Content uploaded by Parastoo Alaei Roozbahni
Author content
All content in this area was uploaded by Parastoo Alaei Roozbahni on Oct 27, 2022
Content may be subject to copyright.
Abstract
Steganography
Steganography
DWT
Stego
PSNRMSEEntropy
Introduction
Introduction: SteganographySteganosStego
grafia
SteganographyCI
Steganography
Steganography
SteganographyCI
Stego
•Infographic Style
Introduction
Contribution & Organization:
AB
:
Steganography
Haar DWT
.
Steganography
.4
5
6
.
CI: Cover Image
PI: Payload Image
SI: Stego Image
HDWT: Haar Discrete Wavelet Transform
IDWT: Inverse Discrete Wavelet Transform
N1: Entropy of Stego Image
N2: Entropy of Cover Image
Literature Review
Literature Review:
CI
(PSO)
(AEMD )
.
.
LSB
.
Tang L et al:
Atta R et al:
Mansoor Fateh et al:
Aya Jaradat et al:
(LSB )
.Payload
.
CI
Literature Review:
LSB
.
PVD.
GA
LSB CI
.
Pratik D Shah and
Rajankumar S Bichkar:
Nabanita Mukherjee
(Ganguly) et al:
J B Eseyin and K A
Gbolagade:
Supriadi Rustad
et al:
RNS
CRT
RSA
CI
LSB
.
Cover Image:
Playload Image:
Haar DWTSteganography
CIPI
CIPI
αβ
Haar DWTSteganography
•Infographic Style
Proposed
Model
𝛽=(1- α)
SIStego𝘢
𝛽
DWT
DWT
High-Pass (H)
Low-Pass (L)
IDWT
Stego Image
Generation Algorithm:
αββ= (1-α)
01
CIx256PI
x512
02
(NCI) = CI/255
(NPI) = PI/255.
03
(PCI) = (NCI)* α
(PPI) = (NPI* β).
04
DWT HAARCIPI
LL CIPI
05
LL CIPI
Haar
06
CIStego (SI)
LLLHHLHHPI
CI
IDWT SI
07
Secret Image Extraction Algorithm:
β
D-DWT
HAAR SI
SI
CI.
IDWT
SI
Peak Signal to Noise Ratio (PSNR):
PSNR SI CI
SI CI.
Mean Square Error (MSE):
MSE
SI CI
Entropy(N):
αCIPIMSEPSNRN1N2
0.999baboonlena0.140165.20362.91632.9163
0.9baboonlena0.140165.20032.91632.9163
0.8baboonlena0.140265.19692.91672.9163
0.7baboonlena0.140265.19352.91532.9163
0.6baboonlena0.140365.19022.91522.9163
0.5baboonlena0.140365.18692.91662.9163
0.4baboonlena0.140465.18372.91492.9163
0.3baboonlena0.140465.18042.90412.9163
0.2baboonlena0.140565.17722.86792.9163
0.1baboonlena0.140665.17402.78432.9163
PSNRCIPIα
CIPI
x512α
α=0.1MSE
0.1406PSNR 65.1740
α=0.999MSEPSNR
PSNRCIPI
PSNRCI
PI
CI
α
PSNR
MSE 0.1401
Stego
αCI
Dimension
PI
Dimensio
nMSE
PSNR
N1 N2
0.999
peppers.pn
g512x512
zelda.png
512x512
0.7315
50.8465
3.1695
3.1676
airplane.pn
g512x512
barbara.pn
g
512x512
0.5447
53.4071
2.5050
2.5050
lena.png 512x512
goldhill.png
512x512
0.4163
55.7420
3.0713
3.0713
baboon.pn
g512x512
barbara.pn
g
512x512
0.1401
65.2036
2.9163
2.9163
PSNRCIPI
PSNR CI
PI
CI
α=0.999
PSNRMSE
0.2140Stego
αCI
Dimensi
on PI
Dimensi
on
MSE
PSNR
N1 N2
0.999
zelda.pn
g
512x51
2
peppers.
png
512x512
0.3035
58.487
8
3.109
7
3.10
97
goldhill.
png
512x512
peppers.
png
512x51
2
0.2179
61.365
9
3.055
0
3.05
61
goldhill.
png
512x512
lena.pn
g
512x51
2
0.2140
61.522
4
3.055
3
3.05
62
PSNRCIPI
PSNR
CIPI
rice.png
CItestpat1.png
PI
α=0.999
PSNR
MSE 0.1634
Stego
αImage
Dimension
Image
Dimensio
nMSE
PSNR
N1 N2
0.999
lena.jpg 256x256
baboon.jpg
128x128
0.2685
59.5527
3.0845
3.0845
circuit.tif
272x280
cameraman.
tif
256x256
0.2412
60.4819
3.1037
3.1003
goldhill.pn
g512x512 mri.tif
128x128
0.2179
61.3659
3.0554
3.0561
goldhill.pn
g512x512
baboon.jpg
256x256
0.2140
61.5224
3.0555
3.0562
rice.png
256x256
testpat1.pn
g
256x256
0.1634
63.8647
3.0765
3.0713
PSNRCIPI
PSNR
CIPI
peppers.pngCI
onion.pngPI
α=0.999
PSNR
MSE 0.1206Stego
αImage
Dimension
Image
Dimensi
on
MSE
PSNR
N1 N2
0.999
lena.png
512x512
Gantrycrane.
png
400x264
0.4163
55.742
03.07
13 3.07
13
kids.tif 318x400 onion.png
198x135
0.2218
61.212
23.15
55 3.15
13
fruits.png
512x512
peppers.png
512x384
0.1907
62.525
82.87
29 2.87
32
baboon.p
ng 512x512 trees.tif
350x258
0.1556
64.288
52.91
52 2.91
52
peppers.
png 512x384
onion.png
198x135
0.1206
66.502
52.50
15 2.50
15
PSNRCIPIWC
PSNR
CIPI
Webcam Image3 (wc3)
CIWebcam Image4
(wc4)PI
α=0.999PSNR
MSE 0.1479
Stego
𝛼CI PI MSE PSNR N1 N2
0.999
wc1
wc2
0.5914
52.6928
3.1806
3.1806
wc3
wc4
0.1479
64.7340
2.9867
2.9868
Simulation Results
Simulation result
MATLAB
Comparison of related work
PSNR
Authors PSNR
JinHa Hwang et al. [27] 48.40
Asmaa A E,et al [12] 40.46
Atta R,et al [7] 52.07
M Hassaballah,et al [14] 53.23
Aya Jaradat,et al [1] 63.25
Proposed 66.50
Conclusion
Steganography
Haar DWT
MATLAB
CI
Stego
PSNRStego
PSNRCIPI
BaboonCIPIBarbaraPSNR
MSE 0.1401PSNR CI
PIGoldhillCI
LenaPSNRMSE 0.2140
PSNRCIPICI
testpat1PIPSNRMSE 0.1632
PSNRCIPICI
PIPSNRMSE 0.1206PSNR
CIPIwc3 CI
wc4PIPSNRMSE 0.1479
Future Scope
Steganography
References:
[1] Aya Jaradat, Eyad Taqieddin, Moad Mowafi, "A High-Capacity Image Steganography Method Using Chaotic Particle Swarm
Optimization," Security and Communication Networks, vol 2021, Article ID 6679284, 2021.
[2] Mansoor Fateh, Mohsen Rezvani, Yasser Irani, "A New Method of Coding for Steganography Based on LSB Matching Revisited," Security
and Communication Networks, vol. 2021, Article ID 6610678, 2021.
[3] J B Eseyin and K A Gbolagade, "Data Hiding in Digital Image for Efficient Information Safety Based on Residue Number System,"
AJRCoS, vol. 8, no. 4, pp. 35-44, May 2021.
[4] Parameshachari, B. D., Panduranga, H. T., & liberata Ullo, S. (2020, September). Analysis and computation of encryption technique to
enhance security of medical images. In IOP Conference Series: Materials Science and Engineering (Vol. 925, No. 1, p. 012028). IOP Publishing.
[5] Supriadi Rustad, De Rosal Ignatius Moses Setiadi, Abdul Syukur, Pulung Nurtantio Andono, "Inverted LSB image steganography using
adaptive pattern to improve imperceptibility", Journal of King Saud University - Computer and Information Sciences, ISSN 1319-1578, 2021.
[6] Subramani, P., & BD, P. (2021). Prediction of muscular paralysis disease based on hybrid feature extraction with machine learning technique
for COVID-19 and post-COVID-19 patients. Personal and ubiquitous computing, 1-14.
[7] Nabanita Mukherjee (Ganguly), Goutam Paul, Sanjoy Kumar Saha, "Two-point FFT-based high capacity image steganography using
calendar based message encoding," Information Sciences, Volume 552, ISSN 0020-0255, pp. 278-290,2021.
[8] Yu, K., Lin, L., Alazab, M., Tan, L., & Gu, B. (2020). Deep learning-based traffic safety solution for a mixture of autonomous and manual
vehicles in a 5G-enabled intelligent transportation system. IEEE transactions on intelligent transportation systems, 22(7), 4337-4347.
[9] Pratik D Shah, Rajankumar S Bichkar, "Secret data modification based image steganography technique using genetic algorithm having a
flexible chromosome structure," Engineering Science and Technology, an International Journal, Volume 24, Issue 3, pp. 782-794, ISSN 2215-
0986, 2021.
Thank You
For your attention