Conference Paper

Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets in a Field Operation Scenario

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In 2021 the Modular Mechatronics Infrastructure (MMI) was introduced as a solution to reduce weight, costs, and development time in robotic planetary missions. With standardized interfaces and multi-functional elements, this modular approach is planned to be used more often in sustainable exploration activities on the Moon and Mars. The German multi-robot research project “Autonomous Robotic Networks to Help Modern Societies (ARCHES)” has explored this concept with the use of various collaborative robotic assets which have their capabilities extended by the MMI. Different scientific payloads, engineering infrastructure modules, and specific purpose tools can be integrated to and manipulated by a robotic arm and a standardized electromechanical docking-interface. Throughout the MMI’s design and implementation phase the performed preliminary tests confirmed that the different systems of the robotic cooperative team such as the Docking Interface System (DIS), the Power Management System (PMS), and the Data Communication System (DCS) functioned successfully. During the summer of 2022 a Demonstration Mission on Mount Etna (Sicily, Italy) was carried out as part of the ARCHES Project. This field scenario allowed the validation of the robotics systems in an analogue harsh environment and the confirmation of enhanced operations with the application of this modular method. Among the numerous activities performed in this volcanic terrain there are the efficient assembling of the Low Frequency Array (LOFAR) network, the energy-saving and reduced complexity of a detached Laser Induced Breakdown Spectroscopy (LIBS) module, and the uninterrupted powered operation between modules when switching between different power sources. The field data collected during this analogue campaign provided important outcomes for the modular robotics application. Modular and autonomous robots certainly benefit from their versatility, reusability, less complex systems, reduced requirements for space qualification, and lower risks for the mission. These characteristics will ensure that long duration and complex robotic planetary endeavours are not as challenging as they used to be in the past.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The implemented systems range from fully passive sample containers to highly integrated laser spectroscopy sensors and the LOFAR payload box presented in this paper. In addition, for ARCHES we have optimized the original payload system with the introduction of enhanced electromechanical interfaces and a standardized electronics infrastructure to support the system functionality [11]. ...
Conference Paper
Measurement of the red-shifted 21-cm signal of neutral hydrogen, and thus observing The Dark Ages is expected to be the holy grail of 21-cm Cosmology. A Radio-telescope to observe low radio frequency signals is needed, but radio interference on Earth and Earth's ionosphere blocking these signals are limiting science investigations in this field. Hence, such a radio-telescope composed of dozens to hundreds of antennas shall be deployed on the lunar far side. Such arrays are shielded from interference from Earth and Earth's ionosphere blocking very low radio frequencies is not present. Within the Helmholtz Future Topic Project Autonomous Robotic Networks to Help Modern Societies (ARCHES) we developed necessary technologies for autonomous robotic deployment of antenna elements, modular payload box design, and robust radio-localization to enable such distributed low-frequency arrays. In particular the antennas’ positions must be determined accurately, such that the array can be operated as phased array. Our developments lead to the execution of an analog-demonstration on the volcano Mt. Etna, Sicily, Italy, in June and July 2022 over the course of four weeks. We successfully demonstrated the autonomous robotic deployment of antenna elements and our decentralized real-time radio-localization system to obtain the antenna element positions. Additionally, we showed a proof-of-concept operation of the phased array comprising four antenna elements: estimating the signal direction of arrival of a radio-beacon with unknown position, and the beamforming capabilities itself, for a carrier frequency of 20 MHz. In this paper, we give insights into our developed technologies and the analog-demonstration on the volcano Mt. Etna, Sicily, Italy. We show results of the successfully executed mission and give an outlook how our developed technologies can be further used for lunar exploration.
... The activities in ARCHES follow a modular approach which has been already described well during [13] and updates will be reported in [14] and the summary in section 5. ...
Conference Paper
This paper summarises the first outcomes of the space demonstration mission of the ARCHES project which could have been performed this year from 13 june until 10 july on Italy’s Mt. Etna in Sicily. After the second postponement related to COVID from the initially for 2020 planed campaign, we are now very happy to report, that the whole campaign with more than 65 participants for four weeks has been successfully conduced. In this short overview paper, we will refer to all other publication here on IAC22. This paper includes an overview of the performed 4-week campaign and the achieved mission goals and first results but also share our findings on the organisational and planning aspects.
Conference Paper
Full-text available
Traditionally, the robotic systems which aim to explore other celestial bodies include all instruments and tools necessary for the mission. This makes them unique developments. Usually, they are heavy, complex, costly and do not provide any interchangeable parts that could be replaced in the event of permanent failure. However, for future missions, agencies, institutes and commercial companies are developing robotics systems based on the concept of modular robotics. This new strategy becomes critical for planetary exploration because it is able to reduce load, costs and development time. In the German multi robot research project, ‘’Autonomous Robotic Networks to Help Modern Societies (ARCHES)”, led by the German Aerospace Center (DLR), this modern design methodology is followed. Cooperation among robots and modularity are the core of its structure. These characteristics are present in the collaboration between the rovers and the uncrewed aerial vehicle (UAV) during navigation tasks, or when the Lightweight Rover Unit (LRU) interacts with changeable manipulator tools and payload boxes through its robotic arm and its standardized electromechanical interface. Examples of these modules include scientific packages, power supply systems, communication and data acquisition architectures, soil sample storage units, and specific purpose end-effectors. The focus of this work is in the design and implementation of a mechatronics infrastructure (MI) which encompasses the docking interface, the payload modules, and the power and data management electronics board inside each box. These three elements are essential for the extension of the capabilities of the rover and the enhancement of the robotics systems according to the tasks to be performed. This will ensure that robots can cooperate with each other either in scientific missions or in the construction and maintenance of large structures. The MI’s hardware and software developed in this project will be tested and validated in the ARCHES demonstration mission on Mount Etna, Sicily, in Italy between 13th June and 9th July 2022. Finally, it is important to highlight that modularity and standardization were considered at all levels of the infrastructure. From the robotics systems to the internal architecture of each payload module, these concepts can provide versatility and reliability to the cooperative robotic network. This will improve the problem-solving capabilities of robots performing complex tasks in future planetary exploration missions.
Article
Full-text available
The Earth's moon is currently an object of interest of many space agencies for unmanned robotic missions within this decade. Besides future prospects for building lunar gateways as support to human space flight, the Moon is an attractive location for scientific purposes. Not only will its study give insight on the foundations of the Solar System but also its location, uncontaminated by the Earth's ionosphere, represents a vantage point for the observation of the Sun and planetary bodies outside the Solar System. Lunar exploration has been traditionally conducted by means of single-agent robotic assets, which is a limiting factor for the return of scientific missions. The German Aerospace Center (DLR) is developing fundamental technologies towards increased autonomy of robotic explorers to fulfil more complex mission tasks through cooperation. This paper presents an overview of past, present and future activities of DLR towards highly autonomous systems for scientific missions targeting the Moon and other planetary bodies. The heritage from the Mobile Asteroid Scout (MASCOT), developed jointly by DLR and CNES and deployed on asteroid Ryugu on 3 October 2018 from JAXA's Hayabusa2 spacecraft, inspired the development of novel core technologies towards higher efficiency in planetary exploration. Together with the lessons learnt from the ROBEX project (2012–2017), where a mobile robot autonomously deployed seismic sensors at a Moon analogue site, this experience is shaping the future steps towards more complex space missions. They include the development of a mobile rover for JAXA's Martian Moons eXploration (MMX) in 2024 as well as demonstrations of novel multi-robot technologies at a Moon analogue site on the volcano Mt Etna in the ARCHES project. Within ARCHES, a demonstration mission is planned from the 14 June to 10 July 2021,1 during which heterogeneous teams of robots will autonomously conduct geological and mineralogical analysis experiments and deploy an array of low-frequency antennas to measure Jovian and solar bursts. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades'.
Article
Full-text available
Teams of mobile robots will play a crucial role in future missions to explore the surfaces of extraterrestrial bodies. Setting up infrastructure and taking scientific samples are expensive tasks when operating in distant, challenging, and unknown environments. In contrast to current single-robot space missions, future heterogeneous robotic teams will increase efficiency via enhanced autonomy and parallelization, improve robustness via functional redundancy, as well as benefit from complementary capabilities of the individual robots. In this article, we present our heterogeneous robotic team, consisting of flying and driving robots that we plan to deploy on scientific sampling demonstration missions at a Moon-analogue site on Mt. Etna, Sicily, Italy in 2021 as part of the ARCHES project. We describe the robots' individual capabilities and their roles in two mission scenarios. We then present components and experiments on important tasks therein: automated task planning, high-level mission control, spectral rock analysis, radio-based localization, collaborative multi-robot 6D SLAM in Moon-analogue and Mars-like scenarios, and demonstrations of an autonomous sample-return mission.
Conference Paper
Full-text available
The here presented flying system uses two pairs of wide-angle stereo cameras and maps a large area of interest in a short amount of time. We present a multicopter system equipped with two pairs of wide-angle stereo cameras and an inertial measurement unit (IMU) for robust visual-inertial navigation and time-efficient omni-directional 3D mapping. The four cameras cover a 240 degree stereo field of view (FOV) vertically, which makes the system also suitable for cramped and confined environments like caves. In our approach, we synthesize eight virtual pinhole cameras from four wide-angle cameras. Each of the resulting four synthesized pinhole stereo systems provides input to an independent visual odometry (VO). Subsequently, the four individual motion estimates are fused with data from an IMU, based on their consistency with the state estimation. We describe the configuration and image processing of the vision system as well as the sensor fusion and mapping pipeline on board the MAV. We demonstrate the robustness of our multi-VO approach for visual-inertial navigation and present results of a 3D-mapping experiment.
Article
Full-text available
Reports on the international standards development in the robotics and automation indusry.
Conference Paper
Full-text available
This paper presents first results of the analog mission campaign which was performed between the 12th of June and the 10th of July 2017 on Mount Etna in Europe, Italy. The aim of the ROBEX demonstration mission is to test and validate a complex robotic mission. This includes highly autonomous tasks with supervision from scientists to guarantee measurement of real and scientifically relevant data. The main scientific objective of the ROBEX mission, the detailed analysis of the lunar crust layers, that is replaced by the analysis of Etna lava layers in the demo mission, has been guiding the developments of the last four years. As key missions, a seismic network has been deployed and a seismic profile measurement has been conducted using only robots on the landing site. Additional experiments consisted of long term autonomous navigation, multi-robot mapping and exploration of craters as well as experiments with the aim of geological analyses and probe selection. During the one month analog campaign, a realistic mission scenario has been built up, including a control station approximately 30 km from the remote site.
Article
Full-text available
Planetary exploration poses many challenges for a robot system: From weight and size constraints to extraterrestrial environment conditions, which constrain the suitable sensors and actuators. As the distance to other planets introduces a significant communication delay, the efficient operation of a robot system requires a high level of autonomy. In this work, we present our Lightweight Rover Unit (LRU), a small and agile rover prototype that we designed for the challenges of planetary exploration. Its locomotion system with individually steered wheels allows for high maneuverability in rough terrain and stereo cameras as its main sensors ensure the applicability to space missions. We implemented software components for self-localization in GPS-denied environments, autonomous exploration and mapping as well as computer vision, planning and control modules for the autonomous localization, pickup and assembly of objects with its manipulator. Additional high-level mission control components facilitate both autonomous behavior and remote monitoring of the system state over a delayed communication link. We successfully demonstrated the autonomous capabilities of our LRU at the SpaceBotCamp challenge, a national robotics contest with focus on autonomous planetary exploration. A robot had to autonomously explore an unknown Moon-like rough terrain, locate and collect two objects and assemble them after transport to a third object – which the LRU did on its first try, in half of the time and fully autonomously. The next milestone for our ongoing LRU development is an upcoming planetary exploration analogue mission to perform scientific experiments at a Moon analogue site located on a volcano.
Article
Full-text available
Autonomous robotic systems are key to planetary exploration. A facility including virtual/physical environments for validation and verification is described.
Article
Full-text available
Scarab is a prospecting rover for lunar missions to survey resources, particularly water ice, in polar craters. It is designed for the deployment of a deep coring drill and for transport of soil analysis instruments. Its chassis can transform to stabilize the drill in contact with the ground and can also adjust to ascend and descent steep slopes of unconsolidated soil. Additional features include a compact body for better thermal regulation, laser scanners for dark navigation, and power system designed for a persistent, low-capacity source. Scarab was prototyped at the Robotics Institute, has undergone mobility testing in soils laboratories and field sites leading up to an integrated system test including the RESOLVE drill and instrument suite at the PISCES lunar analogue site on Mauna Kea in Hawaii.
Conference Paper
Robotic systems map unknown terrain and collect scientific relevant data of foreign planets. Currently, pilots from Earth steer these rovers on Moon and Mars surfaces via teleoperation. However, remote control suffers from a high delay of the long distance communication which leads to a reduction of the time the rover can spent gathering scientific data. We propose a system architecture for an autonomous rover for planetary exploration. The architecture is centered around a flexible, scalable world model to record and represent the environment of the robot. An autonomous task control framework and a versatile constraint motion planner use the live information from the world model to steer the rover through complex manipulation tasks. Furthermore, we present the enhancement of our Light Weight Rover Unit (LRU) with an innovative docking interface for arbitrary tool handling. We showcase the effectiveness of our approach at the moon-analogue demonstration mission of the ROBEX project on Mt. Etna, Sicily. We show in two experiments that the robot is capable of autonomously deploying scientific instruments and collecting soil samples from the volcano's surface.
Conference Paper
The paper presents the latest work on modularity carried out by the EC funded CLAWAR project partners during the second year of the project. This work has focused on specifying the design tools needed to support the overall open modular concepts being proposed to encourage the creation of a component based research and development community for robotics.
Article
This paper presents the multirobot team RIMRES (Reconfigurable Integrated Multirobot Exploration System), which is comprised of a wheeled rover, a legged scout, and several immobile payload items. The heterogeneous systems are employed to demonstrate the feasibility of reconfigurable and modular systems for lunar polar crater exploration missions. All systems have been designed with a common electromechanical interface, allowing to tightly interconnect all these systems to a single system and also to form new electromechanical units. With the different strengths of the respective subsystems, a robust and flexible overall multirobot system is built up to tackle the, to some extent, contradictory requirements for an exploration mission in a crater environment. In RIMRES, the capability for reconfiguration is explicitly taken into account in the design phase of the system, leading to a high degree of flexibility for restructuring the overall multirobot system. To enable the systems' capabilities, the same distributed control software architecture is applied to rover, scout, and payload items, allowing for semiautonomous cooperative actions as well as full manual control by a mission operator. For validation purposes, the authors present the results of two critical parts of the aspired mission, the deployment of a payload and the autonomous docking procedure between the legged scout robot and the wheeled rover. This allows us to illustrate the feasibility of complex, cooperative, and autonomous reconfiguration maneuvers with the developed reconfigurable team of robots.
Article
In this paper, the recent results of the space project IMPERA are presented. The goal of IMPERA is the development of a multirobot planning and plan execution architecture with a focus on a lunar sample collection scenario in an unknown environment. We describe the implementation and verification of different modules that are integrated into a distributed system architecture. The modules include a mission planning approach for a multirobot system and modules for task and skill execution within a lunar use-case scenario. The skills needed for the test scenario include cooperative exploration and mapping strategies for an unknown environment, the localization and classification of sample containers using a novel approach of semantic perception, and the skill of transporting sample containers to a collection point using a mobile manipulation robot. Additionally, we present our approach of a reliable communication framework that can deal with communication loss during the mission. Several modules are tested within several experiments in the domain of planning and plan execution, communication, coordinated exploration, perception, and object transportation. An overall system integration is tested on a mission scenario experiment using three robots.
Article
A robotic vehicle called ATHLETE—the All-Terrain Hex-Limbed, Extra-Terrestrial Explorer—is described, along with initial results of field tests of two prototype vehicles. This vehicle concept is capable of efficient rolling mobility on moderate terrain and walk-ing mobility on extreme terrain. Each limb has a quick-disconnect tool adapter so that it can perform general-purpose handling, assembly, maintenance, and servicing tasks using any or all of the limbs. © 2007 Wiley Periodicals, Inc.
Article
A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it's critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.
Article
The LUNARES (Lunar Crater Exploration Scenario) project emulates the retrieval of a scientific sample from within a permanently shadowed lunar crater by means of a heterogeneous robotic system. For the accomplished earth demonstration scenario, the Shakelton crater at the lunar south pole is taken as reference. In the areas of permanent darkness within this crater, samples of scientific interest are expected. For accomplishment of such kind of mission, an approach of a heterogeneous robotic team consisting of a wheeled rover, a legged scout as well as a robotic arm mounted on the landing unit was chosen. All robots act as a team to reach the mission goal. To prove the feasibility of the chosen approach, an artificial lunar crater environment has been established to test and demonstrate the capabilities of the robotic systems. Figure 1 depicts the systems in the artificial crater environment. For LUNARES, preexisting robots were used and modified were needed in order to integrate all subsystems into a common system control. A ground control station has been developed considering conditions of a real mission, requiring information of autonomous task execution and remote controlled operations to be displayed for human operators. The project successfully finished at the end of 2009. This paper reviews the achievements and lessons learned during the project. KeywordsLunar crater exploration–Cooperative robotic team–Autonomous robots–Space robotics–Legged locomotion–Wheeled locomotion
Cellular Robotic System (CEBOT) as one of the realizations of the self-organizing intelligent universal manipulator
  • T Fukuda
  • Y Kawauchi
T. Fukuda, and Y. Kawauchi, Cellular Robotic System (CEBOT) as one of the realizations of the self-organizing intelligent universal manipulator, 1990. In: Proceedings of the 1990 IEEE International Conference on Robotic and Automation. IEEE Xplore. Vol.1, pp.662-667.
International Space Exploration Coordination Group
  • Isecg
ISECG, Global Exploration Roadmap, Technical report, International Space Exploration Coordination Group, 2018.
From single autonomous robots toward cooperative robotic interactions for future planetary exploration missions, IAC-18-A3.2B.x47089, 69 th International Astronautical Congress (IAC)
  • A Wedler
A. Wedler, et al., From single autonomous robots toward cooperative robotic interactions for future planetary exploration missions, IAC-18-A3.2B.x47089, 69 th International Astronautical Congress (IAC), Bremen, Germany, 2018.
CLAWAR Modularity for Robotic Systems
  • G S Virk
G. S. Virk, CLAWAR Modularity for Robotic Systems, The International Journal of Robotics Research, 22(3-4), 265-277, 2003. doi:10.1177/0278364903022003010
Modularity: the degree to which system's components may be separated and combined
  • P Norman
P. Norman, Modularity: the degree to which system's components may be separated and combined, Ross Robotics, 2017.
The Relationship of System Engineering to the Project Cycle
  • K Forsberg
  • H Mooz
K. Forsberg, and H. Mooz, The Relationship of System Engineering to the Project Cycle. In Proceedings of the National Council on Systems Engineering (NCOSE) Conference. Chattanooga, TN, 57-65, 1991.
VDI 2206-A New Guideline for the Design of Mechatronic Systems
  • J Gausemeier
  • S Moehringer
J. Gausemeier, S. Moehringer, VDI 2206-A New Guideline for the Design of Mechatronic Systems, IFAC Proceedings Volumes, 35(2), 785-790, 2002.
Designing and Testing a Robotic Avatar for Space-to-Ground Teleoperation: the Developers' Insights
  • T Krueger
  • E Ferreira
  • A Gherghescu
  • L Hann
  • E Exter
  • F Van Der Hulst
  • L Gerdes
  • L Cencetti
  • A Pereira
  • H Singh
  • M Panzirsch
  • T Hulin
  • R Balachandran
  • B Weber
  • N Y Lii
T. Krueger, E. Ferreira, A. Gherghescu, L. Hann, E. den Exter, F. van der Hulst, L. Gerdes, L. Cencetti, A. Pereira, H. Singh, M. Panzirsch, T. Hulin, R. Balachandran, B. Weber, and N. Y. Lii. "Designing and Testing a Robotic Avatar for Space-to-Ground Teleoperation: the Developers' Insights, International Astronautical Congress (IAC), 12-14 Oct 2020.
A Mission Concept For
  • R Lichtenheldt
  • E Staudinger
  • S Adeli
  • J Vera
  • G Giudice
  • M Baque
R. Lichtenheldt, E. Staudinger, S. Adeli, J. Vera, G. Giudice, and M. Baque, "A Mission Concept For