Content uploaded by Ahmed Sas
Author content
All content in this area was uploaded by Ahmed Sas on Oct 14, 2022
Content may be subject to copyright.
Content uploaded by Simon K. Das
Author content
All content in this area was uploaded by Simon K. Das on Oct 12, 2022
Content may be subject to copyright.
Water2022,14,3187.https://doi.org/10.3390/w14193187www.mdpi.com/journal/water
Article
EffectofSeawaterandSurface‐SedimentVariablesonEpipelic
DiatomDiversityandAbundanceintheCoastalAreaofNegeri
Sembilan,Malaysia
AhmedAwadhSas
1,2
,SuNyunPauSuriyanti
1,3
,SimonKumarDas
1,3
andZaidiCheCob
1,3,
*
1
DepartmentofEarthSciencesandEnvironment,FacultyofScienceandTechnology,
UniversitiKebangsaanMalaysia,Bangi43600,Malaysia
2
DepartmentofMarineBiology,FacultyofEnvironmentalScienceandMarineBiology,
HadhramoutUniversity,MukallaP.O.Box50512,Yemen
3
MarineEcosystemResearchCenter(EKOMAR),FacultyofScienceandTechnology,
UniversitiKebangsaanMalaysia,Bangi43600,Malaysia
*Correspondence:zdcc@ukm.edu.my
Abstract:Benthicdiatomsareimportantcomponentsofmarineshallow‐waterhabitatsthatmay
affectprimaryproduction,stabilizesediment,andproduceextracellularpolymericsubstances.Ben‐
thicdiatomsareusefulforestimatingthetrophicstatusofmarineecosystems.Inthisstudy,we
investigatedthediversityandabundanceofbenthicdiatomstointegratethesedatawiththephys‐
icochemicalcharacteristicsofshallowcoastalareasinNegeriSembilan.Atotalof39speciesofepi‐
pelicdiatomswereextractedbyremovingorganicmatterfromsedimentsthatweredominatedby
pennatediatoms.ResultsshowedthatDiploneiscrabro,Eunotogrammalaevis,Actinoptychussp.,and
Cocconeisplacentulaweretheimportantspeciesinthearea.Theabundancevariedbetween1.85×10
3
and3.43×10
3
cells/g,andthediversityindexfluctuatedbetween2.13and2.58.Theabundancehad
significantpositivecorrelationswithseawatersurfacetemperature(SST)buthadnegativecorrela‐
tionswithpHandNH
3
.ThediversityontheotherendwaspositivelycorrelatedwithSSTbutneg‐
ativelycorrelatedwithtotalsuspendedsolidsandSiO
2
.Principalcomponentanalysis(PCA)
demonstratedthattheabundanceofD
.
crabro,E.laevis,andActinoptychussp
.
canbeattributedto
highlevelsofNO₂
–
,NH
3
,andtotaldissolvedsolids.PCAalsoshowedpositivecorrelationsofC
.
placentulawithNO
3–
andSiO
2
butnegativeoneswithPO
4−3
andpH.Theepipelicdiatomcommunity
showedhighdiversitywithhighvariationsthroughoutthestudyarea.
Keywords:benthicdiatom;species;pennate;variations;NegeriSembilan
1.Introduction
Coastalareasarehighlyproductiveregionsoftheocean,withhighcontributions
fromplanktonicandbenthicprimaryproduction.Althoughcoastalareasandestuaries
constitutelessthan10%oftheocean,theycontributeupto30%oftheocean’sprimary
production[1,2].Theyserveasimportantnurserygroundsforfishlarvae,habitatsfor
benthicorganisms,andfeedinggroundsformanymarineanimals[3].Coastalareasare
alsotheepicenterofhumansettlementandactivities,wherealmostthree‐quartersofthe
world’shumanpopulationresides.Consequently,anunprecedentedincreaseinnutrients
andotherenvironmentalissuesassociatedwithcoastaldevelopmenthasoccurred[4].
Problemssuchasnutrientover‐enrichmentandeutrophicationofestuarineandcoastal
ecosystemsarecommonandaccelerating[4].
Diatoms(ClassBacillariophyceae)constitutethemainmassofmarinephytoplankton
andhaveaworldwidedistribution,withrecentestimatesrangingfrom12,000to30,000
species,contributingaround20%ofthetotalphytoplanktonprimaryproduction[5,6].
Citation:Sas,A.A.;Suriyanti,S.N.P.;
Das,S.K.;Cob,Z.C.Effectof
SeawaterandSurface‐Sediment
VariablesonEpipelicDiatom
DiversityandAbundanceinthe
CoastalAreaofNegeriSembilan,
Malaysia.Water2022,14,3187.
https://doi.org/10.3390/w14193187
AcademicEditor:LiudmilaS.
Shirokova
Received:29August2022
Accepted:7October2022
Published:10October2022
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2022bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(https://cre‐
ativecommons.org/licenses/by/4.0/).
Water2022,14,31872of13
Diatomsinestuariesorshallowmarinesystemscanbeclassifiedintotwogroups,namely
thebenthicandpelagicgroups.Theformercanberesuspendedintothewatercolumnby
turbulence[7].Epipelicdiatomsoftendominatethemicrophytobenthos,whichisim‐
portantfortheprimaryproductivityofthebenthiczone[8].Theirdiversityandcomposi‐
tioncanbeinfluencedbywide‐rangingenvironmentalvariables[9,10],andtheirgrowth
formsshowadistinctdistributionamongintertidalhabitatscharacterizedbydifferent
typesofsediment[11,12].
Physicochemicalvariablessuchaswatertemperature,salinity,nutrients,pH,and
DOareamongthemostimportantfactorscontrollingphytoplanktongrowth,diversity,
andproductioninmarineenvironments[13,14].Epipelicdiatomsprovidemanybenefits
inthecoastalarea,suchasbeingasourceofprimaryproductionandthemainfoodsource
formicroherbivores.Theycanalsobeusedforbiologicalmonitoringbecausetheylieat
thebaseofaquaticfoodwebsandareamongthefirstrapidresponsetotheenvironmental
stressoforganisms[10,15].Despitetheirubiquityandfunctionalimportance,thespatial
andtemporalpatternsoftheabundanceanddiversityofepipelicdiatomgroupsare
poorlyunderstood.InMalaysia,thetaxonomiccompositionofintertidalepipelicdiatom
communitiesremainsrelativelyunknown.Conversely,thephytoplanktontaxonomyof
Malaysiahasbeenstudiedindetailovertheyears[16].Previousstudiesonphytoplankton
intheMalaccaStraitshavebeenconductedbyseveralauthors[16–25].Theyhaveshown
thatdiatomsarehighlydominantinplanktonandcontributeasmainactorsinthepelagic
realms.Diatomsmayalsobethedominantgroupinthebenthicarea,butthisaspecthas
rarelybeenreportedwithintheMalaccaStraitareas.Benthicdiatomsareindeedavery
importantcomponentofcoastalandestuarinesystemsandrepresentakeycomponentin
theprimaryproductionofthesecoastalhabitats.Theyareresponsibleforupto30%of
carbonfixationofthoseecosystems,sotheyaresuppliersoforganiccompoundstograzers
todepositfeeder’saquaticorganisms,includingmacro‐andmeiofauna.Accordingly,the
currentresearchaimstofillthegapsandcontributestotheknowledgeofepipelicdiatom
diversityandabundanceincoastalhabitats,aswellastoevaluatetheroleofphysico‐
chemicalvariablesinaffectingtheepipeliccommunitycompositionintheintertidalzone
ofthePortDicksonCoastofNegeriSembilan,MalaccaStraitsarea,Malaysia.
2.MaterialsandMethods
2.1.StudyArea
ThestudyareawaslocatedwithinthecoastalareaofPortDickson,inNegeriSembi‐
lan,Malaysia.Thecoastisabout54kmlongandfacestheStraitsofMalacca.Fieldsam‐
plingswereconductedinDecember2019,duringlow‐tideperiods.Surfacesedimentsam‐
pleswerecollectedfromsixsamplingstations(denotedasSt.1toSt.6)locatedwithinthe
intertidalzones,withfivereplicatesamplesateachstation.Thesefivesampleswerecol‐
lectedfromeachsiteandcompositedintoonehomogeneoussamplerepresentingthesta‐
tion(Figure1).TheepipelicdiatomsweresampledusingaPVCcoreof8.4cmdiameter,
andsamplingwasperformedonthesameday,withatimedifferenceoflessthanhalfan
hourbetweenstations.Thetop1cmlayerofwetandexposedsurfacesedimentsatthe
edgeoftheseawaterwascollected.Thesedimentscontainingepipelicdiatomswere
placedinablackpolythenebagandmaintainedindarknessinarefrigeratoruntilpro‐
cessinginthelaboratory[26].
Water2022,14,31873of13
Figure1.StudyarealocatedalongthePortDicksoncoast,Malaysia,stretchingfromSungaiSepang
inthenorthtoTanjungTuaninthesouth.Circlesindicatethesamplingstations.
2.2.EpipelicDiatomExtractionandCounting
Epipelicdiatomswerecollectedandextractedaccordingtothemethoddescribedby
[27,28].Around1gofwetweightofsurfacesedimentwasheatedat70°Cwith30%hy‐
drogenperoxide(H2O2)and10%HClinawaterbathuntilallorganicmatterandcar‐
bonatesweredigested.Thesedimentwassubsequentlywashedwithdeionizedwaterand
lefttosettletoremovetheacids.Around0.5mLofcleanedsamplewastransferredtoa
coverslipandairdriedonawarmhotplate.Threepreparedslidesfromeachsamplewere
countedfortheepipelicspecies,resultinginthreereplicateabundanceestimates.
Countingandidentificationwereconductedunderacompoundlightmicroscope
(LeicaDM1000LED,Wetzlar,Germany)withacounterchamber(Sedgwick‐Rafter,Grat‐
iculesOpticsLimited,Cambridge,UK).Identificationwasbasedonpreviousdescriptions
[26,29–31].EpipelicdiatomdiversityandrichnesswerecalculatedusingtheShannon–
Wienerindex[32]andMargalef’sindex[33].
2.3.EnvironmentalParameters
Surfaceseawatertemperature(SST),surfaceseawatersalinity(SSS),dissolvedoxy‐
gen(DO),electricalconductivity(EC),totaldissolvedsolids(TDS),andpHweremeas‐
uredinsituwithahandheldGPSAquameter(AP700,Bath,UK).Around3Lofseawater
sampleswerecollectedinaplasticcontainerfromtheintertidalzoneandimmediately
keptinacoolconditionbeforetransportingbacktothelaboratoryfornutrientanalysis.
Nitrate(NO3−),nitrite(NO2−),ammonia(NH3),silica(SiO2),andphosphate(PO43−)were
analyzedusingaHACHDR2010spectrophotometer(HACHCompany,Loveland,CO,
USA).Totalsuspendedsolid(TSS)concentrationsweredeterminedbyapreviouslyde‐
scribedmethod[34].Forchlorophyll‐aanalysis,theseawatersampleswerepassed
throughaGF/Ffilterpaper(WhatmanGF/F‐F4‐4700,Maidstone,UK),whichwasthen
coveredwithaluminumfoilandplacedinadeepfreezer(HaierDW‐40L262,Qingdao,
Shandong,China)indarknessat−20°Cuntilextractionwith10mLof90%acetone[35].
Chlorophyll‐awasdeterminedwithaspectrophotometer(ShimadzuUV/VISmini‐1240,
Kyoto,Japan).ResultswerecomparedwiththeMalaysianMarineWaterQualityStand‐
ards(MMWQS)publishedbytheDepartmentofEnvironment,Malaysia[36].Sediment
Water2022,14,31874of13
organicmatter(OM)wasestimatedbythepercentagelossonignitiontechniqueasde‐
scribedby[37].Ahalf‐gramofwetsedimentwasovendriedfor~24hat90°C(Memmert
universalovenUN30,Büchenbach,Baden‐Württemberg,Germany)toaconstantweight.
Theremainingdrysedimentwasthencombustedinamufflefurnace(Daihanscientific
co.ltd.,Gangwon,SouthKorea))at550°Cfor4hforcompleteignitionoftheOM.After
ignition,thesedimentsampleswerecooledinadesiccator,andtheweightloss(%dry
weight)wasdetermined.
2.4.DataAnalysis
Statisticaldataanalysis(Pearsoncorrelationcoefficient)wasperformedusingSPSS
20.0(IBM,Armonk,NY,USA).Tocharacterizephysicochemicalvariablesandtheirinflu‐
enceonepipelicdiatomsinthestudystations,principalcomponentanalysis(PCA)was
performedusingadatasetof14seawaterparametersandepipelicdiatomabundancedata
inthestudyarea.
3.Results
3.1.EnvironmentalConditions
Thespatialvariationsinphysicochemicalvariablesalongthecoastalareaaresum‐
marizedinFigures2and3.Ingeneral,temperaturevariationsinthecoastalwatersofthe
PortDicksoncoastaresmall,rangingfrom(28.73±0.26)°CinSt.3to(31.19±0.28)°Cin
St.5.However,thevariationsinSSSlevelsarehigh,rangingfrom(20.20±0.26)pptinSt.3
to(27.33±0.35)pptinSt.5.ThepHrangedfrom7.72±0.30inSt.1to8.34±0.38inSt.2,and
theDOrangedfrom(6.72±0.33)mg/LinSt.5to(7.74±0.30)mg/LinSt.1.TheECwas
relativelyconsistent,rangingfrom(26,220.67±27.08)μS/cminSt.1to(30,853.75±18.6)
μS/cminSt.6.TheTDSalsoshowedhighvariations,rangingfrom(18,532.67±13.7)mg/L
inSt.6to(19,420.33±15.31)mg/LinSt.4,whereastheTSSfluctuatedbetween(45.4±0.83)
mg/LinSt.4and(77.91±0.95)mg/LinSt.1.ThesedimentOMvariedbetween21.00±0.8%
and25.85±0.49%,withmaximumvaluesinSt.6andminimuminSt.2(Figure2).
0
5
10
15
20
25
30
26
27
28
29
30
31
32
St.1 St.2 St.3 St.4 St.5 St.6
SST (°C)
SST SSS
Stations
SSS (ppt)
0
2
4
6
8
10
0
2
4
6
8
St.1 St.2 St.3 St.4 St.5 St.6
PH
pH DO
Stations
DO (mg/L)
Water2022,14,31875of13
Figure2.Variationsinseawaterparameters(mean±SD)alongthestudyarea:seawatersurface
temperature(SST)andsalinity(SSS);pHanddissolvedoxygen(DO);electricalconductivity(EC)
andtotaldissolvesolid(TDS);andtotalsuspendedsediment(TSS)andorganicmatter(OM).
Amongthenutrients,NO
3–
rangedfrom(0.018±0.0014)mg/LinSt.5to(0.033±
0.0007)mg/LinSt.3.TheNO
2–
concentrationswererelativelylower,rangingfrom(0.002
±0.0006and±0.0012)mg/LinSt.5andSt.6,to(0.01±0.007)mg/LinSt.2.NH
3
rangedfrom
(0.38±0.021)mg/LinSt.6to(0.53±0.014)mg/LinSt.3,whichwasmuchhigherthanthe
nitrate+nitritelevels.PO
4−3
concentrationswerenotaspronouncedastheammonia,with
thehighestconcentrationrecordedinSt.5(0.21±0.011)mg/LandthelowestinSt.2(0.04
±0.002)mg/L.SiO
2
rangedfrom(0.08±0.011)mg/Lto(0.11±0.014and±0.012)mg/L,with
thelowestconcentrationsinSt.
1
andhighestinSt.2and
St.5.Therangeofconcentration
forChl‐ainthesixstationswasfrom0.10±0.028mg/Lto0.13±0.021mg/L,withthe
highestconcentrationrecordedatSt.6andthelowestatSt.5(Figure3).
Figure3.Variationsinseawaternutrients(mean±SD)alongthePortDicksoncoasts,Malaysia:
nitrate(NO
3–
)andnitrite(NO
2–
);ammonia(NH
3
)andphosphate(PO
4−3
);andchlorophyll‐a(Chl‐a)
andsilica(SiO
2
).
18,000.00
18,500.00
19,000.00
19,500.00
20,000.00
22,000.00
24,000.00
26,000.00
28,000.00
30,000.00
32,000.00
St.1 St.2 St.3 St.4 St.5 St.6
EC TDS
Stations
EC ( μS/cm)
TDS (mg/L)
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.000
0.010
0.020
0.030
0.040
St.1 St.2 St.3 St.4 St.5 St.6
NO₃⁻ NO₂⁻
NO₃⁻ (mg/L)
NO₂⁻ (mg/L)
Stations
Water2022,14,31876of13
3.2.DynamicsofEpipelicDiatoms
Atotalof39epipelicdiatomspecieswerecollectedandidentified,andthepennate
diatoms(78%atSt.5)weremoredominantthanthecentricones(47%atSt.1)(Figure4a).
Theoveralldiatomabundancerangedfrom(1.85×103±0.09cells/g)inSt.3to(3.43×103±
0.18cells/g)inSt.6(Figure4b).TheShannon–Wienerdiversityindex(H’)wasrelatively
high,rangingfrom2.13inSt.1to2.58inSt.4,whereastheMargalef’srichnessindexranged
from1.32inSt.2to2.08inSt.5.
Figure4.Epipelicdiatompopulationparametersalongthestudyarea.(a):Percentagecontribution
ofpennatediatomandcentricdiatom;(b):Abundance,diversity(Shannon–Wienerindex)andrich‐
ness(Margalef’sindex).
Thepercentagecompositionofdiatomspeciesrecordedateachstationissumma‐
rizedinTable1.CocconeisplacentulaandEolimnaminimawerethemostcommonspecies,
with67%occurrence.Notably,eachstationwasdominatedbydifferentspecies,whereC.
placentulawasdominantinSt.1(41%),DiploneiscrabroinSt.2(24%),Eunotogrammalaevis
inSt.3(34%),Actinoptychussp.inSt.4(15%),Amphorasp.inSt.5(28%),andCoscinodiscus
sp.inSt.6(15%)(Table1andFigure5).Theseresultsindicatedhighspatialvariationsin
epipelicdistributionalongthestations.
Water2022,14,31877of13
Table1.Listofepipelicdiatomsspeciespredominance(%)atthesamplingstationsalongPortDick‐
soncoast,Malaysia.Occurrence(%Pr):0–20(sporadically,S);21–40(rarely,R);41–60(commonly,
C);61–80(frequently,F);and81–100(highlyfrequently,H).
St.1St.2St.3St.4St.5St.6%PrClass
A
ctinoptychussp.
9
3
15 50
C
A
.undulates
(J.W.Bailey)Ralfs,1861.
3
3
5
50
C
A
mphoraarenariaDonkin,1858.13
8
4
50
C
A
mphorasp.
2
5
2850
C
A
uliscuselegansAuliscuselegansvar.californica
(GrunowinSchmidtetal.)Rattray,1888.
4
5
8
50
C
Caloneissp.
8
3
33
R
Campylodiscussp.
7
3
6
50
C
CocconeisplacentulaEhrenberg,1838.4114
5
1
67
F
C.radiatusEhrenberg,1840. 1217
X
C.gigasvar.praetexta(Janisch)Hustedt,1930.
7
9
11 50
C
Coscinodiscussp.
6
1533
R
CyclotellastriataGrunowinVanHeurck,1882.
6
8
1350
C
DiploneiscrabroEhrenberg,1854
.
24
5
2
50
C
Diploneisobliqua(Brun)Hustedt,1937
.
1117
X
EunotogrammalaevisGrunow,1883. 34
5
6
50
C
Eolimnaminima(Grunow)Lange‐Bertalot&
W.Schiller,1997.
5
6
8
7
67
F
Gyrosigmaeximium(Thwaites)Boyer,1927.
3
6
33
R
Lyrellaclavata
(
Gregory)D.G.Mann,1990.10 17
X
Lyrellasp.
5
2
33
R
M
astogloiaangulataLewis,1861.
5
6
4
50
C
M
elosirasp.
3
3
1150
C
Naviculasp. 4 17
X
N.longa(Gregory)RalfsexPritchard,1861.
9
17
X
N
.peregrine 4 4 33
R
Nitzschia
sigma
(Hantzsch)Grunow,1878.
7
17
X
Odontellasp. 51033
R
O.mobiliensis(J.W.Bailey)Grunow,1884. 3 17
X
Paraliasulcate(Ehrenberg)Cleve,1873.
5
1
33
R
Petroneisgranulate(Bailey)D.G.Mann,1990.
4
8
1
50
C
Pinnulariasp. 717
X
P.aestuariiCleve,1895.317
X
Pleurosigmasp.10
4
33
R
P.naviculaceumBrébisson,1854
4
4
17
X
p
seudo‐nitzschiasp.
2
17
X
Surirellasp. 7 17
X
S.fastuosa(Ehrenberg)Ehrenberg,1843. 6 17
X
S.spiralisKützing,1844
2
17
X
Thalassiosirasp.
3
8
8
50
C
Triceratiumsp. 1317
X
Water2022,14,31878of13
Figure5.Scanningelectronmicrographsofthemostcommonspeciesindifferentstations:(A)Dip‐
loneiscrabro,(B)Cocconeisplacentula,(C)Actinoptychussp.,
(D)Eunotogrammalaevis,(E)Amphorasp.,
and
(F)Coscinodiscussp.
Thecorrelationsbetweentheepipelicdiatom’sabundanceanddiversityagainstvar‐
iousenvironmentalparametersarepresentedinTable2.Significantpositivecorrelations
existedbetweenabundanceofepipelicdiatomtaxaagainstSSTandTSS(p<0.05),and
significantnegativecorrelationsexistedamongtheabundanceoftheepipelicdiatomcom‐
munityandpHandNH
3
(p<0.05).Meanwhile,theepipelicdiversityshowedasignificant
negativecorrelationwithTSSandSiO
2
andasignificantpositivecorrelationwithSST(p<
0.05).FurtheranalysisusingPCAshowedeigenvaluesof6.20and2.80,respectively,
whichexplained79.83%ofthevariance(Figure6).TheabundanceofD.crabro,Actinop‐
tychussp.,andE.laevisinSt.2,St.4,andSt.3werepositivelycorrelatedwithNO
2–
,DO,
NH
3
,andTDSandnegativelycorrelatedwithOMandSSS.Amphorasp.inSt.5wasposi‐
tivelycorrelatedwithSST,EC,Chl‐a,PO
4−3
,andpHbutnegativelycorrelatedwithSiO
2
,
NO
3−
,andTSS.Coscinodiscussp
.
inSt.6waspositivelycorrelatedwithSSSandOM.
Table2.Pearson’scorrelationcoefficient(randpvalue)ofepipelicdiatomabundance(cells/g)and
diversity(H’)againstsignificantphysicochemicalvariablesatPortDicksoncoast.Asterisk(*)indi‐
catessignificanceat0.05level(2‐tailed).Parameterswithnosignificantcorrelationswereexcluded.
Physicochemical
Variables
AbundancesofEpipelicDiatom
Communities(cells/g)
DiversityofEpipelicDiatom
Communities(H’)
rpValuerpValue
SST(°C)0.630.03*0.580.04*
pH−0.580.04*0.430.16
TSS(mg/L)0.530.08*−0.85<0.01*
NH₃(mg/L)−0.670.02*0.070.83
SiO2(mg/L)0.360.25−0.630.03*
Chl‐a(mg/L)0.74<0.01*−0.110.73
Water2022,14,31879of13
Figure6.Principalcomponentanalysisordinationsofthedominantepipelicdiatomspeciesand
physiochemicalvariablesmeasuredatsixstationsalongthePortDicksoncoasts,Malaysia.
4.Discussion
4.1.EnvironmentalConditions
Physicochemicalvariablesweremeasuredtodeterminethecoastal‐waterqualitypa‐
rametersthatmayaffecttheepipelicdiatomdistributioninthedifferentstudystations.
TheSSTvalueswererelativelyhighandstable,withameanvalueof30.36°C±0.89°C,
whichisthestandardfortropicalcoastalwaters[38].Increasingtemperaturecanleadto
changesinthedistributionpatternsofbenthicdiatoms[39].Thisphenomenonwasfound
inthecurrentstudy,wherethehighestnumberofepipelicspecieswasrecordedatSt.5
withthehighesttemperatures,whereastheoppositewasatSt.3.Conversely,theSSSlev‐
elsshowedawiderange,whichwasalsonormalfornearshorecoastalwaters.SSSgener‐
allydidnotshowanyeffectonepipelicabundanceasitwasnotamongthecriticalparam‐
etersdeterminingthedistributionofabundanceofepipelicspecies[40].
pHisanimportantfactoraffectingtheproliferationofaquaticorganisms,andin‐
creasingordecreasingpHmayaffectphytoplanktongrowth[41].ThepHvaluesrecorded
inthesestudiesrangedfromneutraltoalkaline(mean=8.07±0.21),whichwerewithin
theMMWQS[36].TheDOvalueswererelativelyhigh,withameanvalueof6.95±0.74
mg/L,similartoapreviousstudy[42].VariabilityintheDOlevelsnearthecoastlinecan
beattributedtodifferentriveroutflowsalongthestudyarea.
ThevalueofTSSinthisstudycanbecategorizedasunderClassIIIoftheMMWQS
[36].St.1hadhigherTSSthantheotherstations,mostlikelyowingtoitsproximitytothe
SepangRiver.Tidalfluctuations,winddirections,windspeeds,andriveroutflowswere
amongthemajorfactorsregulatingthespatialandtemporalvariationsofTSS[43,44].
Othercoastalfeaturessuchasnearbymangrovesandcoastalvegetations,aswellasthe
amountofOMincoastalwaters,mayalsoaffecttheTSS.ThehighestOMwasrecorded
atSt.6followedbySt.1,whereSt.6waslocatedinfrontofthemangroves,whereasSt.1
waslocatedclosetotheestuary.Studieshaveshownthatmangrovesoilsmaysupply
Water2022,14,318710of13
significantamountsofOMwithhighpercentagesoforganiccarbontonearbycoastalwa‐
ters[45,46].
Nutrientconcentrationssignificantlyimpactphytoplanktonoccurrenceandabun‐
danceastheydrawinsignificantamountsofnutrientsfromtheecosystem[41,47].How‐
ever,thepresentstudyshowedlowvariabilitiesintheconcentrationofnutrientssuchas
NO3−,NO2−,NH3−,PO43−,andSiO2throughoutthestations.Nevertheless,highammonium
concentrationswererecorded,asalsoreportedby[48],indicatingahighlevelofpollution
inthestudyarea.Furthermore,Ref.[42]reportedahighlevelofpollutioninthePort
Dicksoncoasts,andtheseareashaveevenbeensuggestedtobeunhealthyforhumanac‐
tivities.
SiO2andChl‐aalsosignificantlyaffectedtheabundanceofepipelicdiatomassem‐
blagesanddiversity.TheSiO2concentrationswerelowatSt.1,St.3,St.4,andSt.6,butthey
wererelativelyhigheratSt.2andSt.5.Conversely,Chl‐awasrelativelysimilarbetween
stations,rangingfrom0.10mg/Lto0.13mg/L.Chlorophyllisanindicatorofbiomassvar‐
iabilityandphytoplanktongrowth,anditsconcentrationmaybegreatlyinfluencedby
nutrients[7,49].
4.2.DynamicsofEpipelicDiatoms
Theabundanceofepipelicdiatomrecordedthroughoutthestationswasconsidered
asrelativelylow,whichcanprobablybeattributedtothedifferentspatialvariables,the
highlevelofpollution,andthepoorsedimentcondition.Thisfindingmayhaveastrong
impactondiatomsgrowingonthesedimentsurface[50].Eachdifferentgroupofnutrient
concentrationswascharacterizedbyadifferentbenthicdiatomcomposition.Therelative
abundancesofbenthicdiatomformschangedinresponsetominorinputsofnutrients
[51].TheinputofOMalsocausedtheadditionofsuspendedsolidsandthedeoxygenation
ofwater.Nevertheless,pennateandcentricdiatomswerewellpresentedinallstations.
Thecompositionofcentricdiatomswassignificantlylower,whichwasnormalbecause
mostofthemwereplanktonthatadaptedtomoveupwardstowardthesedimentsurface
undermoderatelightintensitiesandmigrateddeeperintothesedimentindarknessand
underveryhighlightintensities[52].Indeed,thehigherratioofpennatetocentricforms
iscommoninthecoastalbenthicdiatomscommunityandhasbeenpreviouslyreported
elsewhere[53].
Theabundanceanddiversityofepipelicdiatomsshoweddifferentcorrelationswith
variousphysicochemicalfactors.Increaseinseawatertemperatureusuallyledtohigher
metabolicactivity,therebyincreasingthebenthicalgalbiomass[54,55].Furthermore,OM
isimportantincontrollingdiatomcommunitiesandtheirnutritivevalues[26,56].Previ‐
ousstudieshaveindicatedthatvariationsinOMcontentplayanimportantroleinthe
diversityofbenthicdiatomcommunities,whereincreasingdiatomdiversitynormallyco‐
incideswithhigherOMcontentinthesediment[57].
Silicawasfoundtobenegativelycorrelatedwithepipelicdiversity,whichmaybe
duetotheintensiveuptakebysomegrouporspecies.Previousstudieshaveshownthat
thesilicarequirementofepipelicdiatomnegativelyaffectsthesilicabalanceinthemarine
ecosystem[58].Nitrogenoussubstancesareimportantnutrientsforprimaryproductivity.
However,Ref.[59]reportedthatdiatomsprefernitratebutdonotrespondwelltoammo‐
nium.Nevertheless,otherstudieshaveshownthatammoniumisamorereadilyassimi‐
latedsourceofnitrogencompoundsinmarineepipelicdiatoms,anditisthemostim‐
portantfactordeterminingthesourcesoftheepipeliccommunitystructure[40,60].This
phenomenonmayresultinashiftintheircommunitycomposition,whichexplainsthe
negativecorrelationofammoniawiththeabundanceofepipelicdiatom.
Withinthestudyarea,C.placentulawasoneofthemostabundantandextensively
distributedspecies.ThisfindingagreedwithotherstudiesthatalsoreportedCocconeissp.
asthedominantbenthicspeciesassociatedwithepiphyticorepipelichabitats[9,61].Coc‐
coneisspp.alsocontributedasthemostabundantbenthicmicroalgae(at58%)insediments
collectedfromMukaHeadJetty,Penang,Malaysia[20].
Water2022,14,318711of13
PCAdemonstratedthatthepositivecorrelationforD.crabro,E.laevis,andActinop‐
tychussp.instationsSt.2,St.3,andSt.4canbeattributedtothehighconcentrationsofNO2–
,NH3,andTDSattherespectivestations.PCAalsoshowedpositivecorrelationsofC.
placentulawithNO3−andSiO2butnegativecorrelationswithPO43−andpH.Previousstud‐
ieshavereportedthatnutrientconcentrationandpHplayimportantrolesinthemorpho‐
logicalstructureandpore‐holesizedistributionofC.placentula [62,63].Theratioofsilica
compositionwas30.71%inCoscinodiscusspp.[64],whichmayexplainthenegativecorre‐
lationbetweenCoscinodiscusspp.andSiO2atSt.6(Figure6).
5.Conclusions
Highspatialvariationsinepipelicdistributionwereobservedalongthestudysta‐
tions.SST,TSS,TDS,NO2−,NH3,OM,andSiO2,wereconsideredasthemostinfluential
physicochemicalvariablesonepipelicdiatomdiversity,abundance,anddistributionin
thestudyarea.Coconeisplacentula,D.crabro,E.laevis,Actinoptychussp.,Amphorasp.,and
Coscinodiscussp.werethemostabundanttaxainthestudyarea.Theyshowedstrongcor‐
relationswithSST,TSS,SiO2,OM,NH₃,NO₂⁻,pH,Chl‐a,andTDS.Thisstudywasthe
firsttodescribetheepipelicdiatomdiversityanddistributioninMalaysiancoastalwaters,
whichmayserveasabaselineformorestudiesonepipelicdiatomdynamicsinthefuture.
AuthorContributions:Conceptualization,A.A.S.,S.N.P.S.,Z.C.C.;methodology,A.A.S.,S.N.P.S.,
Z.C.C.;investigation,A.A.S.,S.N.P.S.,Z.C.C.,S.K.D.;writing—originaldraftpreparation,A.A.S.,
S.N.P.S.,Z.C.C.;writing—reviewandediting,A.A.S.,S.N.P.S.,Z.C.C.andS.K.D.;supervision,
Z.C.C.,S.N.P.S.&S.K.D.;fundingacquisition,Z.C.C.Allauthorshavereadandagreedtothepub‐
lishedversionofthemanuscript.
Funding:ThisworkwasfundedbyUKMresearchfundthroughGUP‐2021‐049toZ.C.C.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
Acknowledgments:WesincerelythankAmirandZuhaimifromtheMarineScienceProgram,Uni‐
versitiKebangsaanMalaysia(UKM)fortheirdedicatedeffortsinsamplecollectionandanalysis.
Wealsothanktheanonymousreviewersfortheirveryusefulcomments.
ConflictsofInterest:Theauthorsherebydeclarenoconflictofinterest.
References
1. Ducklow,H.W.;Steinberg,D.K.;Buesseler,K.O.UpperoceancarbonexportandtheBiologicalPump.Oceanography2001,14,
50–58.
2. Muller‐Karger,F.E.;Varela,R.;Thunell,R.;Luerssen,R.;Hu,C.;Walsh,J.J.Theimportanceofcontinentalmarginsintheglobal
carboncycle.Geophys.Res.Lett.2005,32,10–13.
3. Kasai,A.;Horie,H.;Sakamoto,W.SelectionoffoodsourcesbyRuditapesphilippinarumandMactraveneriformis(Bivalva:Mol‐
lusca)determinedfromstableisotopeanalysis.FisheriesSci.2004,70,11–20.
4. Sanger,D.;Blair,A.;Didonato,G.T.;Washburn,S.;Jones,G.;Riekerk,E.;Wirth,J.;Stewart,D.;White,L.;Vandiver,A.F.Impacts
ofcoastaldevelopmentontheecologyoftidalcreekecosystemsoftheUSSoutheastincludingconsequencestohumans.Estu‐
ariesCoasts2015,38,49–66.
5. Vincent,F.;Bowler,C.Diatomsareselectivesegregatorsinglobaloceanplanktoniccommunities.Msystems2020,5,e00444‐19.
6. Park,J.S.;Lee,K.W.;Jung,S.W.;Lee,T.K.;Joo,H.M.WinterdistributionofdiatomassemblagesalongthecoastlineofKoreain
2020.ActaOceanol.Sin.2022,6,1–10.
7. Kasim,M.;Mukai,H.ContributionofBenthicandEpiphyticDiatomstoClamandOysterProductionintheAkkeshi‐koEstuary.
J.Oceanogr.2006,62,267–281.
8. Thornton,D.C.O.;Dong,L.F.;Underwood,G.J.C.;Nedwell,D.B.Factorsaffectingmicrophytobenthicbiomass,speciescompo‐
sitionandproductionintheColneestuary(UK).Aquat.Microb.Ecol.2002,27,285–300.
9. Facca,C.;Sfriso,A.Epipelicdiatomspatialandtemporaldistributionandrelationshipwiththemainenvironmentalparameters
incoastalwaters.Estuar.Coast.ShelfSci.2007,75,135–149.
10. Cochero,J.;Licursi,M.;Gómez,N.Changesintheepipelicdiatomassemblageinnutrientrichstreamsowingtothevariations
ofsimultaneousstressors.Limnologica2015,51,15–23.
Water2022,14,318712of13
11. Méléder,V.;Rincé,Y.;Barillé,L.;Gaudin,P.;Rosa,P.Spatiotemporalchangesinmicrophytobenthosassemblagesinamacro‐
tidalflat(BourgneufBay,France).J.Phycol.2007,43,1177–1190.
12. Ribeiro,L.;Brotas,V.;Rincé,Y.;Jesus,B.Structureanddiversityofintertidalbenthicdiatomassemblagesincontrastingshores:
AcasestudyfromtheTagusestuary.J.Phycol.2013,49,258–270.
13. Jabbari,M.;Salahi,M.;Ghorbani,R.Spatio‐temporalinfluenceofphysicochemicalparametersonphytoplanktonassemblage
incoastalbrackishlagoon:GomishanLagoon,CaspianSea,Iran.Biodiversitas2018,19,2020–2027.
14. Vajravelu,M.;Martin,Y.;Ayyappan,S.;Mayakrishnan,M.Seasonalinfluenceofphysico‐chemicalparametersonphytoplank‐
tondiversity,communitystructureandabundanceatParangipettaicoastalwaters,BayofBengal,southeastcoastofIndia.
Oceanologia2018,60,114–127.
15. Zimba,P.V.;Hill,E.M.;Withers,K.Benthicmicroalgaeserveasthemajorfoodresourceforporcelaincrabs(Petrolisthesspp.)in
oysterreefs:Digestivetrackcontentandpigmentevidence.J.Exp.Mar.Biol.Ecol.2016,483,53–58.
16. McMinn,A.;Sellah,S.;Llah,W.A.W.;Mohammad,M.;Merican,F.M.S.;Omar,W.W.;Samad,F.;Cheah,W.;Idris,I.;Sim,Y.K.;
etal.Quantumyieldofthemarinebenthicmicrofloraofnear‐shorecoastalPenang,Malaysia.Mar.Freshw.Res.2005,7,1047–
1053.
17. Nursuhayati,A.S.;Yusoff,F.M.;Shariff,M.SpatialandtemporaldistributionofphytoplanktoninPerakestuary,Malaysia,
duringmonsoonseason.J.Fish.Aquat.Sci.2013,8,480–493.
18. Salleh,A.;Wakid,S.A.;Bahnan,I.S.DiversityofphytoplanktoncollectedduringthescientificexpeditiontoPulauPerak,Pulau
JarakandtheSembilanGroupofIslands.Malays.J.Sci.2008,27,33–45.
19. Ke,Z.;Tan,Y.;Huang,L.SpatialvariationofphytoplanktoncommunityfromMalaccaStraittosouthernSouthChinaSeain
Mayof2011.ActaEcol.Sin.2016,36,154–159.
20. Siswanto,E.;Tanaka,K.PhytoplanktonbiomassdynamicsintheStraitofMalaccawithintheperiodoftheSeaWiFSfullmis‐
sion:Seasonalcycles,interannualvariationsanddecadal‐scaletrends.RemoteSens.2012,6,2718–2742.
21. Salleh,A.;Wakid,S.A.;Bahnan,I.S.;Rahman,K.A.A.;Nasrodin,S.DiversityofphytoplanktonatLangkawiIsland,Malaysia.
Malays.J.Sci.2005,24,43–55.
22. Salleh,A.;Ruslan,N.D.PhytoplanktoncompositionanddistributionintheCoastalAreaofBachokKelantanMalays.J.Sci.2010,
29,19–29.
23. Lim,H.C.;Teng,S.T.;Leaw,C.P.;Wataki,M.;Lim,P.PhytoplanktonassemblageoftheMerambongShoal,TebrauStraitswith
noteonpotentiallyharmfulspecies.MalayNat.J.2014,66,198–221.
24. Joon,H.L.;Choon,W.L.Short‐timescaleVariationofPhytoplanktonAbundanceandDiversityatRedangIsland.Malays.J.Sci.
2015,34,2–7.
25. Lim,J.H.;Lee,C.W.Effectsofeutrophicationondiatomabundance,biovolumeanddiversityintropicalcoastalwaters.Environ.
Monit.Assess.2017,189,1–10.
26. Desianti,N.;Potapova,M.;Enache,M.;Belton,T.J.;Velinsk,D.J.;Thomas,R.;Mead,J.Sedimentdiatomsasenvironmental
indicatorsinNewJerseycoastallagoons.J.Coast.Res.2017,78,127–140.
27. Sha,L.;Jiang,H.;Knudsen,K.L.DiatomevidenceofclimaticchangeinHolsteinsborgDyb,westofGreenland,duringthelast
1200years.Holocene2012,22,347–358.
28. Benito,X.;Trobajo,R.;Ibáñez,C.BenthicdiatomsinaMediterraneandelta:Ecologicalindicatorsandaconductivitytransfer
functionforpaleoenvironmentalstudies.J.Paleolimnol.2015,2,171–188.
29. Kobayasi,H.;Idei,M.;Mayama,S.;Nagumo,T.;Osada,K.;Kobayasi’s,H.AtlasofJapaneseDiatomsbasedonElectronMicroscopy,
1stded.;UchidaRokakuhoPublishingCo.Ltd.:Tokyo,Japan,2006;p.531.
30. Giffen,M.H.ContributionstothediatomfloraofSouthAfricaIV.NovaHedwig.Beih.1963,31,259–312.
31. Sullivan,M.J.;Daiber,F.C.Light,nitrogen,andphosphoruslimitationofedaphicalgaeinaDelawaresaltmarsh.J.Exp.Mar.
Biol.Ecol.1975,18,79–88.
32. Washington,H.G.Diversity,bioticandsimilarityindices:Areviewwithspecialrelevancetoaquaticecosystems.WaterRes.
1984,18,653–694.
33. Margalef,R.Temporalsuccessionandspatialheterogeneityinphytoplankton.InPerspectivesinMarineBiology;Buzzati‐
Traverso,A.A.,Ed.;UniversityofCaliforniaPress:Oakland,CA,USA,1958;pp.323–349.
34. Lim,J.H.;Wong,Y.Y.;Lee,C.W.;Bong,C.W.;Kudo,I.Long‐termcomparisonofdissolvednitrogenspeciesintropicalestuarine
andcoastalwatersystems.Estuar.Coast.ShelfSci.2019,222,103–111.
35. Mantoura,R.F.C.;Llewellyn,C.A.Therapiddeterminationofalgalchlorophyllandcarotenoidpigmentsandtheirbreakdown
productsinnaturalwatersbyreverse‐phasehigh‐performanceliquidchromatography.Anal.Chim.Acta1983,151,297–314.
36. D.O.E.(DepartmentofEnvironmentMalaysia).MalaysianMarineWaterQualityStandardsReport2017;DOE:Putrajaya,Malaysia,
2017;pp.1–135.
37. Heiri,O.;Lotter,A.F.;Lemcke,G.Lossonignitionasamethodforestimatingorganicandcarbonatecontentinsediments:
Reproducibilityandcomparabilityofresults.J.Paleolimnol.2000,25,101–110.
38. Lee,C.W.;Bong,C.W.Bacterialabundanceandproductionandtheirrelationtoprimaryproductionintropicalcoastalwaters
ofPeninsularMalaysia.Mar.Freshw.Res.2008,59,10–21.
39. Yun,M.S.;Lee,S.H.;Chung,I.K.Photosyntheticactivityofbenthicdiatomsinresponsetodifferenttemperatures.J.Appl.Phycol.
2010,22,559–562.
Water2022,14,318713of13
40. Dalu,T.;Richoux,N.B.;Froneman,P.W.Distributionofbenthicdiatomcommunitiesinapermanentlyopentemperateestuary
inrelationtophysico‐chemicalvariables.S.Afr.J.Bot.2016,107,31–38.
41. Bagazi,Z.A.;Baakdah,M.A.;Affan,M.A.SeasonaldynamicsanddiversityofphytoplanktoninSharmYanbuLagoon,RedSea,
SaudiArabia.J.KingAbdulazizUniv.Mar.Sci.2018,28,9–26 .
42. Hamzah,A.;Kipli,S.H.;Ismail,S.R.;Una,R.;Sarmani,S.MicrobiologicalstudyincoastalwaterofPortDickson,Malaysia.Sains
Malays.2011,40,93–99.
43. Park,G.S.TheroleanddistributionoftotalsuspendedsolidsinthemacrotidalcoastalwatersofKorea.Environ.Monit.Assess.
2007,135,153–162.
44. Liu,Q.;Liang,Y.;Cai,W.J.;Wang,K.;Wang,J.;Yin,K.ChangingriverineorganicC:NratiosalongthePearlRiver:Implications
forestuarineandcoastalcarboncycles.Sci.TotalEnviron.2020,709,136052.
45. Chaikaew,P.;Chavanic,S.SpatialVariabilityandRelationshipofMangroveSoilOrganicMattertoOrganicCarbon.Appl.
Environ.SoilSci.2017,20,1–9.
46. Donato,D.C.;Kauffman,J.B.;Murdiyarso,D.;Kurnianto,S.;Stidham,M.;Kanninen,M.Mangrovesamongthemostcarbon‐
richforestsinthetropics.Nat.Geosci.2011,4,293–297.
47. Litchman,E.ResourceCompetitionandTheEcologicalSuccessofPhytoplankton.InEvolutionofPrimaryProducersintheSea,
1sted.;Falkowski,P.G.,Knoll,A.H.,Eds.;ElsevierSciencePublishingCo.Inc.:SanDiego,CA,USA,2007;pp.351–375.
48. Praveena,S.M.;Aris,A.Z.AbaselinestudyoftropicalcoastalwaterqualityinPortDickson,StraitofMalacca,Malaysia.Mar.
Pollut.Bull.2013,67,196–199.
49. Shaari,F.;Mustapha,M.A.FactorsinfluencingthedistributionofChl‐aalongcoastalwatersofeastPeninsularMalaysia.Sains
Malays.2017,46,1191–1200.
50. Leleyter,L.;Baraud,F.;Gil,O.;Gouali,S.;Lemoine,M.;Orvain,F.AluminiumImpactonTheGrowthofBenthicDiatom.In
MarineSediments:Formation,DistributionandEnvironmentalImpacts,1sted.;Williams,W.,Ed.;Novinka:NewYork,NY,USA,
2016;pp.1–19.
51. Agatz,M.;Asmus,R.M.;Deventer,B.Structuralchangesinthebenthicdiatomcommunityalongaeutrophicationgradienton
atidalflat.Helgol.Mar.Res.1999,53,92–101.
52. Bilcke,G.;VanCraenenbroeck,L.;Castagna,A.;Osuna‐Cruz,C.M.;Vandepoele,K.;Sabbe,K.;DeVeylder,L.;Vyverman,W.
LightintensityandspectralcompositiondrivereproductivesuccessinthemarinebenthicdiatomSeminavisrobusta.Sci.Rep.
2021,1,1–15.
53. Balasubramaniam,J.;Prasath,D.;Jayaraj,K.A.Microphytobenthicbiomass,speciescompositionandenvironmentalgradients
inthemangroveintertidalregionoftheAndamanArchipelago,India.Environ.Monit.Assess.2017,189,1–9.
54. Dodds,W.K.;Smith,V.H.;Lohman,K.Nitrogenandphosphorusrelationshipstobenthicalgalbiomassintemperatestreams.
Can.J.FishAquat.Sci.2002,59,865–874.
55. Cartaxana,P.;Vieira,S.;Ribeiro,L.;Rocha,R.J.;Cruz,S.;Calado,R.;daSilva,J.M.EffectsofelevatedtemperatureandCO2on
intertidalmicrophytobenthos.BMCEcol.2015,15,1–10.
56. Admiraal,W.;Peletier,H.Influenceoforganiccompoundsandlightlimitationonthegrowthrateofestuarinebenthicdiatoms.
Brit.Phycol.J.1979,14,197–206.
57. Virta,L.;Gammal,J.;Järnström,M.;Bernard,G.;Soininen,J.;Norkko,J.;Norkko,A.Thediversityofbenthicdiatomsaffects
ecosystemproductivityinheterogeneouscoastalenvironments.Ecology2019,100,1–11.
58. Jézéquel,V.M.;Hildebrand,M.;Brzezinski,M.A.Siliconmetabolismindiatoms:Implicationsforgrowth.J.Phycol.2000,36,
821–840.
59. Domingues,R.B.;Barbosa,A.B.;Sommer,U.;Galvão,H.M.Ammonium,nitrateandphytoplanktoninteractionsinafreshwater
tidalestuarinezone:Potentialeffectsofculturaleutrophication.Aquat.Sci.2011,73,331–343.
60. Underwood,G.;Phillips,J.;Saunders,K.Distributionofestuarinebenthicdiatomspeciesalongsalinityandnutrientgradients.
Eur.JPhycol.1998,33,173–183.
61. Round,F.E.;Round,R.M.;Mann,D.G.TheDiatoms,BiologyandMorphologyoftheGenera,1sted.;CambridgeUniversityPress:
NewYork,NY,USA,1990;pp.1–744.
62. Vrieling,E.G.;Poort,L.;Beelen,T.P.;Giesked,W.W.GrowthandsilicacontentofthediatomsThalassiosiraweissflogiiandNa‐
viculasalinarumatdifferentsalinitiesandenrichmentswithaluminium.Eur.J.Phycol.1999,34,307–316.
63. Leterme,S.C.;Prime,E.;Mitchell,J.;Brown,M.H.;Ellis,A.V.Diatomadaptabilitytoenvironmentalchange:Acasestudyoftwo
Cocconeisspeciesfromhigh‐salinityareas.DiatomRes.2013,28,29–35.
64. Gnanamoorthy,P.;Karthikeyan,V.;Prabu,V.A.Fieldemissionscanningelectronmicroscopy(FESEM)characterisationofthe
poroussilicananoparticulatestructureofmarinediatoms.J.PorousMat.2014,21,225–233.