregorius,H.R.;Roberds,J.H.Measurementofgeneticaldifferentiationamongsubpopulations.Theor.Appl.Genet.1986,72,
826–834.
Forests2022,13,179113of14
26. Simental‐Rodriguez,S.L.;Pérez‐Luna,A.;Hernández‐Díaz,J.C.;Jaramillo‐Correa,J.P.;López‐Sánchez,C.A.;Flores‐Rentería,
L.;Carrillo‐Parra,A.;Wehenkel,C.ModellingShiftsandContractionofSeedZonesinTwoMexicanPineSpeciesbyUsing
MolecularMarkers.Forests2021,12,570.https://doi.org/10.3390/f12050570.
27. Ávila‐Flores,I.J.;Prieto‐Ruíz,J.A.;Hernández‐Díaz,J.C.;Wehenkel,C.A.;Corral‐Rivas,J.J.PreconditioningPinusengelmannii
Carr.seedlingsbyirrigationdeficitinnursery.Rev.ChapingoSer.Cienc.For.YAmbiente2014,20,237–245.
https://doi.org/10.5154/r.rchscfa.2014.02.004.
28. RosalesMata,S.;PrietoRuíz,J.A.;GarcíaRodríguez,J.L.;MadridAispuro,R.E.;SigalaRodríguez,J.A.Preacondicionamiento
dePinusengelmanniiCarr.bajodiferentescondicionesambientalesenvivero.Rev.Mex.Cienc.For.2015,6,64–71.
https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007‐11322015000100006htt.
29. Ávila‐Flores,I.J.;Hernández‐Díaz,J.C.;Gonzáez‐Elizondo,M.S.;Prieto‐Ruíz,J.Á.;Wehenkel,C.Degreeofhybridizationinseed
standsofPinusengelmanniiCarr.intheSierraMadreOccidental,Durango,Mexico.PLoSONE2016,11,e0152651.
https://doi.org/10.1371/journal.pone.0152651.
30. Barton,A.M.;Teeri,J.A.TheEcologyofelevationalpositionsinplants:Droughtresistanceinfivemontanepinespeciesin
SoutheasternArizona.Am.J.Bot.1993,80,15–25.https://doi.org/10.1002/j.1537‐2197.1993.tb13762.x.
31. Friedrich,S.C.;Hernández‐Díaz,J.C.;Leinemann,L.;Prieto‐Ruíz,J.A.;Wehenkel,C.SpatialGeneticStructureinSeedStandsof
PinusarizonicaEngelm.andPinuscooperiBlancointheStateofDurango,Mexico.For.Sci.2018,64,191–202.
https://doi.org/10.1093/forsci/fxx007.
32. Wehenkel,C.;Simental,L.;Silva‐Flores,R.;Hernández‐Díaz,J.C.Discriminationof59seedstandsofvariousMexicanpine
speciesbasedon43dendrometric,climatic,edaphicandgenetictraits.Forstarchiv2015,86,194–201.https://www.cabdi‐
rect.org/cabdirect/abstract/20153438576.
33. ChacónSotelo,J.M.;VelázquezMartínez,A.;Musálem,M.A.ComportamientodelarepoblaciónnaturaldePinusarizonica
Engelm.bajodiferentescoberturas.MaderaYBosques1998,4,39–44.
34. Perry,J.ThePinesofMexicoandCentralAmerica;TimberPress:Portland,OR,USA,1991.
35. Wehenkel,C.;SamanthadelRocío,M.L.;Socorro,M.G.E.;Aguirre‐Galindo,V.A.;Fladung,M.;López‐Sánchez,C.A.TallPinus
luzmariaetreeswithgenesfromP.Herrerae.PeerJ2020,8,e8648.https://doi.org/10.7717/peerj.8648.
36. Denison,N.P.;Kietzka,J.E.Theuseandimportanceofhybridintensiveforestryinsouthafrica.SouthAfr.J.1993,165,55–60.
https://doi.org/10.1080/00382167.1993.9629390.
37. Hansson,B.;Westerberg,L.Onthecorrelationbetweenheterozygosityandfitnessinnaturalpopulations.Mol.Ecol.2002,11,
2467–2474.https://doi.org/10.1046/j.1365‐294X.2002.01644.x.
38. Lynch,M.;Walsh,B.GeneticsandAnalysisofQuantitativeTraits;SinauerAssociates,Inc.:Sunderland,MA,USA,1998.
39. González‐Varo,J.P.;Aparicio,A.;Lavergne,S.;Arroyo,J.;Albaladejo,R.G.Contrastingheterozygosity‐fitnesscorrelationsbe‐
tweenpopulationsofaself‐compatibleshrubinafragmentedlandscape.Genetica2012,140,31–38.
https://doi.org/10.1007/s10709‐012‐9655‐8.
40. Reed,D.H.;Fox,C.W.;Enders,L.S.;Kristensen,T.N.Inbreeding‐stressinteractions:Evolutionaryandconservationconse‐
quences.Ann.NewYorkAcad.Sci.2012,1256,33–48.https://doi.org/10.1111/j.1749‐6632.2012.06548.x.
41. Abrahamsson,S.;Ahlinder,J.;Waldmann,P.;García‐Gil,M.R.Maternalheterozygosityandprogenyfitnessassociationinan
inbredScotspinepopulation.Genetica2013,141,41–50.https://doi.org/10.1007/s10709‐013‐9704‐y.
42. Mejía,B.J.M.;García,R.J.L.;Muñoz,F.H.J.EvaluacióndeplantacionesdecuatroespeciesforestalesenelestadodeDurango.
Reaxion2015,2,8–28.Availableonline:http://reaxion.utleon.edu.mx/Art_Evaluacion_plantaciones_cuatro_espe‐
cies_forestales_Durango.html(accessedon26October2021).
43. Benítez,M.A.G.SupervivenciayCrecimientodePlantacionesForestalesComercialesenelConjuntoPredial“ElDurangueño”,
Canatlán,Durango.TesisdeMaestría,FacultaddeCienciasForestales,UniversidadJuárezdelEstadodeDurango,Durango,
Dgo.,México,México,2016;82p.
44. TorresRojo,J.M.FactoresambientalesyfísicosqueafectanlasupervivenciadesieteespeciesforestalesenelEstadodeMéxico.
Revistamexicanadecienciasforestales.Rev.Mex.Cienc.For.2021,12,66–91.https://doi.org/10.29298/rmcf.v12i64.831.
45. PrietoRuíz,J.Á.;DuarteSantos,A.;GocheTélles,J.R.;GonzálezOrozco,M.M.;PulgarínGámiz,M.Á.Supervivenciaycreci‐
mientodedosespeciesforestales,conbaseenlamorfologíainicialalplantarse.Rev.Mex.Cienc.For.2018,9,151–168.
https://doi.org/10.29298/rmcf.v9i47.182.
46. ComisiónNacionaldelAgua(CONAGUA).ResúmenesMensualesdeTemperaturasyLluvia.2019.Availableonline:
https://smn.conagua.gob.mx/es/climatologia/temperaturas‐y‐lluvias/resumenes‐mensuales‐de‐temperaturas‐y‐lluvias(ac‐
cessedon25April2022).
47. Shu,M.AssociationGeneticsofDroughtToleranceinPonderosaPine(Pinusponderosa);UniversityofCalifornia:Merced,CA,USA,
2020.
48. López,R.;Climent,J.;Gil,L.Fromdeserttocloudforest:Thenon‐trivialphenotypicvariationofCanaryIslandpineneedles.
Trees2008,22,843.
49. Dangasuk,O.G.;Panetsos,K.P.AltitudinalandlongitudinalvariationsinPinusbrutia(Ten.)ofCreteIsland,Greece:Somenee‐
dle,coneandseedtraitsundernaturalhabitats.NewFor.2004,27,269–284.
50. Wahid,N.;González‐Martínez,S.C.;ElHadrami,I.;Boulli,A.Variationofmorphologicaltraitsinnaturalpopulationsofmar‐
itimepine(PinuspinasterAit.)inMorocco.Ann.For.Sci.2006,63,83–92.
Forests2022,13,179114of14
51. Afas,N.A.;Marron,N.;Ceulemans,R.VariabilityinPopulusleafanatomyandmorphologyinrelationtocanopyposition,
biomassproduction,andvarietaltaxon.Ann.For.Sci.2007,64,521–532.
52. Bulfe,N.;Fernández,M.E.EfectodelmomentodeocurrenciadeldéficithídricosobreelcrecimientodeplantinesdePinustaeda
L.Rev.Fac.Agron.2014,113,81–93.
53. Poulson,M.E.;Boeger,M.R.T.;Donahue,R.A.ResponseofphotosynthesistohighlightanddroughtforArabidopsisthaliana
grownunderaUV‐Benhancedlightregime.Photosynth.Res.2007,90,79–90.https://doi.org/10.1007/s11120‐006‐9116‐2.
54. Wang,H.;Ngwenyama,N.;Liu,Y.;Walker,J.C.;Zhang,S.StomatalDevelopmentandPatterningAreRegulatedbyEnviron‐
mentallyResponsiveMitogen‐ActivatedProteinKinasesinArabidopsis.PlantCell2007,19,63–73.
https://doi.org/10.1105/tpc.106.048298.
55. Gailing,O.;Langenfeld‐Heyser,R.;Polle,A.;Finkeldey,R.Quantitativetraitlociaffectingstomataldensityandgrowthina
Quercusroburprogeny:Implicationsfortheadaptationtochangingenvironments.Glob.Chang.Biol.2008,14,1934–1946.
https://doi.org/10.1111/j.1365‐2486.2008.01621.x.
56. Chebib,J.;Guillaume,F.Pleiotropyorlinkage?Theirrelativecontributionstothegeneticcorrelationofquantitativetraitsand
detectionbymultitraitGWAstudies.Genetics2021,219,p.iyab159.https://doi.org/10.1093/genetics/iyab159.
57. AlAfas,N.;Marron,N.;Ceulemans,R.Clonalvariationinstomatalcharacteristicsrelatedtobiomassproductionof12poplar
(Populus)clonesinashortrotationcoppiceculture.Environ.Exp.Bot.2006,58,279–286.https://doi.org/10.1016/j.envexp‐
bot.2005.09.003.
58. Reich,P.B.Leafstomataldensityanddiffusiveconductanceinthreeamphistomatoushybridpoplarcultivars.NewPhytol.1984,
98,231–239.https://doi.org/10.1111/j.1469‐8137.1984.tb02733.x.