Chapter

Use Case Analysis and Architecture Design for 5G Emergency Communications

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

5G has significant advantages in emergency communications. If it is directly deployed in the disaster area, there are still some disadvantages such as large data traffic and long service delays. This paper analyzes the needs of public safety network (PSA), and studies the application of dynamic messaging delivery, network slicing, C-RAN, and D2D in 5G PSA. Then, this paper puts forward two 5G emergency rescue solutions, one is the portable 5G private network and 5G public network collaboration, and the other is the public network UPF sinking. Finally, we compare these two solutions according to the needs of the emergency management department. The conclusion is that the portable 5G private network and 5G public network collaboration solution can be independently deployed locally. It does not have the limitations of the 5G public network UPF sinking solution but has the same network functions, which is more in line with the requirements of the emergency management department.KeywordsEmergency communicationsPublic safety network (PSA)Lightweight 5GC5G private networkUPF sinking

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
5G networks are envisioned to support substantially more users than the current 4G does as a direct consequence of the anticipated large diffusion of Machine-2-Machine (M2M) and Internet of Things (IoT) interconnected devices, often with significantly higher committed data rates than general bandwidth currently available into Long Term Evolution (LTE) and broadband networks. The expected large number of 5G subscribers will offer new opportunities to compromise devices and user services, which will allow attackers to trigger much larger and effective cyber-attacks. Significant advances in network management automation are therefore needed to manage 5G networks and services in an efficient, scalable, and effective way while protecting users and infrastructures from a wide plethora of advanced security threats. This paper presents a novel self-organized network management approach for 5G mobile networks where autonomic capabilities are tightly combined with Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technologies so as to provide an effective detection and mitigation of cyber-attacks.
Article
Full-text available
Modern societies can be understood as the intersection of four interdependent systems: (1) the natural environment of geography, climate and weather; (2) the built environment of cities, engineered systems, and physical infrastructure; (3) the social environment of human populations, communities and socio-economic activities; and (4) an information ecosystem that overlays the other three domains and provides the means for understanding, interacting with, and managing the relationships between the natural, built, and human environments. As the nation and its communities become more connected, networked and technologically sophisticated, new challenges and opportunities arise that demand a rethinking of current approaches to public safety and emergency management. Addressing the current and future challenges requires an equally sophisticated program of research, technology development, and strategic planning. The design and integration of intelligent infrastructure-including embedded sensors, the Internet of Things (IoT), advanced wireless information technologies, real-time data capture and analysis, and machine-learning-based decision support-holds the potential to greatly enhance public safety, emergency management, disaster recovery, and overall community resilience, while addressing new and emerging threats to public safety and security. Ultimately, the objective of this program of research and development is to save lives, reduce risk and disaster impacts, permit efficient use of material and social resources, and protect quality of life and economic stability across entire regions.
Article
Full-text available
Fourth generation LTE has been selected by U.S. federal and EU authorities to be the technology for public safety networks that would allow first responders to seamlessly communicate between agencies and across geographical locations in tactical and emergency scenarios. From Release 11 on, 3GPP has been developing and specifying dedicated nationwide public safety broadband networks that will be scalable, robust, and resilient, and can address the specific communication needs of emergency services. In this realm, the requirements and scenarios for isolated E-UTRAN with no or limited backhaul access to the core network are still in progress. In this article, we survey possible public safety use cases with the induced network topologies, discuss the current status of the 3GPP standards, and highlight future challenges. We further elaborate on the need to support mobile backhauling in moving-cell scenarios and describe two LTE based solutions to enable dynamic meshing among the base stations.
Article
Today's networks are filled with a massive and ever-growing variety of network functions that coupled with proprietary devices, which leads to network ossification and difficulty in network management and service provision. Network Function Virtualization (NFV) is a promising paradigm to change such situation by decoupling network functions from the underlying dedicated hardware and realizing them in the form of software, which are referred to as Virtual Network Functions (VNFs). Such decoupling introduces many benefits which include reduction of Capital Expenditure (CAPEX) and Operation Expense (OPEX), improved flexibility of service provision, etc. In this paper, we intend to present a comprehensive survey on NFV, which starts from the introduction of NFV motivations. Then, we explain the main concepts of NFV in terms of terminology, standardization and history, and how NFV differs from traditional middle-box based network. After that, the standard NFV architecture is introduced using a bottom up approach, based on which the corresponding use cases and solutions are also illustrated. In addition, due to the decoupling of network functionalities and hardware, people's attention is gradually shifted to the VNFs. Next, we provide an extensive and in-depth discussion on state-of-the-art VNF algorithms including VNF placement, scheduling, migration, chaining and multicast. Finally, to accelerate the NFV deployment and avoid pitfalls as far as possible, we survey the challenges faced by NFV and the trend for future directions. In particular, the challenges are discussed from bottom up, which include hardware design, VNF deployment, VNF life cycle control, service chaining, performance evaluation, policy enforcement, energy efficiency, reliability and security, and the future directions are discussed around the current trend towards network softwarization.
Book
This book provides a comprehensive overview of the emerging technologies for next-generation 5G mobile communications, with insights into the long-term future of 5G. Written by international leading experts on the subject, this contributed volume covers a wide range of technologies, research results, and networking methods. Key enabling technologies for 5G systems include, but are not limited to, millimeter-wave communications, massive MIMO technology and non-orthogonal multiple access. 5G will herald an even greater rise in the prominence of mobile access based upon both human-centric and machine-centric networks. Compared with existing 4G communications systems, unprecedented numbers of smart and heterogeneous wireless devices will be accessing future 5G mobile systems. As a result, a new paradigm shift is required to deal with challenges on explosively growing requirements in mobile data traffic volume (1000x), number of connected devices (10-100x), typical end-user data rate (10-100x), and device/network lifetime (10x). Achieving these ambitious goals calls for revolutionary candidate technologies in future 5G mobile systems. Designed for researchers and professionals involved with networks and communication systems, 5G Mobile Communications is a straightforward, easy-to-read analysis of the possibilities of 5G systems.
Article
Wireless communication systems that include unmanned aerial vehicles (UAVs) promise to provide cost-effective wireless connectivity for devices without infrastructure coverage. Compared to terrestrial communications or those based on high-altitude platforms (HAPs), on-demand wireless systems with low-altitude UAVs are in general faster to deploy, more flexibly re-configured, and are likely to have better communication channels due to the presence of short-range line-of-sight (LoS) links. However, the utilization of highly mobile and energy-constrained UAVs for wireless communications also introduces many new challenges. In this article, we provide an overview of UAV-aided wireless communications, by introducing the basic networking architecture and main channel characteristics, highlighting the key design considerations as well as the new opportunities to be exploited.
Article
Wireless communications technologies play an essential role to support the Public Protection and Disaster Relief (PPDR) operational needs. The current Private/Professional Mobile Radio (PMR) technologies used for PPDR communications offer a rich set of voice-centric services but have very limited data transmission capabilities, which are unable to handle the increasing PPDR community demand for a wider range of data-centric services. Though some efforts have been devoted to upgrade PMR technologies with better data transfer capabilities, the progression towards an enhanced mobile broadband PMR standardized solution still lags behind the achievements made in the commercial wireless industry, which recently culminated in Long- Term Evolution (LTE) technology. Because of this contrasting progress, the adoption of commercial mainstream LTE technology to satisfy the PPDR community's data communication needs is gaining momentum and offers significant opportunities to create and exploit the synergies between the commercial and PPDR domains, which have remained almost entirely separate to date. In this context, this paper first discusses the suitability of LTE and related technologies for mobile broadband PPDR service provisioning. Next, it presents the argument that the most plausible future scenarios to deliver the increasingly data-intensive applications demanded by the PPDR agencies are expected to rely on the use of both dedicated and commercial LTE-based mobile networks. From this basis, the paper proposes a system architecture solution for PPDR service provisioning that enables PPDR service access through dedicated and commercial networks in a secure and interoperable manner and ensures proper allocation of the networks' capacity to PPDR applications through the dynamic management of prioritization policies. In addition, the spectrumrelated issues that are central to the proposed PPDR service provisioning solution are addressed, and a solution based on the joint e- ploitation of dedicated and shared spectra is proposed.
Article
After natural disasters such as earthquakes, floods, hurricanes, tornados and fires, providing emergency management schemes which mainly rely on communications systems is essential for rescue operations. To establish an emergency communications system during unforeseen events such as natural disasters, we propose the use of a team of unmanned aerial vehicles (UAVs). The proposed system is a post-disaster solution and can be used whenever and wherever required. Each UAV in the team has an onboard computer which runs three main subsystems responsible for end-to-end communication, formation control and autonomous navigation. The onboard computer and the low-level controller of the UAV cooperate to accomplish the objective of providing local communications infrastructure. In this study, the subsystems running on each UAV are explained and evaluated by simulation studies and field tests using an autonomous helicopter. While the simulation studies address the efficiency of the end-to-end communication subsystem, the field tests evaluate the accuracy of the navigation subsystem. The results of the field tests and the simulation studies show that the proposed system can be successfully used in case of disasters to establish an emergency communications system.
An evolution in public safety networks
  • M Xinjun