Available via license: CC BY 4.0
Content may be subject to copyright.
Sensors2022,22,7948.https://doi.org/10.3390/s22207948www.mdpi.com/journal/sensors
Article
LBSS:ALightweightBlockchain‐BasedSecuritySchemefor
IoT‐EnabledHealthcareEnvironment
OmarSaid
1,2
1
DepartmentofInformationTechnology,CollegeofComputersandInformationTechnology,TaifUniversity,
P.O.Box11099,Taif21944,SaudiArabia;o.saeed@tu.edu.sa
2
MathematicsandComputerScienceDepartment,FacultyofScience,MenoufiaUniversity,
ShebinElkom32511,Egypt
Abstract:Recently,globalhealthcarehasmadegreatprogresswiththeuseofInternetofThings
technology.However,fortheretobeexcellentpatientcare,theremustbeahighdegreeofsafetyfor
theIoThealthsystem.Therehasbeenamassiveincreaseinhackingsystemsandthetheftof
sensitiveandhighlyconfidentialinformationfromlargehealthcentersandhospitals.Thatiswhy
establishingahighlysecureandreliablehealthcaresystemhasbecomeatoppriority. Inthispaper,
asecurityschemefortheIoT‐enabledhealthcareenvironment,LBSS,isproposed.Thissecurity
schemecomprisesthreesecuritymechanisms.Thefirstmechanismisbasedontheblockchain
technologyandisusedfortransactionintegrity.Thesecondmechanismisusedtostorethe
healthcaresystemdatainasecuremannerthroughthedistributionofitsdatarecordsamong
multipleservers.Thethirdmechanismisusedtoaccessthehealthcaredataafterapplyinga
proposedauthorizationtest.Tominimizethesecurityoverhead,thehealthcaredataisprioritized
inregardtoitsimportance.Therefore,eachsecuritymechanismhasspecificstepsforeachlevelof
dataimportance.Finally,theNS3packageisusedtoconstructasimulationenvironmentforIoT‐
enabledhealthcaresystemstomeasuretheproposedsecurityschemeperformance.Thesimulation
resultsprovedthattheproposedhealthcaresecurityschemeoutperformedthetraditionalmodels
inregardtotheperformancemetrics.
Keywords:blockchain;healthcare;IoT,IoTsimulation;security;IoTsecurity
1.Introduction
Healthcarecanbedefinedasalarge‐scaleecosystemthatincludesmany
components,suchashealthinsurance,medicine,healthfacilities,warehouses,robots,
sensors,andmore.Moderntechnologieshavehadthegreatestimpactonhealthpractices
andhavetransformedthemfromtraditionalpracticestotechnologicalpractices,suchas
monitoringhumanhealthusingsensorsandwearabledevicessuchassmartwatchesand
wristbands.Thismayberequiredforagroupofpatients,suchasthosewithabnormal
bloodpressureordiabetes,whoneedperiodicmonitoringandrapidinterventionby
specialiststofindquickandeffectivesolutions[1,2].
TheInternetofThings(IoT)technologyconnectsagroupofcomputers,tablets,
mobilephones,andotherdevicesthathaveaCentralProcessingUnit(CPU)tohandle
programsorapplications.ThemaingoalofIoTtechnologyistoextendthefunctionofthe
InternetinordertolinkthedeafthingsthatarenotequippedwithCPUs,suchasdaily
livetools,people,medicalequipment,andothertrackingsensors.Accordingly,thereare
manyapplicationsofIoTtechnologyinvariousareasoflife,suchasthemilitary,security,
transportation,andeconomy.Allofthesefieldscontributetotheconstructionofsmart
cities,whichleadstothepromisedgoalofIoTtechnology,whichisasmartworldthat
considerstheentireuniverseasoneentitywithautonomousmanagement(i.e.,without
humanintervention)[3].
Citation:Said,O.LBSS:A
LightweightBlockchain‐Based
SecuritySchemeforIoT‐Enabled
HealthcareEnvironment.Sensors
2022,22,7948.https://doi.org/
10.3390/s22207948
AcademicEditor:JuWookJang
Received:9September2022
Accepted:16October2022
Published:18October2022
Publisher’sNote:MDPIstays
neutralwithregardtojurisdictional
claimsinpublishedmapsand
institutionalaffiliations.
Copyright:©2022bytheauthor.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://creativecommons.org/license
s/by/4.0/).
Sensors2022,22,79482of20
ThereisaboomintheIoTmarketwhichisrelatedtohealthcarebecauseofthe
presenceofhigh‐speedInternet.Thisleadstothecreationoftheappropriateconditions
forhealthcaredevicestoworkandoperateinonebignetworkaswellasforthespreadof
sensorsthatsupportmosthealthcaredevicesandequipment.Furthermore,themedical
environmentisdevelopedtechnologicallyandhumanelytokeeppacewiththis
tremendousdevelopmentintheinformationtechnologyandartificialintelligencesectors.
Moreover,devicesandIoTapplicationsthataregraduallyadaptedtopatientsand
healthcareworkersareclearlyincreasing.Additionally,allcomponentsofhealthcare,
suchaspatientsanddoctors,benefitfromIoTtechnologyanditsapplicationsin
monitoring,tracking,maintaining,treating,andmore.TheIoT‐basedhealthcaresystem
shouldcovermanylocations,whichleadstoahugenumberofcommunicatingdevices
thatproduceamassivenumberofgigabytes.Thedataproducedaretransmittedthrough
manytypesoftransmissionmediaandprocessedbydifferenttypesofusers[4].
SharingdatawithinhealthcaresystemsthatarebasedonIoTtechnologyisan
importantissue.Inthesesystems,thedataisusuallysharedthroughcloud‐computing
technology.Patientdataiscollectedanduploadedtothecloudandisthenavailableto
users.Subsequently,itisdistributedtoauthorizedpersons,suchasspecialistsand
administrators,accordingtothetypeofdataandpatients.Afterthat,aninitialdiagnosis
isproposedandthenatreatmentisprescribedwhereerrors,whichmayarisebecauseof
themanualwritingofdata,areeliminated.Afterward,datamaybesentorreceivedina
real‐timemanner,ifrequired,throughthecloud‐computingservers.Becauseofthe
presenceofsensitivedataonthecloud,itmaybeinsecureforseveralinternalorexternal
reasons.Forexample,theauthorizedpersonstomanagethehealthdatacentersmaybe
dishonestandtamperwiththisdata.Therefore,thereweregreatsecuritychallengesfor
healthcaresystemsthatdependontheIoTtechnology,whichhasuniquespecifications
suchasamassivenumberofterabytesofdata,alargenumberofcloud‐computing
servers,theirextensioninmanylocations,andalargenumberofusersandhuge
transactionsthatmayhaveoccurredforhealthdatawithinashortperiod[5].Themain
contributionsofthiswork:
ApplyblockchaintechnologyfordatatransactionintegrityintheIoT‐enabled
healthcareenvironment;
• ProposeasecuritymechanismfordatastoringintheIoT‐enabledhealthcare
environment;
• ProposeasecuritymechanismfordataaccessintheIoT‐enabledhealthcare
environment;
• ConstructasimulationfortheIoT‐enabledhealthcareenvironmentandexaminethe
efficiencyoftheproposedsecurityscheme;
• Finally,showanddiscussthesimulationresults.
Theorganizationofthepaperisstatedasfollows:Section2introducestherelated
works.Section3demonstratesthedesignoftheproposedsecurityscheme.Section4
presentsthesimulationconstructioninadditiontothediscussionoftheresults.Finally,
thepaperisconcludedinSection5.
2.RelatedWorks
ThispaperfocusesonthesecurityissueforIoT‐enabledhealthcareenvironments.The
research,whichisrelatedtohealthcareandblockchain,isevaluatedregardingfourmain
factors.Thefirstfactoris“IoTRepresentation(IoTRep.)”,whichevaluatesiftherelated
workrepresentedtheIoTenvironmentaccurately.Thesecondfactoris“IoTSuitability
(IoTSut.)”,whichevaluatesiftherelatedworkwassuitablefortheIoTenvironment.The
thirdfactoris“SecurityWeakness(SW)”,whichevaluatesiftherelatedworkhadsecurity
weakness(es).Thefourthfactoris“Review(Rev.)”,whichmeansthattherelatedwork
wasjustareviewarticle.TherelatedworksareevaluatedandcategorizedinTable1.
Sensors2022,22,79483of20
Table1.Summaryoftherelatedworks.
AuthorsYearRef.Contributions
LimitationFactors
IoT
Rep.IoTSut.SWRev.
Wangetal.2020[6]
Proposedasecuritymechanismforhealthcare
systems.Thismechanismcombinedtheedgecloud
andIoTtechnologiestosecuretheretrievalofdata.
✓✗✓✗
Fotouhietal.2020[7]Introducedanauthenticationschemetoprevent
attackstargetedatwirelessbodyareanetworks. ✓✗✗✗
Wangetal. 2020[8]
Demonstratedaparallelhealthcaresysteminwhich
theblockchaintechnologyandcareauditabilitywere
applied.
✓✗✗✗
Ismailetal.2019[9]
Introducedablockchainsystemforhealthcare
environments.Itdividedthenetworkintoclustersto
applyitssecuritymodel.
✓✗✓✗
Haghparastetal. 2020[10]
ProposedasecurityframeworkforIoT‐basede‐health
systems.Thisframeworkconsistedoffourlayersof
sensors.Eachlayerachievedfunction(s)fromthe
frameworktarget.
✓✗✗✗
Gupta2017[11]
Demonstratedageneralizedarchitectureforthe
securityandmanagementofcloudserversinIoT
healthcaresystems.Itdividedthecloudcentersinto
threecategoriestoguaranteethesecure
communicationofinformation.
✓✗✗✗
Ning,etal.2021[12]
Demonstratedablockchainframeworkfordistributed
trafficmanagementintransportationsystems.It
analyzedthisframeworkintotwosub‐problemsto
decreaseitscomplexity.
✓✗✓✗
Lakhanetal.2022[13]
Identifiedandensuredthefraudofmedicaldatain
additiontoprivacypreservationatlocalfognodes
andclouds,withminimumdelayandenergy
consumption.
✓✗✓✗
Manoharanetal.2022[14]
Presentedamodeltoanalyzethebiomedicalsignals
behaviorandcompletetheoutputtracking
mechanismofthetransceiverresultswithlowpower
consumption.
✓✗✓✗
Selvarajan,etal.,2022[15]
Introducedasystemtominimizethelossof
functionalitiesinthebiomedicalsignals.Additionally,
anactivationfunctionwaspresentedinthemiddle
stage.
✓✗✓✗
Anithaetal.2021[16]
Proposedasecuritymethodthatdetectedthe
replicationattack.Thissecuritymethodwasforthe
healthcaresystem,whichwasbasedonaWireless
SensorNetwork(WSN).
✗✓✓✗
Beniletal.2020[17]Demonstratedasecurityschemetoverifyandaudit
medicalcloudserversusingblockchaintechnology. ✗✓✗✗
Kongetal.[11]2019[18]
Introducedasecuritymodelusinganeuralnetwork
andthepre‐classificationofhealthdataanddynamic
gamingtheory.
✗✓✗✗
Wangetal.[12]2020 [19]Introducedasecurityframeworkusedtoevaluatethe
securityspecsofInternetofHealthThings(IoHT).✗✓✗✗
Sensors2022,22,79484of20
AbouNassar et
al.2020[20]
Proposedasecuritymodelbasedonblockchain
technology.Itusedasmartcontracttoenhancethe
TrustworthyFactor(TF)andestablishtrustworthy
communicationsintheIoHTinfrastructure.
✗✓✗✗
Kavithaetal.2019[21]
Introducedasecurityframeworktodealwiththe
securityflawsofthepersonaldatarecords,which
werefoundinhealthcaresystems.Itusedthe
hyperellipticcurve‐basedpublickeycryptosystem
insteadofthetraditionalcryptographicframeworkto
ensurethegroupcommunicationsweresecure.
✗✓✗✗
Tai2019[22]
IntroducedasecuritymodelforIoThealthcaredatain
whichthecontroloperationsfortheIoTsystemwere
adjustedandtheuseranonymityisconsideredto
introduceanauthenticationmodel.Additionally,the
controlsystemforIoThastheabilitytoensurereliable
e‐Healthservices.
✗✓✓✗
Pawaretal.2018[23]
Demonstratedasystemmodelthatwasbasedonthe
blockchaintechnologytomanagethehealthdatathat
wereobtainedfromthemedicaldevices.
✗✓✗✗
Hasanova,etal.2022[24]
Presentedanalgorithmthatwasbasedonmachine
learningtechnologytopredictheartdiseasesusingthe
blockchaindata.
✗✓✗✗
Marwanetal.2018[25]
Proposedasecuritymethodtopreventunauthorized
usersfromaccessinghealthcarerecords.Thismethod
usedmachine‐learningtechnology.
✗✗✓✗
Dingetal.2019[26]
Introducedasecuritysystemthathandlesthelimited
capabilitiesofsensors.Italsoverifieddataintegrity
andreducedthecomputationoverheadcost.
✗✗✓✗
Lietal.2020[27]
Introducedaframeworktoapplytheblockchain
technologytoguaranteesecuredatasharingin
additiontocomputingthesensitivedataofpatients.
✗✗✓✗
Vedarajetal.2020[28]
Providedaneffectivesecurityframeworkforthe
healthdatainadditiontopredictingthepatients’
diseases.Additionally,itcanencryptanddecrypt
usingaspecialsecurityalgorithm.
✗✗✓✗
Wangetal.2021[29]
Introducedasystemtoquantifythefreshnessof
informationusingcritical‐levelchanges.Itwasan
optimizedproblemofminimizationoftheAge‐of‐
Critical‐Information(AoCI).Furthermore,an
information‐awareheuristicalgorithmwas
introduced.
✗✗✓✗
Ning,etal.2021[30]
UsedUnmannedAerialVehicles(UAV)toinvestigate
Multi‐accessEdgeComputing(MEC)thatconsidered
edgeserverdeploymentandoffloadingcomputation.
Moreover,twolearningalgorithmswere
demonstratedtoreachtheNashEquilibrium(NE).
✗✗✓✗
Zarouretal.2015[31]
Introducedastudytodeterminetheimpactofusing
blockchaintechnologyonthehealthcaresystemfrom
groupsofexpertsandspecialists.
✗✗✗✓
Sensors2022,22,79485of20
Sharmaetal.2022[32]
Introducedaliteratereviewoftherelationship
betweentheblockchaintechnology,IoTtechnology,
andthehealthcaresystem.
✗✗✗✓
3.ProposedSecurityScheme
Theproposedsecurityschemeprovidedthreesecuritymechanisms:integrity,
confidentiality,andavailability.Theintegritymechanismensuresthatthehealthcaredata
transactionsareaccomplishedcorrectly;seeSection3.1.Theconfidentialitymechanism
guaranteesthatthoseauthorizedtodosocanonlyaccesssensitivehealthcaredata.The
availabilitymechanismguaranteesthatthehealthcaredatashouldbeavailabletothose
whoneedit;seeFigure1.Forconfidentialityandavailability,seeSection3.2.
DB1 DB2 DB3
User
Data Access Data Store Data Trans action
Distributed Databases
Healthcare IoT System
Figure1.Thethreemechanismsoftheproposedsecurityscheme.
OneofthechallengesofIoTtechnologyisscalability,whichcausesahugenumber
ofheterogeneousthingstosuddenlyjoinorleavethisenvironmentinadditiontoa
massivenumberofterabytesofexchangeddatawithinshortperiods.Tofacethese
challengesintheproposedsecurityscheme,theIoT‐basedhealthcaresystemisdivided
intomanyclusters.Eachclustermaycompriseheterogeneousorhomogenousthings
(devices,tools,andusers).Theclusteringprocessisachievedbasedonavailablenetwork
resources,sizeandtypeoftransmitteddata,numberofthings,andthelevelofimportance
ofthingsanddata.Theclusteringprocess,whichisbasedonconstructingaclustering‐
basedattributeselectionscaleafterpartitioningthetrainingsampleintoanumberof
clusters,isdescribedin[33].
Inthesectionsbelow,thethreemechanismsarediscussedinadditionto
mathematicalnotations.
3.1.Integrity
Thehealthcaresystemcomprisesdifferenttypesofthings.Eachthinghasatypeof
exchangeddata.Therefore,thehealthcareenvironmenthasmanytypesofdatawith
differentlevelsofimportance.Hence,healthcaredataisclassifiedintomanylevels
dependingonitsimportancesuchthateachlevelcanbehandledwithdifferent
procedures[34].Thisconceptcanleadustothecoreideaoftheproposedintegrityfactor,
andtheblockchaintechnologyisusedtoensurethateachtransactioniscorrectlyverified.
First,eachtransactioncanbestoredasablock,eachcontainingthehashfunctionofthe
previousblock.Incaseanytransactionneedstobeaddedtothechain,itshouldbeverified
byagroupofpersonswhicharecalled“miners”.Therearemanymechanismstoprove
thetransaction,suchasProofofWork(PoW),ProofofStake(PoS),andothers[35].As
Sensors2022,22,79486of20
statedpreviously,themainchallengewiththehealthcaresystembasedonIoTtechnology
istheterabytesofdata(stored,exchanged,andprocessed).Thismakestheuseofone
transactionverificationmechanismsodifficult(ifnotimpossible).So,intheproposed
blockchainmechanism,amixtureoftransactionverificationmechanismsisapplied
dependingonthetypeofhealthcaredata(i.e.,importancelevel).Formoreclarification,
theproposedmodelclassifiesthehealthcaredatainto“N”levelsofimportancesuchthat
thefirstlevelisassignedtothemostimportantlevelofdata,thesecondlevelisassigned
tothenextlevelofimportance,andsoon.Thisprovidesflexibilitytocreateotherlevels
ofimportance,especiallyforanIoT‐basedhealthcaresystem.Foranaccurate
determinationoftheimportanceofhealthcaredata,thedatatypeshouldbecombined
withthething’sstate.Forexample,incaseofdanger,apatient’sstatus,suchascancer
patients,prescriptions,andprescriptionchanges,willhavetobecompletedinanaccurate
mannerandunderthesupervisionofanexpert(i.e.,inmostcasesspecialistsarenecessary
butinsufficient).Onthecontrary,apatientundergoingasimplegeneralsurgerymust
haveaccurateanesthesiacalculations.
Toclarifythemodelidea,threelevelsofimportanceareusedandappliedfordata
andthings.Thesethreelevelsofimportancearecritical,middle,andtraditional.Thefirst
levelofimportanceisassignedtothedatapackage,whichcomprisesthecriticalthings
describedbycriticaldata.Thesecondlevelofimportanceisassignedtothedatapackage,
whichcomprisesthecriticalthingsthataredescribedbythedataofmiddleimportancein
additiontothecriticaldata,whichisrelatedtothethingsofmiddleimportance.Thethird
levelofimportanceisassignedtothedatapackage,whichcomprisesthethingsofmiddle
importancethatarerelatedtothedataofmiddleimportance,thedataofmiddle
importancethatisrelatedtothetraditionalthings,thethingsofmiddleimportancethat
arerelatedtothetraditionaldata,andthetraditionaldatathatisrelatedthetraditional
things;seeFigure2.
Critical
Middle
Importan ce
Traditional
Critical
Middle
Importan ce
Traditional
Things
Data
Figure2.Thelevelsofdataimportancefordatacombinedwiththings.
Theimportancelevelofdatamaybechangedbyatimeperiod.Forexample,the
timingofbloodpressuremeasurementforahypertensivepatientissometimescrucial.
Thisisbecauseitcanbeperformedasaroutineorconsideredanimportantissuetothe
pointwhereitmaysavethispatientfromdeath.Inaddition,acertainresultfromforensic
medicinemaybeusedincourtandchangethedirectionofjudgment,oritmaybeused
onlyforexperiments.
Theclassificationofthingsanddatashouldbeachievedbyahigh‐levelcommittee
whichisconstructedbyanelectedadministrationinthehealthcaresystem.Theoutputof
theclassificationprocessmaybechangedbyachangeofcommitteeorovertime.
Changingthespecialists’committeemayaffecttheoutcomeoftheclassificationprocess
becauseeachspecialisthasapointofviewabouttheimportanceofthingsanddata.For
Sensors2022,22,79487of20
example,therearespecialistswhoconsiderthedataofthemedicalanalysisforaparticular
diseasetobeveryimportant,andotherspecialistsmayconsiderthisdataastraditional.
Inaddition,thetimefactorisimportantinchangingtheresultoftheclassificationprocess,
assomedataatacertaintimecanbeconsideredimportant,whilethesamedataatanother
timemaybecomeunimportant.Therefore,theprocessofthingsanddataclassification
maybedynamicallychanged.
Eachlevelofimportanceshouldhaveagroupofminers.Theseminerscanbeelected,
oritispossibletoappointthemaccordingtotheprotocolorregulationsatthehospital.
Forexample,theheadoftheoncologydepartment,theheadofthenarcoticsdepartment,
thedirectorofthehospital,theheadofthementalhealthdepartment,thephysician,and
thepharmacistinchargeofdrugsinthehospitalmaybeconsideredminerswhoverify
thedrugtransactions.Thisideaprovidesscalability,whichisoneofthechallengesof
blockchainsuchthat,incaseofanextensionofhealthcaredata,thenumberofminers
shouldbedecreasedtoincludethemostexperiencedspecialistsandhigh‐levelmanagers
forcriticalcases.Todifferentiatebetweentheoldsecuritysystems,whichverifythe
transactionthroughalltheavailableminers,andourproposedscheme,theminersshould
beselectedfromdifferentorganizationsinvariouslocations.Thisminerselectionrule
camefromIoTenvisioning(i.e.,thehealthcaresystemthatisbasedonIoTtechnology
transformsmanyhealthorganizationsintoonelargeorganizationtoprovidean
advantageinselectingminersfromdifferentcountries,whichgivesthetransaction
verificationprocessmorecredibilityandsecurity;seeFigure3).Asstatedinthebitcoin
blockchainsystem[36],thedataisdividedintoblocks.Eachblockcomprisesagroupof
controlfieldsinadditiontothedata.Oneofthemostimportantfieldsinthedatablockis
thehashfunction.Eachdatablockhasahashfunctionfromthepreviousblock.Inthe
proposedscheme,ahashfunctionisusedtocondenseeachtransaction.
TrBlock1TrBlock2TrBlockN‐1
Prioritizer
123
TrBlockN
Blockchain System
Verificat ion
Random Selection
Blo ckc hain A pplyin g
AllPredeterminedMinersSelectedMiners
Tr=Transaction
Figure3.Dataprioritycenter,datablocks,andminers’relationship.
Thisfunctioniscomplexbecauseitconsistsofanumberofsimplehashfunctions.
Thecomplexitydegreeofthehashfunctiondependsonthedataimportancelevelon
whichthetransactiontookplace.Thenumberofsimplehashfunctionsequalsthenumber
ofminerswhoareauthorizedtocheckthetransactions.Everyminerprovidesthesystem
withitssimplehashfunctionincaseoftheiragreementonthetransaction.
Thecompletionoftheapprovalbyalloftheminersmeansthatthesimplehash
functionsarecollectedtocreatethecomplexhashfunctionwhich,inturn,isusedtotest
whetherthetransactionisacceptedornot.Ifoneminerdoesnotpassthetransaction,then
theirsimplehashfunctionisnotsenttothesecuritysystem.Therefore,thecomplex
functionwillbeconsideredincomplete,whichmeansthetransactionisrejected.Thereis
Sensors2022,22,79488of20
acomplexhashfunctionthatisassignedtoeachtransactionblocksuchthateachminer
usesadifferentsimplehashfunctiontotestthecurrenttransactionandaccesstheold
complexhashfunctionsinadditiontotheiroldsimplehashfunctionstoreviewtheold
transactions;seeFigure4.Thesimpleandthecomplexhashfunctionsarecreatedusing
the“HashFunctionCreator”component.Forfurtherdescription,seeAlgorithm1.
TrBlock1TrBlock2TrBlockN‐1
ComplexHash
Simple Hash1
Simple Hash2
Simple Hash 3
TrBlockN
Hash Functions’ Creato r
Tr=Transaction
Figure4.Usingsimpleandcomplexhashfunctions.
Algorithm1:TransactionIntegrity
DIDataImportance
LImportanceLevel
nNumberofImportanceLevels
HTrHashedTransaction
HCComplexHash
mNumberofMinors
HSSimpleHash
SSSecurityServer
AlgorithmBegin
1:DI=L[i],1<i<n
2:Fori=1toL
3: Begin
4: HTr=HC[i](Tr)
5: HC[i]=∑𝐻j
6: Forj=1tom
7: mj→𝐻j
8: While(Tr)
9: Begin
10: mj→ 𝐻j→𝑆𝑆
11: SS=𝐻j𝐻
j1…𝐻m
12: IFSS=∑𝐻j
13: Tr→ 𝑆𝑢𝑐𝑐𝑒𝑒𝑑
14: Else
15: Tr→𝐹𝑎𝑖𝑙𝑒𝑑
16: End
17: End
18:EndAlgorithm
Sensors2022,22,79489of20
3.2.ConfidentialityandAvailability
Oneofthemostimportantsecurityissuesinthehealthcaresystemistheprotection
ofdatafromunauthorizedviewingoraccessing.Additionally,theproposedsecurity
schemeshouldguarantee,forauthorizedusers,accesstothesystem’sresources.In
traditionalhealthcaresystems,thedatathatbelongstoahealthcareorganizationisstored
onitsserversascompleteunits,whichmeansthateverythingrelatedtoaspecificpatient
isstoredasagroupofrecordsinonestoragedatabaseunit.Thismeansanybreachinthe
securitysystemmayallowaccesstopatients’records.Toavoidthissecurityweakness,
theproposedschemeusedthedatafragmentationidea.Thepatient’sdataistransformed
intoagroupofrecords,andeachpatientrecordisdividedintoagroupofblocks.These
blocksaredistributedbythe“distributer”componentoverdifferentserversinsideor
outsideoftheorganization;seeFigure5.
Server1Server2ServerN
User
Laptop
Storing of Data Parts in Different DB Servers
Data Slicer
Data Parts
Assembler
Data Parts
Distributer
Data Part Vs. Server Mapping Codes
Transaction Integrity
(Blockchain)
Figure5.Thegeneralviewofdatadistributionoverservers.
Todecreasetheoverloadoftheproposedmechanism—inthecaseoflower‐
importancedata—itsrecordswillbedirectlydistributedoverthedatabaseservers
withouttransformationintoblocks.Therefore,the“prioritizer”componentshouldbe
consultedtodeterminewhatwillbeconductedinthedatafragmentationbythe“slicer”
component;seeFigure6.Thefunctionofthe“prioritizer”componentisachievedusing
thetechniquestatedin[37] whichusedthequeueingtheory byassigningonequeuefor
eachimportancelevel.Thedataineachqueueisprocesseddependingonavailable
resourcesintheentiresystem.
Eachblockofdatacomprisesastampofitsrelatedpatient.Thisstampmaybea
picture,anumber,orasymbol.Theprocessofchoosingthestamptypeshouldtakeinto
accountthatitdoesnotrepresentanexcessiveoverloadonthepacketorincreaseits
complexity.Thisstampisdynamicallyexchangeddependingonthenetworkstatus(i.e.,
availableresources).Therefore,thestampmaybefirstselectedasanumber.Then,its
difficultyisincreasedbytheselectionofamorecomplexform,suchasagroupof
characters.Afterthat,itistransformedintoapictureandmaybereturnedtoasimple
formagain.Thisstampisusedbythe“assembler”componenttocollectthedatarecord
afteritsfragmentation.The“assembler”dataisencrypted.Therequesttoaccessdatais
senttotheadministrator,who,inturn,contactsthe“prioritizer”askingaboutthe
importanceleveloftherequireddata.Then,theadministratordeterminesthe
requirementsforthisdatatobeaccessed.Afterthat,theadministratorcontactstheuser
askingabouttherequireddataauthorization.Regardingthecorrectinputofthedata
Sensors2022,22,794810of20
authorization,theadministratorcontactsthe“assembler”tocollectthedataandsendsit
totheintendeduser;seeFigure7.Communicationbetweenthecomponentsofthe
proposedsecurityschemeisachievedusingmanagementmessages.Thestructureofthese
messagesissimilartothemessagesoftheSimpleNetworkManagementProtocol(SNMP)
[38].Eachmanagementmessageissimple.ItcomprisesthesourceanddestinationIP
addressesinadditiontotherequiredfieldssuchasvariablesandtheirvalues.These
managementmessagesareencrypted.Intheeventofnetworkstarvation,thenumberof
managementmessageswillbedecreaseduntilthenetworkisreturnedtoitsnormalstatus.
Therearetwotypesofmanagementmessages.Thefirsttypeiscalled“query”andisused
toaccessspecificvariables’values.Thesecondtypeiscalled”response”andisusedto
sendspecificdatatooneormoreschemecomponents.
Data Slicer
Prioritizer
123
User
Send Data
Data Parts
Distributer
Sends Data
Parts
Administrations
Data Priority
Decision
Figure6.Prioritizerandslicerrelationship.
Laptop
Data Parts
Assembler
Prioritizer
12 3
Administrations
Authorization Test
Figure7.Healthcaredataaccessmechanism.
Theauthorizationdataisdirectlyrelatedtoitsimportancelevel(i.e.,the
authorizationdataischangedbyadjustingtheimportancelevel).Theapplicationofthis
ideainourproposedsecurityschemecanbestatedasfollows:Eachdatablock(orrecord)
comprisesadigitalsignatureoftheauthorizedusers.Whentheauthorizeduserneedsto
accessahealthcaredatarecord,thesystemshouldreceivethedigitalsignatureofthat
user.Tobemoreaccurate,asstatedpreviously,thereareseverallevelsofimportancefor
healthcaredata.Therefore,eachlevelofimportanceforthedatawillhaveadifferent
Sensors2022,22,794811of20
securitymechanismthatshouldbeappliedforanaccessrequest.Inthecaseofdatawith
ahighdegreeofimportance,allusers’electronicsignaturesmustberequiredtoaccess
suchdata.Hence,theuserwhosendsanaccessrequesteitherentersallofthedigital
signaturesfortheuserswhoareauthorizedtoaccessthistypeofsensitivedata,orthis
userhasapriorauthorizationdeedfromthoseusers.
Inthesameway,electronicsignatureswillbereducedaccordingtoareductioninthe
levelofimportancefortherequireddata.Additionally,eachusershoulddetermine
his/hersecuritybehavior,definedbytheregularstepsthataremostlyaccomplished
withinaspecifiedtime[39].Thissecuritybehaviorwillbeappliedasanadditional
securitystepforthemostimportantdata.So,iftheunauthorizedusertriestoaccessdata
andknowsthedigitalsignaturesofalloftheauthorizedusersrelatedtothatdata,this
unauthorizeduserdoesnothaveknowledgeoftheirregularbehaviors.
3.3.MathematicalNotations
Thismathematicalnotationisbasedon[40].Supposethatthenumberofminers
equals“M”,where“L”isthenumberoflevelsofimportance.Thecontentsofeachdata
block“DC”aredeterminedusingEquation(1),where“BPrev”isthepreviousblock,“H”is
thehashfunction,“TS”isthetimestamp(currenttime),“b”istheworkproofdifficulty,
and“G”isthetarget.The“Merkletree”and“nonce”areomittedfromthecontentsofthe
block.Thisisbecausethetimerequiredtotestthetransactiondependsonthe
predeterminednumberofminerswithsimplehashescreatedbytheproposedsecurity
scheme.Thevalidityofthetransaction“TV”isdeterminedbyEquation(2),where“P”is
thenumberofblocksrevisedbytheminers.Thetimerequiredtoaddonetransactioninto
thechain“TT”isdeterminedbyEquation(3).Theconsumptiontime“CT”istoensureall
systemtransactionsaredeterminedusingEquation(4),wherethenumberoftransactions
equals“T”.Theminerisselectedfromagroupofpredeterminedpersons.Additionally,
𝑀𝑁𝑖isthesetofminers,and“𝑀𝑁𝑆”istheselectedminers.Theminers“MS”are
determinedusingEquation(5).
𝐷=(H(𝐵 )
⊕
TS(t)
⊕
b)𝐺, 1<a<P(1)
𝑇∑∑𝐻 𝐻𝐵 ⊕𝑇𝑆𝑡 ⊕𝑏
,0<i<L (2)
𝑇𝑃∗∑𝑇
(3)
𝐶∑∑
𝑃∗∑𝑇
(4)
𝑀 ∗ 𝑀𝑁𝑖𝑀𝑁𝑆
(5)
4.SimulationandEvaluation
Thesimulationconstructionprocessforthehealthcareenvironment,whichisbased
onIoTtechnology,isdemonstratedinthefirstsection.Additionally,theresultsofthe
simulationareshownanddiscussedinthesecondsection.
4.1.SimulationInfrastructure
ThemainchallengewithIoT‐basedhealthcaresystemsishowtorepresentthenature
oftheIoTenvironment.So,thesimulation,statedin[41],isthemostsuitabletoreflectthe
realspecificationoftheIoTenvironment.Thisisbecauseitcomprisesapresentationof
threemainnetworks:WSN,Radio‐FrequencyIdentification(RFID),andMobileAdhoc
Network(MANET).ThesenetworkscommunicatewitheachotherusingtheInternet,
whichisalsodemonstrated.Moreover,thissimulationusedtwoalternativecoverage
methods:satelliteandHigh‐AltitudePlatform(HAP).Thesecoveragemethodsareused
incaseoflimitationintheInternetcoverageforagroupofthings.Thiswillprovidethe
healthcaresystemwithrepresentationflexibilitythroughtheconsiderationofthemany
heterogonousthingsthatarefoundatmanylocationswithaguaranteethatthesethings
Sensors2022,22,794812of20
willbecommunicated,eveniftheyarepassivethings.Thesimulationscenario,inaddition
totheparameters’valuesforthenetworksandcoveragetools,isstatedinFigure8.
Figure8.Simulationscenariowithnetworksandcoveragetoolsparameters.
Thecommunicationbetweendifferentpackets’headerformats,whichareraiseddue
totheusageofdifferentnetworktypes,isachievedusingthepackettransformationidea.
Simply,thisideaisdiscussedasfollows:encapsulatethereceivedpacketwiththeheader
thatissuitableforthereceivednode.Hence,thisnodecantranslatethispacket.Inthe
eventthatthenextnodehasthesametypeasitspreviousnode,theadditionalheaderwill
remain(i.e.,noencapsulation).However,ifthenextnodeisdifferent,theheaderwillbe
de‐capsulatedandanotherheaderwillbeaddedintheeventthatthereceivednodeisa
newone.
Thesimulationmodel,whichisusedtomeasuretheperformanceoftheproposed
securityscheme,representedthenatureoftheIoTenvironmentandisconsideredthefirst
partofthesimulationinfrastructure.So,somechangesareaddedtothissimulationmodel
tocompletetherepresentationoftherealnatureofhealthcaresystems,whichis
consideredthesecondpartofthesimulationinfrastructure.Thesechangesareconcluded
inTable2.Theselectedhealthcaredevicesarethemostcommonones,suchassurgery
roboticsandglucosemonitoringformedicaldevices,laptops,andbarcodereadersand
monitoringforinventoryaswellaschemicaldevicesandlaptopsforpharmacy.Each
devicecanbeconsideredpassiveoractive.Thepassivethingsarethethingsthatarenot
supportedbyaCPU.However,theactivethingscanconnecttotheInternet(oranyother
coveragetool)withoutadditionalhardwaresupport.Furthermore,thethirdpartofthe
simulationinfrastructureisrelatedtotherepresentationofsecurityspecifications,which
arestatedinTable3.Thesimulationofmedicaldevicesistakenfrom[42–44].Notably,
mostofthehealthcaresecurityparametersarerandom,rangedvaluesforanaccurate
representationoftheIoTenvironment.
Sensors2022,22,794813of20
Table2.Representedhealthcaretoolsinthesimulationenvironment.
PartDescriptionUsedNetwork
Patients
Wearabledevices(glucometer,fitnessbands,heartrate
monitoringcuffs,ingestible,andbloodpressure),RFID
tags,mobiles,andsmartwatches
WSNandRFID
andMANET
Physicians
RFIDtags,mobiles,sensors(monitoringandmedical),
clothes,cars,keys,sonar,surgicaltools,laparoscopes,
respiratorydevices,emergencydevices,etc.
WSNandRFID
andMANET
Inventories
RFIDtags,sensors(weight,temperature,motion,
monitoring,andhumidity),cargo,lamps,workers,
books,offices,etc.
WSNandRFID
Pharmacy
RFIDtags,sensors(temperature,touch,motion,
monitoringandhumidity),mobileapplications,
refractometer,thermometer,microscope,vacuumoven,
etc.
WSNandRFID
andMANET
Insurance
Company
RFIDtags,sensors(temperature,monitoring,and
touch),andselectedinsurancecompanydevices WSNandRFID
Table3.Securitysimulationparameters.
PartDescription
HashSecureHashAlgorithm(SHA)‐256
Blocksize1MB
NumberofclustersRandom(10to100)
ClustersizeRandom(50to100)
TotalnumberofminersRandom(10,000to200,000)
NumberofselectedminersRandom(10to50)
NumberofblocksRandom(144to288)
ImportanceofblockRandom(1/2H:1/4M:1/4L)
NumberofdigitalsignaturesRandom(1to10)
TotalnumberofnodesRandom(20,000to40,000)
4.2.ResultsandDiscussion
Theperformancemetricsareprocessingtime,thenumberofminers,averageenergy
consumption,averagethroughput,averageend‐to‐enddelay,packetlossratio,theaccess
timeofhealthcaredatarecords,andrateofchangebetweendatablockswithdifferent
levelsofimportance.ThesimulationresultsofLBSSarecomparedwiththeLeila’smodel
andtheBitcoinmodel[19,31].TheBitcoinmodelwaschosentocompareitsresultswith
theresultsoftheproposedsecurityschemebecauseitisoneofthemostimportantmodels
thatusestheblockchaintechnology.Inaddition,theLeila’smodelwaschosenbecauseit
istheclosestrelatedworktoourproposedsecurityscheme.
Theprocessingtimeperformancemetriccanbemeasuredusingaconsumptiontime
tovalidatethetransactions,whicharerepresentedbyblocksintheblockchainsystem.
Figure9showstheprocessingtimeresultsforthesecurityscheme,theLeila’smodel,and
theBitcoinmodel.Thex‐axisrepresentsthenumberofblocks(transactions)andthey‐axis
representstheprocessingtime(seconds).Notably,LBSShasthelowestprocessingtime
values.TheLeila’smodelandtheBitcoinmodelrankafterLBSS.Thisisexplainedbythe
classificationofhealthcaredataintomanylevelsofimportance,whichdecreasesthedata
processingrequirementsandleadstoreducedtimeconsumption.
Sensors2022,22,794814of20
Figure9.Processingtimefortransactionintegrity.
ThenumberofminersperformancemetricismeasuredforLBSSandtheBitcoin
model.ThisisbecausethenumberofminersmetricfortheLeila’smodelhasthesame
behaviorastheBitcoinmodel.Thisperformancemetricismeasuredusingthecalculation
oftheaveragenumberofminers,whichareusedtovalidatethedatatransactions.Figure
10showstheresultofthechangingminerperformancemetric.Thex‐axisrepresentsthe
simulationtimeinminutesdividedbytenandthey‐axisrepresentsthenumberofminers
dividedby104.Thenumberofminersintheproposedsecurityschemeislessthanthatof
theBitcoinmodel.Thisisbecausethedataclassificationminimizesthenumberofminers
incasetherearelessimportantdatatransactions.
Figure10.Changingthenumberofminersoveratime.
Theenergyconsumptionperformancemetricismeasuredbytheaverageofthe
energyconsumptionvaluesfortheenergy‐basedhealthcarethingsintheIoT
environment.Thisperformancemetricdeterminestheeffectoftheproposedschemeon
theenergy‐basednodes.Figure11showstheresultsoftheenergyconsumption.Thex‐
axisrepresentsthesimulationtimeinminutesdividedbytenandthey‐axisrepresents
theaverageoftheenergyconsumptionin“Joules”.TheplotofLBSShasthelowestvalues
forenergyconsumptionwithinthesimulationtime.TheLeila’smodelandtheBitcoin
modelcomeaftertheproposedsecurityscheme,respectively.Thisisexplainedbythe
availabilityofLBSStodecreasetheoverheadcomputations,whichlowertheenergy
consumptionrates.
Sensors2022,22,794815of20
Figure11.Energyconsumptionaverage.
Thethroughputperformancemetricismeasuredbycalculatingthesizeofthedata,
whichistransmittedandreceivedcorrectly.Thisperformancemetricalsoreflectsthe
effectoftheproposedsecurityschemeontheefficiencyoftheIoTenvironmentbecause,
iftheproposedschemecausesacomputationoverloadonthehealthcaresystem,thefirst
metricthatwillbeaffectedisthesizeofthecorrecttransmitteddata.Figure12showsthe
resultsofthethroughput.Thex‐axisrepresentsthesimulationtimeinminutesandthey‐
axisrepresentstheaveragethroughputin“kb/s.”dividedby107.Notably,thethroughput
plotofLBSShasthehighestvaluescomparedwiththatoftheLeila’smodelandtheBitcoin
model.Thisisexplainedbytheabilityoftheproposedsecurityschemetoreducethe
numberofcomputationswhenthereisanoccurrenceofbottlenecksorcollisions.
Additionally,boththeclusteringideaandthenumberofminersaffectthethroughput
performancemetric.Theclusteringidea,whichisappliedtoLBSSandtheLeila’smodel,
reducestheircomplexityandincreasestheirthroughput.However,inLBSS,reducingthe
numberofminersleadstoareductioninthenumberoftransmittedmessages,including
messagesrelatedtothesecuritysystem.Italsoleadstoadecreaseinthenegativeimpact
ofhashfunctions’usagethatcontributestoanadditionalincreaseinthethroughput,
whichwasnotpresentinothermodels.Furthermore,classifyinghealthcaredatainto
severallevelsofimportanceisconsideredthemainfactorindeterminingthebehaviorof
LBSSandmakingitmoreflexible.
Figure12.Throughputaverage.
End‐to‐enddelayisanimportantperformancemetrictomakesurethattheproposed
securitymodeldoesnotnegativelyaffecttheentireIoTsystemefficiency.Thismetricis
measuredbythecalculationoftheaverageofqueuing,processing,andtransmission
Sensors2022,22,794816of20
delays.Figure13showstheend‐to‐enddelayresults.Thex‐axisrepresentsthesimulation
time,andthey‐axisrepresentsaverageend‐to‐enddelay.Notably,theend‐to‐enddelay
valuesfortheproposedsecurityschemearelessthanboththeBitcoinandLeila’smodels.
Inaddition,theBitcoinmodelhasthelargestend‐to‐enddelay.Thisisexplainedbythe
flexibilityoftheproposedschemetodecreasethenumberofsecuritymessagesincaseof
networkstarvation.However,thecomplexityoftheBitcoinmodelissohighthatithas
negativelyaffectedtheIoT‐basedhealthcareenvironmentandincreasedtheaverageend‐
to‐enddelay.
Figure13.End‐to‐enddelayaverage.
Packetlossisalsoaveryimportantperformancemetrictomeasuretheefficiencyof
theIoT‐basedhealthcaresystem.Thismetricismeasuredbytheratioofpacketsthatare
lostduringthetransmissionprocesstothetotalnumberofsentpackets.Figure14shows
thepacketlossratioresults.Thex‐axisrepresentsthesimulationtimeinminutesdivided
byten.They‐axisrepresentsthepacketlossratiovalues.Notably,thepacketlossratiofor
theproposedsecurityschemeislessthanthatofboththeLeila’sandBitcoinmodels.This
alsoreflectstheefficiencyoftheproposedsecurityschemetodynamicallychangeits
behaviordependingonthenetworkstatus.
Figure14.Packetlossratio.
Theaccesstimeperformancemetricequalstheaverageconsumptiontimethatis
requiredtoaccesshealthcaredata.Thismetricmeasurestheperformanceofthedata
accessmechanism,whichisproposedinLBSS.Therefore,itismeasuredforLBSSand
comparedtotheLeila’smodel.Figure15showstheresultsoftheaccesstimeperformance
Sensors2022,22,794817of20
metric.Thenumberofdatablocksisrangedfrom1000to10,000andtheaccesstimeis
rangedfromzeroto9000“ms”.Theaccesstimefortheproposedsecurityschemeisless
thanthatoftheLeila’smodel.Thisisbecausethevarietyofsecurityactionsthatare
executeddependsonthelevelofdataimportanceandtypeofthings.
Figure15.Averageconsumptiontimethatisrequiredtoaccesshealthcaredata.
Forthetransactionswithdataperformancemetricsthathavedifferentimportance
levels,theyaremeasuredbythenumberoftransactionswhichoccurredfordifferent
levelsofdataimportance:high,medium,andlow.Thisismeasuredtoensurethatthe
changesbetweenthelevelofdataimportanceworkeffectively.Figure16showstheresults
ofthisperformancemetric.Thex‐axisrepresentsthesimulationtimeinminutesdivided
bytenandthey‐axisrepresentsthenumberoftransactionblocks.
Theimportancelevelsaredistributedbetweenhigh,medium,andlow.Additionally,
thenumberoftransactionblocksismostlyarrangedinascendingorder:low,medium,
andhigh.Inthefewsimulationtimepoints,thehighimportancelevelincreasesthe
mediumimportancelevel,whichreflectstherealnatureofthehealthcareenvironment
andcomprisesoccasionallyimportantdata.
Figure16.Numberoftransactionswithdifferentlevelsofimportance.
AsshowninTable4,thesimulationresultsprovedthattheproposedsecurity
scheme,LBSS,outperformedtheperformanceoftherelatedmodels,theBitcoinmodel
andtheLeila’smodel.
Sensors2022,22,794818of20
Table4.ConclusionofLBSSenhancementscomparedtobothoftheLeila’sandBitcoinmodels.
PerformanceMetricEnhancement
TheaverageprocessingtimefortransactionintegrityDecreasedby≈22.727%↓—Leila’smodel.
Decreasedby≈34.349%↓—Bitcoinmodel
ThechangingrateofminersDecreasedby≈84.821%↓—Bitcoinmodel.
TheenergyconsumptionaverageDecreasedby≈15.752%↓—Leila’smodel.
Decreasedby≈21.367%↓—Bitcoinmodel.
TheaveragethroughputIncreasedby≈28.643%↑—Leila’smodel.
Increasedby≈41.347%↑—Bitcoinmodel.
Theend‐to‐enddelayDecreasedby≈25.865%↓—Leila’smodel.
Decreasedby≈42.171%↓—Bitcoinmodel.
ThepacketlossratioDecreasedby≈27.404%↓—Leila’smodel.
Decreasedby≈43.880%↓—Bitcoinmodel.
TheaccesstimeforthehealthcaredatablocksDecreasedby≈39.189%↓—Leila’smodel.
5.Conclusions
Inthispaper,asecurityscheme,LBSS,wasproposedfortheIoT‐enabledhealthcare
environment.Theproposedsecurityschemedeployedblockchaintechnologytoenhance
integrity,confidentiality,andavailability.Therefore,thehealthcaredatafoundinthe
blockchainwasdifficult(ifnotimpossible)toaccess,change,andstorewithout
notificationandconsensusfromthealltheminersusingsimpleandcomplexhash
functions.Additionally,theproposedschemewaslightweightbecauseitscomplexitywas
decreasedorincreaseddependingonthedataimportancelevel.Moreover,the
performanceofLBSSwasevaluatedusinganIoT‐enabledhealthcaresimulation
environment,andallofitscharacteristicswerepreciselygeneratedusingtheNS3
package.Furthermore,themetricswerechosentomeasuretheperformanceofLBSSin
additiontoevaluatingitsimpactontheentireIoTsystem.Moreover,thesimulation
resultsprovedthatLBSSoutperformedboththeBitcoinmodelandtheLeila’smodel.
Finally,therecommendedareasforfutureworkaredeeperanalysisofthehealthcaredata
todetermineitssensitivity,constructionofadditionalsimulationexperimentstoinclude
othernetworktypessuchascellular,applyingLBSStootherIoTfieldssuchasthemilitary
andagriculture,andcomparingLBSSwithmorecomplicatedsystemssuchasEthereum.
Funding:TheworkwassupportedbytheTaifUniversityResearchersSupportingProjectnumber
(TURSP‐2020/60),TaifUniversity,Taif,SaudiArabia.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Thedatausedinthisstudyiscreatedbythesimulationpackage(NS3).
Acknowledgments:TheauthorextendstheirappreciationtotheTaifUniversityResearchers
SupportingProjectnumber(TURSP‐2020/60),TaifUniversity,Taif,SaudiArabia.
ConflictsofInterest:Theauthordeclaresnoconflictofinterest.
References
1. Xu,C.;Qu,Y.;Luan,T.H.;Eklund,P.W.;Xiang,Y.;Gao,L.ALightweightandAttack‐ProofBidirectionalBlockchainParadigm
forInternetofThings.IEEEInternetThingsJ.2022,9,4371–4384.
2. Liqiong,H.;Yuanyuan,W.CongestionControlofMultipathParallelTransmissionofDataforBlockchainApplicationsIETEJ.
Res.2022,1–10.https://doi.org/10.1080/03772063.2022.2060877.
3. Mirani,A.A.;Velasco‐Hernandez,G.;Awasthi,A.;Walsh,J.KeyChallengesandEmergingTechnologiesinIndustrialIoT
Architectures:AReview.Sensors2022,22,5836.
4. Azamuddin,W.M.H.;Aman,A.H.M.;Hassan,R.;Mansor,N.ComparisonofNamedDataNetworkingMobilityMethodology
inaMergedCloudInternetofThingsandArtificialIntelligenceEnvironment.Sensors2022,22,6668.
Sensors2022,22,794819of20
5. Lavaur,T.;Lacan,J.;Chanel,C.P.C.EnablingBlockchainServicesforIoEwithZk‐Rollups.Sensors2022,22,6493.
6. Wang,X.;Cai,S.SecurehealthcaremonitoringframeworkintegratingNDN‐basedIoTwithedgecloud.Futur.Gener.Comput.
Syst.2020,112,320–329.
7. Fotouhi,M.;Bayat,M.;Das,A.K.;Far,H.A.N.;Pournaghi,S.M.;Doostari,M.Alightweightandsecuretwo‐factorauthentication
schemeforwirelessbodyareanetworksinhealth‐careIoT.Comput.Networks2020,177,107333.
8. Wang,S.;Wang,J.;Wang,X.;Qiu,T.;Yuan,Y.;Ouyang,L.;Guo,Y.;Wang,F.‐Y.Blockchain‐PoweredParallelHealthcare
SystemsBasedontheACPApproach.IEEETrans.Comput.Soc.Syst.2018,5,942–950.
9. Ismail,L.;Materwala,H.;Zeadally,S.LightweightBlockchainforHealthcare.IEEEAccess2019,7,149935–149951.
10. Haghparast,M.B.;Berehlia,S.;Akbari,M.;Sayadi,A.DevelopingandevaluatingaproposedhealthsecurityframeworkinIoT
usingfuzzyanalyticnetworkprocessmethod.J.AmbientIntell.Humaniz.Comput.2020,12,3121–3138.
https://doi.org/10.1007/s12652‐020‐02472‐3.
11. Gupta,P.K.;Maharaj,B.T.;Malekian,R.AnovelandsecureIoTbasedcloudcentricarchitecturetoperformpredictiveanalysis
ofusersactivitiesinsustainablehealthcentres.MultimediaToolsAppl.2016,76,18489–18512.
12. Ning,Z.;Sun,S.;Wang,X.;Guo,L.;Guo,S.;Hu,X.;Hu,B.;Kwok,R.Blockchain‐enabledIntelligentTransportationSystems:
ADistributedCrowdsensingFramework.IEEETrans.Mob.Comput.2021.https://doi.org/10.1109/TMC.2021.3079984.
13. Lakhan,A.;Mohammed,M.A.;Nedoma,J.;Martinek,R.;Tiwari,P.;Vidyarthi,A.;Alkhayyat,A.;Wang,W.Federated‐Learning
BasedPrivacyPreservationandFraud‐EnabledBlockchainIoMTSystemforHealthcare.IEEEJ.Biomed.HealthInform.2022.
https://doi.org/10.1109/JBHI.2022.3165945.
14. Manoharan,H.;Selvarajan,S.;Yafoz,A.;Alterazi,H.A.;Uddin,M.;Chen,C.L.;Wu,C.M.DeepConvictionSystemsfor
BiomedicalApplicationsUsingIntuitingProcedureswithCrossPointApproach.Front.PublicHealth2022,10,909628.
15. Selvarajan,S.;Manoharan,H.;Hasanin,T.;Alsini,R.;Uddin,M.;Shorfuzzaman,M.;Alsufyani,A.BiomedicalSignals