ArticlePDF Available

Effect of Seawater and Surface-Sediment Variables on Epipelic Diatom Diversity and Abundance in the Coastal Area of Negeri Sembilan, Malaysia

MDPI
Water
Authors:

Abstract

Benthic diatoms are important components of marine shallow-water habitats that may affect primary production, stabilize sediment, and produce extracellular polymeric substances. Ben-thic diatoms are useful for estimating the trophic status of marine ecosystems. In this study, we investigated the diversity and abundance of benthic diatoms to integrate these data with the phys-icochemical characteristics of shallow coastal areas in Negeri Sembilan. A total of 39 species of epi-pelic diatoms were extracted by removing organic matter from sediments that were dominated by pennate diatoms. Results showed that Diploneis crabro, Eunotogramma laevis, Actinoptychus sp., and Cocconeis placentula were the important species in the area. The abundance varied between 1.85 × 10 3 and 3.43 × 10 3 cells/g, and the diversity index fluctuated between 2.13 and 2.58. The abundance had significant positive correlations with seawater surface temperature (SST) but had negative correlations with pH and NH3. The diversity on the other end was positively correlated with SST but negatively correlated with total suspended solids and SiO2. Principal component analysis (PCA) demonstrated that the abundance of D. crabro, E. laevis, and Actinoptychus sp. can be attributed to high levels of NO₂-, NH3, and total dissolved solids. PCA also showed positive correlations of C. placentula with NO3-and SiO2 but negative ones with PO4 −3 and pH. The epipelic diatom community showed high diversity with high variations throughout the study area.
Water2022,14,3187.https://doi.org/10.3390/w14193187www.mdpi.com/journal/water
Article
EffectofSeawaterandSurfaceSedimentVariablesonEpipelic
DiatomDiversityandAbundanceintheCoastalAreaofNegeri
Sembilan,Malaysia
AhmedAwadhSas
1,2
,SuNyunPauSuriyanti
1,3
,SimonKumarDas
1,3
andZaidiCheCob
1,3,
*
1
DepartmentofEarthSciencesandEnvironment,FacultyofScienceandTechnology,
UniversitiKebangsaanMalaysia,Bangi43600,Malaysia
2
DepartmentofMarineBiology,FacultyofEnvironmentalScienceandMarineBiology,
HadhramoutUniversity,MukallaP.O.Box50512,Yemen
3
MarineEcosystemResearchCenter(EKOMAR),FacultyofScienceandTechnology,
UniversitiKebangsaanMalaysia,Bangi43600,Malaysia
*Correspondence:zdcc@ukm.edu.my
Abstract:Benthicdiatomsareimportantcomponentsofmarineshallowwaterhabitatsthatmay
affectprimaryproduction,stabilizesediment,andproduceextracellularpolymericsubstances.Ben
thicdiatomsareusefulforestimatingthetrophicstatusofmarineecosystems.Inthisstudy,we
investigatedthediversityandabundanceofbenthicdiatomstointegratethesedatawiththephys
icochemicalcharacteristicsofshallowcoastalareasinNegeriSembilan.Atotalof39speciesofepi
pelicdiatomswereextractedbyremovingorganicmatterfromsedimentsthatweredominatedby
pennatediatoms.ResultsshowedthatDiploneiscrabro,Eunotogrammalaevis,Actinoptychussp.,and
Cocconeisplacentulaweretheimportantspeciesinthearea.Theabundancevariedbetween1.85×10
3
and3.43×10
3
cells/g,andthediversityindexfluctuatedbetween2.13and2.58.Theabundancehad
significantpositivecorrelationswithseawatersurfacetemperature(SST)buthadnegativecorrela
tionswithpHandNH
3
.ThediversityontheotherendwaspositivelycorrelatedwithSSTbutneg
ativelycorrelatedwithtotalsuspendedsolidsandSiO
2
.Principalcomponentanalysis(PCA)
demonstratedthattheabundanceofD
.
crabro,E.laevis,andActinoptychussp
.
canbeattributedto
highlevelsofNO
,NH
3
,andtotaldissolvedsolids.PCAalsoshowedpositivecorrelationsofC
.
placentulawithNO
3
andSiO
2
butnegativeoneswithPO
43
andpH.Theepipelicdiatomcommunity
showedhighdiversitywithhighvariationsthroughoutthestudyarea.
Keywords:benthicdiatom;species;pennate;variations;NegeriSembilan
1.Introduction
Coastalareasarehighlyproductiveregionsoftheocean,withhighcontributions
fromplanktonicandbenthicprimaryproduction.Althoughcoastalareasandestuaries
constitutelessthan10%oftheocean,theycontributeupto30%oftheocean’sprimary
production[1,2].Theyserveasimportantnurserygroundsforfishlarvae,habitatsfor
benthicorganisms,andfeedinggroundsformanymarineanimals[3].Coastalareasare
alsotheepicenterofhumansettlementandactivities,wherealmostthreequartersofthe
world’shumanpopulationresides.Consequently,anunprecedentedincreaseinnutrients
andotherenvironmentalissuesassociatedwithcoastaldevelopmenthasoccurred[4].
Problemssuchasnutrientoverenrichmentandeutrophicationofestuarineandcoastal
ecosystemsarecommonandaccelerating[4].
Diatoms(ClassBacillariophyceae)constitutethemainmassofmarinephytoplankton
andhaveaworldwidedistribution,withrecentestimatesrangingfrom12,000to30,000
species,contributingaround20%ofthetotalphytoplanktonprimaryproduction[5,6].
Citation:Sas,A.A.;Suriyanti,S.N.P.;
Das,S.K.;Cob,Z.C.Effectof
SeawaterandSurfaceSediment
VariablesonEpipelicDiatom
DiversityandAbundanceinthe
CoastalAreaofNegeriSembilan,
Malaysia.Water2022,14,3187.
https://doi.org/10.3390/w14193187
AcademicEditor:LiudmilaS.
Shirokova
Received:29August2022
Accepted:7October2022
Published:10October2022
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2022bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Water2022,14,31872of13
Diatomsinestuariesorshallowmarinesystemscanbeclassifiedintotwogroups,namely
thebenthicandpelagicgroups.Theformercanberesuspendedintothewatercolumnby
turbulence[7].Epipelicdiatomsoftendominatethemicrophytobenthos,whichisim
portantfortheprimaryproductivityofthebenthiczone[8].Theirdiversityandcomposi
tioncanbeinfluencedbywiderangingenvironmentalvariables[9,10],andtheirgrowth
formsshowadistinctdistributionamongintertidalhabitatscharacterizedbydifferent
typesofsediment[11,12].
Physicochemicalvariablessuchaswatertemperature,salinity,nutrients,pH,and
DOareamongthemostimportantfactorscontrollingphytoplanktongrowth,diversity,
andproductioninmarineenvironments[13,14].Epipelicdiatomsprovidemanybenefits
inthecoastalarea,suchasbeingasourceofprimaryproductionandthemainfoodsource
formicroherbivores.Theycanalsobeusedforbiologicalmonitoringbecausetheylieat
thebaseofaquaticfoodwebsandareamongthefirstrapidresponsetotheenvironmental
stressoforganisms[10,15].Despitetheirubiquityandfunctionalimportance,thespatial
andtemporalpatternsoftheabundanceanddiversityofepipelicdiatomgroupsare
poorlyunderstood.InMalaysia,thetaxonomiccompositionofintertidalepipelicdiatom
communitiesremainsrelativelyunknown.Conversely,thephytoplanktontaxonomyof
Malaysiahasbeenstudiedindetailovertheyears[16].Previousstudiesonphytoplankton
intheMalaccaStraitshavebeenconductedbyseveralauthors[16–25].Theyhaveshown
thatdiatomsarehighlydominantinplanktonandcontributeasmainactorsinthepelagic
realms.Diatomsmayalsobethedominantgroupinthebenthicarea,butthisaspecthas
rarelybeenreportedwithintheMalaccaStraitareas.Benthicdiatomsareindeedavery
importantcomponentofcoastalandestuarinesystemsandrepresentakeycomponentin
theprimaryproductionofthesecoastalhabitats.Theyareresponsibleforupto30%of
carbonfixationofthoseecosystems,sotheyaresuppliersoforganiccompoundstograzers
todepositfeeder’saquaticorganisms,includingmacro‐andmeiofauna.Accordingly,the
currentresearchaimstofillthegapsandcontributestotheknowledgeofepipelicdiatom
diversityandabundanceincoastalhabitats,aswellastoevaluatetheroleofphysico
chemicalvariablesinaffectingtheepipeliccommunitycompositionintheintertidalzone
ofthePortDicksonCoastofNegeriSembilan,MalaccaStraitsarea,Malaysia.
2.MaterialsandMethods
2.1.StudyArea
ThestudyareawaslocatedwithinthecoastalareaofPortDickson,inNegeriSembi
lan,Malaysia.Thecoastisabout54kmlongandfacestheStraitsofMalacca.Fieldsam
plingswereconductedinDecember2019,duringlowtideperiods.Surfacesedimentsam
pleswerecollectedfromsixsamplingstations(denotedasSt.1toSt.6)locatedwithinthe
intertidalzones,withfivereplicatesamplesateachstation.Thesefivesampleswerecol
lectedfromeachsiteandcompositedintoonehomogeneoussamplerepresentingthesta
tion(Figure1).TheepipelicdiatomsweresampledusingaPVCcoreof8.4cmdiameter,
andsamplingwasperformedonthesameday,withatimedifferenceoflessthanhalfan
hourbetweenstations.Thetop1cmlayerofwetandexposedsurfacesedimentsatthe
edgeoftheseawaterwascollected.Thesedimentscontainingepipelicdiatomswere
placedinablackpolythenebagandmaintainedindarknessinarefrigeratoruntilpro
cessinginthelaboratory[26].
Water2022,14,31873of13
Figure1.StudyarealocatedalongthePortDicksoncoast,Malaysia,stretchingfromSungaiSepang
inthenorthtoTanjungTuaninthesouth.Circlesindicatethesamplingstations.
2.2.EpipelicDiatomExtractionandCounting
Epipelicdiatomswerecollectedandextractedaccordingtothemethoddescribedby
[27,28].Around1gofwetweightofsurfacesedimentwasheatedat70°Cwith30%hy
drogenperoxide(H2O2)and10%HClinawaterbathuntilallorganicmatterandcar
bonatesweredigested.Thesedimentwassubsequentlywashedwithdeionizedwaterand
lefttosettletoremovetheacids.Around0.5mLofcleanedsamplewastransferredtoa
coverslipandairdriedonawarmhotplate.Threepreparedslidesfromeachsamplewere
countedfortheepipelicspecies,resultinginthreereplicateabundanceestimates.
Countingandidentificationwereconductedunderacompoundlightmicroscope
(LeicaDM1000LED,Wetzlar,Germany)withacounterchamber(SedgwickRafter,Grat
iculesOpticsLimited,Cambridge,UK).Identificationwasbasedonpreviousdescriptions
[26,29–31].EpipelicdiatomdiversityandrichnesswerecalculatedusingtheShannon–
Wienerindex[32]andMargalef’sindex[33].
2.3.EnvironmentalParameters
Surfaceseawatertemperature(SST),surfaceseawatersalinity(SSS),dissolvedoxy
gen(DO),electricalconductivity(EC),totaldissolvedsolids(TDS),andpHweremeas
uredinsituwithahandheldGPSAquameter(AP700,Bath,UK).Around3Lofseawater
sampleswerecollectedinaplasticcontainerfromtheintertidalzoneandimmediately
keptinacoolconditionbeforetransportingbacktothelaboratoryfornutrientanalysis.
Nitrate(NO3),nitrite(NO2),ammonia(NH3),silica(SiO2),andphosphate(PO43)were
analyzedusingaHACHDR2010spectrophotometer(HACHCompany,Loveland,CO,
USA).Totalsuspendedsolid(TSS)concentrationsweredeterminedbyapreviouslyde
scribedmethod[34].Forchlorophyllaanalysis,theseawatersampleswerepassed
throughaGF/Ffilterpaper(WhatmanGF/FF44700,Maidstone,UK),whichwasthen
coveredwithaluminumfoilandplacedinadeepfreezer(HaierDW40L262,Qingdao,
Shandong,China)indarknessat−20°Cuntilextractionwith10mLof90%acetone[35].
Chlorophyllawasdeterminedwithaspectrophotometer(ShimadzuUV/VISmini1240,
Kyoto,Japan).ResultswerecomparedwiththeMalaysianMarineWaterQualityStand
ards(MMWQS)publishedbytheDepartmentofEnvironment,Malaysia[36].Sediment
Water2022,14,31874of13
organicmatter(OM)wasestimatedbythepercentagelossonignitiontechniqueasde
scribedby[37].Ahalfgramofwetsedimentwasovendriedfor~24hat90°C(Memmert
universalovenUN30,Büchenbach,BadenWürttemberg,Germany)toaconstantweight.
Theremainingdrysedimentwasthencombustedinamufflefurnace(Daihanscientific
co.ltd.,Gangwon,SouthKorea))at550°Cfor4hforcompleteignitionoftheOM.After
ignition,thesedimentsampleswerecooledinadesiccator,andtheweightloss(%dry
weight)wasdetermined.
2.4.DataAnalysis
Statisticaldataanalysis(Pearsoncorrelationcoefficient)wasperformedusingSPSS
20.0(IBM,Armonk,NY,USA).Tocharacterizephysicochemicalvariablesandtheirinflu
enceonepipelicdiatomsinthestudystations,principalcomponentanalysis(PCA)was
performedusingadatasetof14seawaterparametersandepipelicdiatomabundancedata
inthestudyarea.
3.Results
3.1.EnvironmentalConditions
Thespatialvariationsinphysicochemicalvariablesalongthecoastalareaaresum
marizedinFigures2and3.Ingeneral,temperaturevariationsinthecoastalwatersofthe
PortDicksoncoastaresmall,rangingfrom(28.73±0.26)°CinSt.3to(31.19±0.28)°Cin
St.5.However,thevariationsinSSSlevelsarehigh,rangingfrom(20.20±0.26)pptinSt.3
to(27.33±0.35)pptinSt.5.ThepHrangedfrom7.72±0.30inSt.1to8.34±0.38inSt.2,and
theDOrangedfrom(6.72±0.33)mg/LinSt.5to(7.74±0.30)mg/LinSt.1.TheECwas
relativelyconsistent,rangingfrom(26,220.67±27.08)μS/cminSt.1to(30,853.75±18.6)
μS/cminSt.6.TheTDSalsoshowedhighvariations,rangingfrom(18,532.67±13.7)mg/L
inSt.6to(19,420.33±15.31)mg/LinSt.4,whereastheTSSfluctuatedbetween(45.4±0.83)
mg/LinSt.4and(77.91±0.95)mg/LinSt.1.ThesedimentOMvariedbetween21.00±0.8%
and25.85±0.49%,withmaximumvaluesinSt.6andminimuminSt.2(Figure2).
0
5
10
15
20
25
30
26
27
28
29
30
31
32
St.1 St.2 St.3 St.4 St.5 St.6
SST (°C)
SST SSS
Stations
SSS (ppt)
0
2
4
6
8
10
0
2
4
6
8
St.1 St.2 St.3 St.4 St.5 St.6
PH
pH DO
Stations
DO (mg/L)
Water2022,14,31875of13
Figure2.Variationsinseawaterparameters(mean±SD)alongthestudyarea:seawatersurface
temperature(SST)andsalinity(SSS);pHanddissolvedoxygen(DO);electricalconductivity(EC)
andtotaldissolvesolid(TDS);andtotalsuspendedsediment(TSS)andorganicmatter(OM).
Amongthenutrients,NO
3
rangedfrom(0.018±0.0014)mg/LinSt.5to(0.033±
0.0007)mg/LinSt.3.TheNO
2
concentrationswererelativelylower,rangingfrom(0.002
±0.0006and±0.0012)mg/LinSt.5andSt.6,to(0.01±0.007)mg/LinSt.2.NH
3
rangedfrom
(0.38±0.021)mg/LinSt.6to(0.53±0.014)mg/LinSt.3,whichwasmuchhigherthanthe
nitrate+nitritelevels.PO
43
concentrationswerenotaspronouncedastheammonia,with
thehighestconcentrationrecordedinSt.5(0.21±0.011)mg/LandthelowestinSt.2(0.04
±0.002)mg/L.SiO
2
rangedfrom(0.08±0.011)mg/Lto(0.11±0.014and±0.012)mg/L,with
thelowestconcentrationsinSt.
1
andhighestinSt.2and
St.5.Therangeofconcentration
forChlainthesixstationswasfrom0.10±0.028mg/Lto0.13±0.021mg/L,withthe
highestconcentrationrecordedatSt.6andthelowestatSt.5(Figure3).
Figure3.Variationsinseawaternutrients(mean±SD)alongthePortDicksoncoasts,Malaysia:
nitrate(NO
3
)andnitrite(NO
2
);ammonia(NH
3
)andphosphate(PO
43
);andchlorophylla(Chla)
andsilica(SiO
2
).

18,000.00
18,500.00
19,000.00
19,500.00
20,000.00
22,000.00
24,000.00
26,000.00
28,000.00
30,000.00
32,000.00
St.1 St.2 St.3 St.4 St.5 St.6
EC TDS
Stations
EC ( μS/cm)
TDS (mg/L)
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.000
0.010
0.020
0.030
0.040
St.1 St.2 St.3 St.4 St.5 St.6
NO₃⁻ NO₂⁻
NO₃⁻ (mg/L)
NO₂⁻ (mg/L)
Stations
Water2022,14,31876of13
3.2.DynamicsofEpipelicDiatoms
Atotalof39epipelicdiatomspecieswerecollectedandidentified,andthepennate
diatoms(78%atSt.5)weremoredominantthanthecentricones(47%atSt.1)(Figure4a).
Theoveralldiatomabundancerangedfrom(1.85×103±0.09cells/g)inSt.3to(3.43×103±
0.18cells/g)inSt.6(Figure4b).TheShannon–Wienerdiversityindex(H’)wasrelatively
high,rangingfrom2.13inSt.1to2.58inSt.4,whereastheMargalef’srichnessindexranged
from1.32inSt.2to2.08inSt.5.
Figure4.Epipelicdiatompopulationparametersalongthestudyarea.(a):Percentagecontribution
ofpennatediatomandcentricdiatom;(b):Abundance,diversity(Shannon–Wienerindex)andrich
ness(Margalef’sindex).
Thepercentagecompositionofdiatomspeciesrecordedateachstationissumma
rizedinTable1.CocconeisplacentulaandEolimnaminimawerethemostcommonspecies,
with67%occurrence.Notably,eachstationwasdominatedbydifferentspecies,whereC.
placentulawasdominantinSt.1(41%),DiploneiscrabroinSt.2(24%),Eunotogrammalaevis
inSt.3(34%),Actinoptychussp.inSt.4(15%),Amphorasp.inSt.5(28%),andCoscinodiscus
sp.inSt.6(15%)(Table1andFigure5).Theseresultsindicatedhighspatialvariationsin
epipelicdistributionalongthestations.

Water2022,14,31877of13
Table1.Listofepipelicdiatomsspeciespredominance(%)atthesamplingstationsalongPortDick
soncoast,Malaysia.Occurrence(%Pr):0–20(sporadically,S);21–40(rarely,R);41–60(commonly,
C);61–80(frequently,F);and81–100(highlyfrequently,H).
St.1St.2St.3St.4St.5St.6%PrClass
A
ctinoptychussp.
9

3
15 50
C
A
.undulates
(J.W.Bailey)Ralfs,1861.

3

3
5
50
C
A
mphoraarenariaDonkin,1858.13
8

4
50
C
A
mphorasp.
2

5
2850
C
A
uliscuselegansAuliscuselegansvar.californica
(GrunowinSchmidtetal.)Rattray,1888.
4
5

8
 50
C
Caloneissp.
8
3
33
R
Campylodiscussp.
7
3

6
50
C
CocconeisplacentulaEhrenberg,1838.4114
5
1
67
F
C.radiatusEhrenberg,1840. 1217
X
C.gigasvar.praetexta(Janisch)Hustedt,1930.
7
9
11 50
C
Coscinodiscussp.
6
1533
R
CyclotellastriataGrunowinVanHeurck,1882.
6
8
1350
C
DiploneiscrabroEhrenberg,1854
.
24
5

2
50
C
Diploneisobliqua(Brun)Hustedt,1937
.
1117
X
EunotogrammalaevisGrunow,1883. 34
5
6
50
C
Eolimnaminima(Grunow)LangeBertalot&
W.Schiller,1997.
5

6
8

7
67
F
Gyrosigmaeximium(Thwaites)Boyer,1927.
3

6
33
R
Lyrellaclavata
(
Gregory)D.G.Mann,1990.10 17
X
Lyrellasp.
5
2
 33
R
M
astogloiaangulataLewis,1861.
5

6

4
50
C
M
elosirasp.
3

3
1150
C
Naviculasp.  4 17
X
N.longa(Gregory)RalfsexPritchard,1861.
9
 17
X
N
.peregrine 4 4 33
R
Nitzschia
sigma
(Hantzsch)Grunow,1878.
7
 17
X
Odontellasp. 51033
R
O.mobiliensis(J.W.Bailey)Grunow,1884. 3 17
X
Paraliasulcate(Ehrenberg)Cleve,1873.
5

1
33
R
Petroneisgranulate(Bailey)D.G.Mann,1990.
4

8
1
50
C
Pinnulariasp. 717
X
P.aestuariiCleve,1895.317
X
Pleurosigmasp.10
4
33
R
P.naviculaceumBrébisson,1854
4

4
17
X
seudonitzschiasp.
2
17
X
Surirellasp. 7 17
X
S.fastuosa(Ehrenberg)Ehrenberg,1843. 6 17
X
S.spiralisKützing,1844
2
17
X
Thalassiosirasp.
3

8
8
50
C
Triceratiumsp. 1317
X
Water2022,14,31878of13
Figure5.Scanningelectronmicrographsofthemostcommonspeciesindifferentstations:(A)Dip
loneiscrabro,(B)Cocconeisplacentula,(C)Actinoptychussp.,
(D)Eunotogrammalaevis,(E)Amphorasp.,
and
(F)Coscinodiscussp.
Thecorrelationsbetweentheepipelicdiatom’sabundanceanddiversityagainstvar
iousenvironmentalparametersarepresentedinTable2.Significantpositivecorrelations
existedbetweenabundanceofepipelicdiatomtaxaagainstSSTandTSS(p<0.05),and
significantnegativecorrelationsexistedamongtheabundanceoftheepipelicdiatomcom
munityandpHandNH
3
(p<0.05).Meanwhile,theepipelicdiversityshowedasignificant
negativecorrelationwithTSSandSiO
2
andasignificantpositivecorrelationwithSST(p<
0.05).FurtheranalysisusingPCAshowedeigenvaluesof6.20and2.80,respectively,
whichexplained79.83%ofthevariance(Figure6).TheabundanceofD.crabro,Actinop
tychussp.,andE.laevisinSt.2,St.4,andSt.3werepositivelycorrelatedwithNO
2
,DO,
NH
3
,andTDSandnegativelycorrelatedwithOMandSSS.Amphorasp.inSt.5wasposi
tivelycorrelatedwithSST,EC,Chla,PO
43
,andpHbutnegativelycorrelatedwithSiO
2
,
NO
3
,andTSS.Coscinodiscussp
.
inSt.6waspositivelycorrelatedwithSSSandOM.
Table2.Pearson’scorrelationcoefficient(randpvalue)ofepipelicdiatomabundance(cells/g)and
diversity(H’)againstsignificantphysicochemicalvariablesatPortDicksoncoast.Asterisk(*)indi
catessignificanceat0.05level(2tailed).Parameterswithnosignificantcorrelationswereexcluded.
Physicochemical
Variables
AbundancesofEpipelicDiatom
Communities(cells/g)
DiversityofEpipelicDiatom
Communities(H’)
rpValuerpValue
SST(°C)0.630.03*0.580.04*
pH−0.580.04*0.430.16
TSS(mg/L)0.530.08*−0.85<0.01*
NH₃(mg/L)−0.670.02*0.070.83
SiO2(mg/L)0.360.25−0.630.03*
Chla(mg/L)0.74<0.01*−0.110.73
Water2022,14,31879of13
Figure6.Principalcomponentanalysisordinationsofthedominantepipelicdiatomspeciesand
physiochemicalvariablesmeasuredatsixstationsalongthePortDicksoncoasts,Malaysia.
4.Discussion
4.1.EnvironmentalConditions
Physicochemicalvariablesweremeasuredtodeterminethecoastalwaterqualitypa
rametersthatmayaffecttheepipelicdiatomdistributioninthedifferentstudystations.
TheSSTvalueswererelativelyhighandstable,withameanvalueof30.36°C±0.89°C,
whichisthestandardfortropicalcoastalwaters[38].Increasingtemperaturecanleadto
changesinthedistributionpatternsofbenthicdiatoms[39].Thisphenomenonwasfound
inthecurrentstudy,wherethehighestnumberofepipelicspecieswasrecordedatSt.5
withthehighesttemperatures,whereastheoppositewasatSt.3.Conversely,theSSSlev
elsshowedawiderange,whichwasalsonormalfornearshorecoastalwaters.SSSgener
allydidnotshowanyeffectonepipelicabundanceasitwasnotamongthecriticalparam
etersdeterminingthedistributionofabundanceofepipelicspecies[40].
pHisanimportantfactoraffectingtheproliferationofaquaticorganisms,andin
creasingordecreasingpHmayaffectphytoplanktongrowth[41].ThepHvaluesrecorded
inthesestudiesrangedfromneutraltoalkaline(mean=8.07±0.21),whichwerewithin
theMMWQS[36].TheDOvalueswererelativelyhigh,withameanvalueof6.95±0.74
mg/L,similartoapreviousstudy[42].VariabilityintheDOlevelsnearthecoastlinecan
beattributedtodifferentriveroutflowsalongthestudyarea.
ThevalueofTSSinthisstudycanbecategorizedasunderClassIIIoftheMMWQS
[36].St.1hadhigherTSSthantheotherstations,mostlikelyowingtoitsproximitytothe
SepangRiver.Tidalfluctuations,winddirections,windspeeds,andriveroutflowswere
amongthemajorfactorsregulatingthespatialandtemporalvariationsofTSS[43,44].
Othercoastalfeaturessuchasnearbymangrovesandcoastalvegetations,aswellasthe
amountofOMincoastalwaters,mayalsoaffecttheTSS.ThehighestOMwasrecorded
atSt.6followedbySt.1,whereSt.6waslocatedinfrontofthemangroves,whereasSt.1
waslocatedclosetotheestuary.Studieshaveshownthatmangrovesoilsmaysupply
Water2022,14,318710of13
significantamountsofOMwithhighpercentagesoforganiccarbontonearbycoastalwa
ters[45,46].
Nutrientconcentrationssignificantlyimpactphytoplanktonoccurrenceandabun
danceastheydrawinsignificantamountsofnutrientsfromtheecosystem[41,47].How
ever,thepresentstudyshowedlowvariabilitiesintheconcentrationofnutrientssuchas
NO3,NO2,NH3,PO43,andSiO2throughoutthestations.Nevertheless,highammonium
concentrationswererecorded,asalsoreportedby[48],indicatingahighlevelofpollution
inthestudyarea.Furthermore,Ref.[42]reportedahighlevelofpollutioninthePort
Dicksoncoasts,andtheseareashaveevenbeensuggestedtobeunhealthyforhumanac
tivities.
SiO2andChlaalsosignificantlyaffectedtheabundanceofepipelicdiatomassem
blagesanddiversity.TheSiO2concentrationswerelowatSt.1,St.3,St.4,andSt.6,butthey
wererelativelyhigheratSt.2andSt.5.Conversely,Chlawasrelativelysimilarbetween
stations,rangingfrom0.10mg/Lto0.13mg/L.Chlorophyllisanindicatorofbiomassvar
iabilityandphytoplanktongrowth,anditsconcentrationmaybegreatlyinfluencedby
nutrients[7,49].
4.2.DynamicsofEpipelicDiatoms
Theabundanceofepipelicdiatomrecordedthroughoutthestationswasconsidered
asrelativelylow,whichcanprobablybeattributedtothedifferentspatialvariables,the
highlevelofpollution,andthepoorsedimentcondition.Thisfindingmayhaveastrong
impactondiatomsgrowingonthesedimentsurface[50].Eachdifferentgroupofnutrient
concentrationswascharacterizedbyadifferentbenthicdiatomcomposition.Therelative
abundancesofbenthicdiatomformschangedinresponsetominorinputsofnutrients
[51].TheinputofOMalsocausedtheadditionofsuspendedsolidsandthedeoxygenation
ofwater.Nevertheless,pennateandcentricdiatomswerewellpresentedinallstations.
Thecompositionofcentricdiatomswassignificantlylower,whichwasnormalbecause
mostofthemwereplanktonthatadaptedtomoveupwardstowardthesedimentsurface
undermoderatelightintensitiesandmigrateddeeperintothesedimentindarknessand
underveryhighlightintensities[52].Indeed,thehigherratioofpennatetocentricforms
iscommoninthecoastalbenthicdiatomscommunityandhasbeenpreviouslyreported
elsewhere[53].
Theabundanceanddiversityofepipelicdiatomsshoweddifferentcorrelationswith
variousphysicochemicalfactors.Increaseinseawatertemperatureusuallyledtohigher
metabolicactivity,therebyincreasingthebenthicalgalbiomass[54,55].Furthermore,OM
isimportantincontrollingdiatomcommunitiesandtheirnutritivevalues[26,56].Previ
ousstudieshaveindicatedthatvariationsinOMcontentplayanimportantroleinthe
diversityofbenthicdiatomcommunities,whereincreasingdiatomdiversitynormallyco
incideswithhigherOMcontentinthesediment[57].
Silicawasfoundtobenegativelycorrelatedwithepipelicdiversity,whichmaybe
duetotheintensiveuptakebysomegrouporspecies.Previousstudieshaveshownthat
thesilicarequirementofepipelicdiatomnegativelyaffectsthesilicabalanceinthemarine
ecosystem[58].Nitrogenoussubstancesareimportantnutrientsforprimaryproductivity.
However,Ref.[59]reportedthatdiatomsprefernitratebutdonotrespondwelltoammo
nium.Nevertheless,otherstudieshaveshownthatammoniumisamorereadilyassimi
latedsourceofnitrogencompoundsinmarineepipelicdiatoms,anditisthemostim
portantfactordeterminingthesourcesoftheepipeliccommunitystructure[40,60].This
phenomenonmayresultinashiftintheircommunitycomposition,whichexplainsthe
negativecorrelationofammoniawiththeabundanceofepipelicdiatom.
Withinthestudyarea,C.placentulawasoneofthemostabundantandextensively
distributedspecies.ThisfindingagreedwithotherstudiesthatalsoreportedCocconeissp.
asthedominantbenthicspeciesassociatedwithepiphyticorepipelichabitats[9,61].Coc
coneisspp.alsocontributedasthemostabundantbenthicmicroalgae(at58%)insediments
collectedfromMukaHeadJetty,Penang,Malaysia[20].
Water2022,14,318711of13
PCAdemonstratedthatthepositivecorrelationforD.crabro,E.laevis,andActinop
tychussp.instationsSt.2,St.3,andSt.4canbeattributedtothehighconcentrationsofNO2
,NH3,andTDSattherespectivestations.PCAalsoshowedpositivecorrelationsofC.
placentulawithNO3andSiO2butnegativecorrelationswithPO43andpH.Previousstud
ieshavereportedthatnutrientconcentrationandpHplayimportantrolesinthemorpho
logicalstructureandporeholesizedistributionofC.placentula [62,63].Theratioofsilica
compositionwas30.71%inCoscinodiscusspp.[64],whichmayexplainthenegativecorre
lationbetweenCoscinodiscusspp.andSiO2atSt.6(Figure6).
5.Conclusions
Highspatialvariationsinepipelicdistributionwereobservedalongthestudysta
tions.SST,TSS,TDS,NO2,NH3,OM,andSiO2,wereconsideredasthemostinfluential
physicochemicalvariablesonepipelicdiatomdiversity,abundance,anddistributionin
thestudyarea.Coconeisplacentula,D.crabro,E.laevis,Actinoptychussp.,Amphorasp.,and
Coscinodiscussp.werethemostabundanttaxainthestudyarea.Theyshowedstrongcor
relationswithSST,TSS,SiO2,OM,NH,NO₂⁻,pH,Chla,andTDS.Thisstudywasthe
firsttodescribetheepipelicdiatomdiversityanddistributioninMalaysiancoastalwaters,
whichmayserveasabaselineformorestudiesonepipelicdiatomdynamicsinthefuture.
AuthorContributions:Conceptualization,A.A.S.,S.N.P.S.,Z.C.C.;methodology,A.A.S.,S.N.P.S.,
Z.C.C.;investigation,A.A.S.,S.N.P.S.,Z.C.C.,S.K.D.;writing—originaldraftpreparation,A.A.S.,
S.N.P.S.,Z.C.C.;writing—reviewandediting,A.A.S.,S.N.P.S.,Z.C.C.andS.K.D.;supervision,
Z.C.C.,S.N.P.S.&S.K.D.;fundingacquisition,Z.C.C.Allauthorshavereadandagreedtothepub
lishedversionofthemanuscript.
Funding:ThisworkwasfundedbyUKMresearchfundthroughGUP2021049toZ.C.C.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
Acknowledgments:WesincerelythankAmirandZuhaimifromtheMarineScienceProgram,Uni
versitiKebangsaanMalaysia(UKM)fortheirdedicatedeffortsinsamplecollectionandanalysis.
Wealsothanktheanonymousreviewersfortheirveryusefulcomments.
ConflictsofInterest:Theauthorsherebydeclarenoconflictofinterest.
References
1. Ducklow,H.W.;Steinberg,D.K.;Buesseler,K.O.UpperoceancarbonexportandtheBiologicalPump.Oceanography2001,14,
50–58.
2. MullerKarger,F.E.;Varela,R.;Thunell,R.;Luerssen,R.;Hu,C.;Walsh,J.J.Theimportanceofcontinentalmarginsintheglobal
carboncycle.Geophys.Res.Lett.2005,32,10–13.
3. Kasai,A.;Horie,H.;Sakamoto,W.SelectionoffoodsourcesbyRuditapesphilippinarumandMactraveneriformis(Bivalva:Mol
lusca)determinedfromstableisotopeanalysis.FisheriesSci.2004,70,11–20.
4. Sanger,D.;Blair,A.;Didonato,G.T.;Washburn,S.;Jones,G.;Riekerk,E.;Wirth,J.;Stewart,D.;White,L.;Vandiver,A.F.Impacts
ofcoastaldevelopmentontheecologyoftidalcreekecosystemsoftheUSSoutheastincludingconsequencestohumans.Estu
ariesCoasts2015,38,49–66.
5. Vincent,F.;Bowler,C.Diatomsareselectivesegregatorsinglobaloceanplanktoniccommunities.Msystems2020,5,e0044419.
6. Park,J.S.;Lee,K.W.;Jung,S.W.;Lee,T.K.;Joo,H.M.WinterdistributionofdiatomassemblagesalongthecoastlineofKoreain
2020.ActaOceanol.Sin.2022,6,1–10.
7. Kasim,M.;Mukai,H.ContributionofBenthicandEpiphyticDiatomstoClamandOysterProductionintheAkkeshikoEstuary.
J.Oceanogr.2006,62,267–281.
8. Thornton,D.C.O.;Dong,L.F.;Underwood,G.J.C.;Nedwell,D.B.Factorsaffectingmicrophytobenthicbiomass,speciescompo
sitionandproductionintheColneestuary(UK).Aquat.Microb.Ecol.2002,27,285–300.
9. Facca,C.;Sfriso,A.Epipelicdiatomspatialandtemporaldistributionandrelationshipwiththemainenvironmentalparameters
incoastalwaters.Estuar.Coast.ShelfSci.2007,75,135–149.
10. Cochero,J.;Licursi,M.;Gómez,N.Changesintheepipelicdiatomassemblageinnutrientrichstreamsowingtothevariations
ofsimultaneousstressors.Limnologica2015,51,15–23.
Water2022,14,318712of13
11. Méléder,V.;Rincé,Y.;Barillé,L.;Gaudin,P.;Rosa,P.Spatiotemporalchangesinmicrophytobenthosassemblagesinamacro
tidalflat(BourgneufBay,France).J.Phycol.2007,43,1177–1190.
12. Ribeiro,L.;Brotas,V.;Rincé,Y.;Jesus,B.Structureanddiversityofintertidalbenthicdiatomassemblagesincontrastingshores:
AcasestudyfromtheTagusestuary.J.Phycol.2013,49,258–270.
13. Jabbari,M.;Salahi,M.;Ghorbani,R.Spatiotemporalinfluenceofphysicochemicalparametersonphytoplanktonassemblage
incoastalbrackishlagoon:GomishanLagoon,CaspianSea,Iran.Biodiversitas2018,19,2020–2027.
14. Vajravelu,M.;Martin,Y.;Ayyappan,S.;Mayakrishnan,M.Seasonalinfluenceofphysicochemicalparametersonphytoplank
tondiversity,communitystructureandabundanceatParangipettaicoastalwaters,BayofBengal,southeastcoastofIndia.
Oceanologia2018,60,114–127.
15. Zimba,P.V.;Hill,E.M.;Withers,K.Benthicmicroalgaeserveasthemajorfoodresourceforporcelaincrabs(Petrolisthesspp.)in
oysterreefs:Digestivetrackcontentandpigmentevidence.J.Exp.Mar.Biol.Ecol.2016,483,53–58.
16. McMinn,A.;Sellah,S.;Llah,W.A.W.;Mohammad,M.;Merican,F.M.S.;Omar,W.W.;Samad,F.;Cheah,W.;Idris,I.;Sim,Y.K.;
etal.QuantumyieldofthemarinebenthicmicrofloraofnearshorecoastalPenang,Malaysia.Mar.Freshw.Res.2005,7,1047–
1053.
17. Nursuhayati,A.S.;Yusoff,F.M.;Shariff,M.SpatialandtemporaldistributionofphytoplanktoninPerakestuary,Malaysia,
duringmonsoonseason.J.Fish.Aquat.Sci.2013,8,480–493.
18. Salleh,A.;Wakid,S.A.;Bahnan,I.S.DiversityofphytoplanktoncollectedduringthescientificexpeditiontoPulauPerak,Pulau
JarakandtheSembilanGroupofIslands.Malays.J.Sci.2008,27,33–45.
19. Ke,Z.;Tan,Y.;Huang,L.SpatialvariationofphytoplanktoncommunityfromMalaccaStraittosouthernSouthChinaSeain
Mayof2011.ActaEcol.Sin.2016,36,154–159.
20. Siswanto,E.;Tanaka,K.PhytoplanktonbiomassdynamicsintheStraitofMalaccawithintheperiodoftheSeaWiFSfullmis
sion:Seasonalcycles,interannualvariationsanddecadalscaletrends.RemoteSens.2012,6,2718–2742.
21. Salleh,A.;Wakid,S.A.;Bahnan,I.S.;Rahman,K.A.A.;Nasrodin,S.DiversityofphytoplanktonatLangkawiIsland,Malaysia.
Malays.J.Sci.2005,24,43–55.
22. Salleh,A.;Ruslan,N.D.PhytoplanktoncompositionanddistributionintheCoastalAreaofBachokKelantanMalays.J.Sci.2010,
29,19–29.
23. Lim,H.C.;Teng,S.T.;Leaw,C.P.;Wataki,M.;Lim,P.PhytoplanktonassemblageoftheMerambongShoal,TebrauStraitswith
noteonpotentiallyharmfulspecies.MalayNat.J.2014,66,198–221.
24. Joon,H.L.;Choon,W.L.ShorttimescaleVariationofPhytoplanktonAbundanceandDiversityatRedangIsland.Malays.J.Sci.
2015,34,2–7.
25. Lim,J.H.;Lee,C.W.Effectsofeutrophicationondiatomabundance,biovolumeanddiversityintropicalcoastalwaters.Environ.
Monit.Assess.2017,189,1–10.
26. Desianti,N.;Potapova,M.;Enache,M.;Belton,T.J.;Velinsk,D.J.;Thomas,R.;Mead,J.Sedimentdiatomsasenvironmental
indicatorsinNewJerseycoastallagoons.J.Coast.Res.2017,78,127–140.
27. Sha,L.;Jiang,H.;Knudsen,K.L.DiatomevidenceofclimaticchangeinHolsteinsborgDyb,westofGreenland,duringthelast
1200years.Holocene2012,22,347–358.
28. Benito,X.;Trobajo,R.;Ibáñez,C.BenthicdiatomsinaMediterraneandelta:Ecologicalindicatorsandaconductivitytransfer
functionforpaleoenvironmentalstudies.J.Paleolimnol.2015,2,171–188.
29. Kobayasi,H.;Idei,M.;Mayama,S.;Nagumo,T.;Osada,K.;Kobayasi’s,H.AtlasofJapaneseDiatomsbasedonElectronMicroscopy,
1stded.;UchidaRokakuhoPublishingCo.Ltd.:Tokyo,Japan,2006;p.531.
30. Giffen,M.H.ContributionstothediatomfloraofSouthAfricaIV.NovaHedwig.Beih.1963,31,259–312.
31. Sullivan,M.J.;Daiber,F.C.Light,nitrogen,andphosphoruslimitationofedaphicalgaeinaDelawaresaltmarsh.J.Exp.Mar.
Biol.Ecol.1975,18,79–88.
32. Washington,H.G.Diversity,bioticandsimilarityindices:Areviewwithspecialrelevancetoaquaticecosystems.WaterRes.
1984,18,653–694.
33. Margalef,R.Temporalsuccessionandspatialheterogeneityinphytoplankton.InPerspectivesinMarineBiology;Buzzati
Traverso,A.A.,Ed.;UniversityofCaliforniaPress:Oakland,CA,USA,1958;pp.323–349.
34. Lim,J.H.;Wong,Y.Y.;Lee,C.W.;Bong,C.W.;Kudo,I.Longtermcomparisonofdissolvednitrogenspeciesintropicalestuarine
andcoastalwatersystems.Estuar.Coast.ShelfSci.2019,222,103–111.
35. Mantoura,R.F.C.;Llewellyn,C.A.Therapiddeterminationofalgalchlorophyllandcarotenoidpigmentsandtheirbreakdown
productsinnaturalwatersbyreversephasehighperformanceliquidchromatography.Anal.Chim.Acta1983,151,297–314.
36. D.O.E.(DepartmentofEnvironmentMalaysia).MalaysianMarineWaterQualityStandardsReport2017;DOE:Putrajaya,Malaysia,
2017;pp.1–135.
37. Heiri,O.;Lotter,A.F.;Lemcke,G.Lossonignitionasamethodforestimatingorganicandcarbonatecontentinsediments:
Reproducibilityandcomparabilityofresults.J.Paleolimnol.2000,25,101–110.
38. Lee,C.W.;Bong,C.W.Bacterialabundanceandproductionandtheirrelationtoprimaryproductionintropicalcoastalwaters
ofPeninsularMalaysia.Mar.Freshw.Res.2008,59,10–21.
39. Yun,M.S.;Lee,S.H.;Chung,I.K.Photosyntheticactivityofbenthicdiatomsinresponsetodifferenttemperatures.J.Appl.Phycol.
2010,22,559–562.
Water2022,14,318713of13
40. Dalu,T.;Richoux,N.B.;Froneman,P.W.Distributionofbenthicdiatomcommunitiesinapermanentlyopentemperateestuary
inrelationtophysicochemicalvariables.S.Afr.J.Bot.2016,107,31–38.
41. Bagazi,Z.A.;Baakdah,M.A.;Affan,M.A.SeasonaldynamicsanddiversityofphytoplanktoninSharmYanbuLagoon,RedSea,
SaudiArabia.J.KingAbdulazizUniv.Mar.Sci.2018,28,9–26 .
42. Hamzah,A.;Kipli,S.H.;Ismail,S.R.;Una,R.;Sarmani,S.MicrobiologicalstudyincoastalwaterofPortDickson,Malaysia.Sains
Malays.2011,40,93–99.
43. Park,G.S.TheroleanddistributionoftotalsuspendedsolidsinthemacrotidalcoastalwatersofKorea.Environ.Monit.Assess.
2007,135,153–162.
44. Liu,Q.;Liang,Y.;Cai,W.J.;Wang,K.;Wang,J.;Yin,K.ChangingriverineorganicC:NratiosalongthePearlRiver:Implications
forestuarineandcoastalcarboncycles.Sci.TotalEnviron.2020,709,136052.
45. Chaikaew,P.;Chavanic,S.SpatialVariabilityandRelationshipofMangroveSoilOrganicMattertoOrganicCarbon.Appl.
Environ.SoilSci.2017,20,1–9.
46. Donato,D.C.;Kauffman,J.B.;Murdiyarso,D.;Kurnianto,S.;Stidham,M.;Kanninen,M.Mangrovesamongthemostcarbon
richforestsinthetropics.Nat.Geosci.2011,4,293–297.
47. Litchman,E.ResourceCompetitionandTheEcologicalSuccessofPhytoplankton.InEvolutionofPrimaryProducersintheSea,
1sted.;Falkowski,P.G.,Knoll,A.H.,Eds.;ElsevierSciencePublishingCo.Inc.:SanDiego,CA,USA,2007;pp.351–375.
48. Praveena,S.M.;Aris,A.Z.AbaselinestudyoftropicalcoastalwaterqualityinPortDickson,StraitofMalacca,Malaysia.Mar.
Pollut.Bull.2013,67,196–199.
49. Shaari,F.;Mustapha,M.A.FactorsinfluencingthedistributionofChlaalongcoastalwatersofeastPeninsularMalaysia.Sains
Malays.2017,46,1191–1200.
50. Leleyter,L.;Baraud,F.;Gil,O.;Gouali,S.;Lemoine,M.;Orvain,F.AluminiumImpactonTheGrowthofBenthicDiatom.In
MarineSediments:Formation,DistributionandEnvironmentalImpacts,1sted.;Williams,W.,Ed.;Novinka:NewYork,NY,USA,
2016;pp.1–19.
51. Agatz,M.;Asmus,R.M.;Deventer,B.Structuralchangesinthebenthicdiatomcommunityalongaeutrophicationgradienton
atidalflat.Helgol.Mar.Res.1999,53,92–101.
52. Bilcke,G.;VanCraenenbroeck,L.;Castagna,A.;OsunaCruz,C.M.;Vandepoele,K.;Sabbe,K.;DeVeylder,L.;Vyverman,W.
LightintensityandspectralcompositiondrivereproductivesuccessinthemarinebenthicdiatomSeminavisrobusta.Sci.Rep.
2021,1,1–15.
53. Balasubramaniam,J.;Prasath,D.;Jayaraj,K.A.Microphytobenthicbiomass,speciescompositionandenvironmentalgradients
inthemangroveintertidalregionoftheAndamanArchipelago,India.Environ.Monit.Assess.2017,189,1–9.
54. Dodds,W.K.;Smith,V.H.;Lohman,K.Nitrogenandphosphorusrelationshipstobenthicalgalbiomassintemperatestreams.
Can.J.FishAquat.Sci.2002,59,865–874.
55. Cartaxana,P.;Vieira,S.;Ribeiro,L.;Rocha,R.J.;Cruz,S.;Calado,R.;daSilva,J.M.EffectsofelevatedtemperatureandCO2on
intertidalmicrophytobenthos.BMCEcol.2015,15,1–10.
56. Admiraal,W.;Peletier,H.Influenceoforganiccompoundsandlightlimitationonthegrowthrateofestuarinebenthicdiatoms.
Brit.Phycol.J.1979,14,197–206.
57. Virta,L.;Gammal,J.;Järnström,M.;Bernard,G.;Soininen,J.;Norkko,J.;Norkko,A.Thediversityofbenthicdiatomsaffects
ecosystemproductivityinheterogeneouscoastalenvironments.Ecology2019,100,1–11.
58. Jézéquel,V.M.;Hildebrand,M.;Brzezinski,M.A.Siliconmetabolismindiatoms:Implicationsforgrowth.J.Phycol.2000,36,
821–840.
59. Domingues,R.B.;Barbosa,A.B.;Sommer,U.;Galvão,H.M.Ammonium,nitrateandphytoplanktoninteractionsinafreshwater
tidalestuarinezone:Potentialeffectsofculturaleutrophication.Aquat.Sci.2011,73,331–343.
60. Underwood,G.;Phillips,J.;Saunders,K.Distributionofestuarinebenthicdiatomspeciesalongsalinityandnutrientgradients.
Eur.JPhycol.1998,33,173–183.
61. Round,F.E.;Round,R.M.;Mann,D.G.TheDiatoms,BiologyandMorphologyoftheGenera,1sted.;CambridgeUniversityPress:
NewYork,NY,USA,1990;pp.1–744.
62. Vrieling,E.G.;Poort,L.;Beelen,T.P.;Giesked,W.W.GrowthandsilicacontentofthediatomsThalassiosiraweissflogiiandNa
viculasalinarumatdifferentsalinitiesandenrichmentswithaluminium.Eur.J.Phycol.1999,34,307–316.
63. Leterme,S.C.;Prime,E.;Mitchell,J.;Brown,M.H.;Ellis,A.V.Diatomadaptabilitytoenvironmentalchange:Acasestudyoftwo
Cocconeisspeciesfromhighsalinityareas.DiatomRes.2013,28,29–35.
64. Gnanamoorthy,P.;Karthikeyan,V.;Prabu,V.A.Fieldemissionscanningelectronmicroscopy(FESEM)characterisationofthe
poroussilicananoparticulatestructureofmarinediatoms.J.PorousMat.2014,21,225–233.
... The presence/dominance of Navicula recens and Mastogloia smithii within our study region is of concern as they are known to cope with wide-ranging environmental variables (Sas et al. 2022). Also C. placentula was one of the most abundant and widely dispersed diatoms. ...
... Also C. placentula was one of the most abundant and widely dispersed diatoms. This result agreed with other researches that also identified C. placentula as the dominant benthic diatom correlated with epipelic environments (Sas et al. 2022). ...
... It is a marine planktonic species that can be present in the benthic communities in warm, temperate and cold water regions, also is recognized to thrive well in euryhaline situations (Ferrario et al. 2021;Al-Handal et al. 2022).Once more silt-clay sediment texture of the study area have favored the existence plus highest abundance of Cocconeis placentula in the Coastal region (Fig. 10). Cocconeis placentula can thrive very well in silt-clay sediments of mangrove habitats, such a relationship was prominent in the case of Singapore's coastal waters (Tan et al. 2016), tropical estuarine ecosystem of the northeast coast of Brazil (Oliveira et al. 2022), and Coastal Area of Negeri Sembilan (Sas et al. 2022). ...
Article
Mangroves execute a significant role in preserving biodiversity and productivity of shallow marine biosphere, yet are extremely vulnerable. Benthic diatoms forms the main constituent of mangrove forest biogeochemistry, also they are sensitive to environmental changes, so it is critical to assess the influence of expected/common ecological pressure on their assemblages. Water, intertidal sediments and epibenthic diatoms were collected from three designated mangrove regions/habitats, in the Persian Gulf, which is the main natural mangrove forest in Iran, nominated Hara Biosphere Reserve. CAP analysis differentiated three forest areas: (1) the Island zone, located in the innermost area of the forest with TOM enriched sediments, and colonized by the most number of dominant species, e.g. Nitzschia sigmodea, attained the highest allocation success of 88.89% (2) the Deltaic outermost zone of the forest, surrounded by the sea, with silt–clay enriched sediments dominated by Asteromphalus parvulus, and (3) a sandy coastal area restricted to shoreline, dominated by Cocconeis placentula. Then again, discovering canopy type, CAP ordinations proved another significant divergent groupings, the sites in moderately dense forest shared the most consistent diatom communities, achieving the highest allocation success of 77.78%. Overall, these findings present valuable insight into the complex ecological role of Mangrove species Avicennia marina that significantly diversify the “epibenthic diatoms” across habitat type/estuarine system where multiple natural pressures are also at play, however allocation consistency across two environmental discriminators of mangrove canopy type and forest areas revealed that sparse type habitats as well as coastal zone are more sensitive/susceptible environments.
... Mizuno & Mori 1970, Nather Khan & Haji Mohamed 1985, Nather Khan & Firuza 2010. Some studies focused on the species composition of diatom assemblages, water quality and ecology and environmental reconstruction (Salleh & Rahim 1994, Nather Khan 2015, Nather Khan 1991, Salleh et al. 2023, Briddon et al. 2020, Tam et al. 2018, Maznah & Manson 2002, Sas et al. 2022, Rouf et al. 2009, Nih Tan et al. 2016. In contrast, only a few studies on Malaysian diatoms were strictly taxonomic (Javeed et al. 2018, Hilaluddin et al. 2011) and included the description of new species (Metzeltin 2012). ...
... This suggests that Eunotogramma can utilize both DIP and DSi in larger amounts than DIN for its growth, which results in decreases DIP and DSi compared to DIN in the ambient seawater during Eunotogramma growth. Several previous studies have found that the silica requirement of diatom has a negative effect on the DSi balance in the marine ecosystem (Jézéquel et al., 2002;Sas et al., 2022). Not only DIP and DSi, but also salinity and temperature influence the Eunotogramma bloom. ...
... Journal of Ecological Engineering 2023, 24(11),[30][31][32][33][34][35][36][37][38][39][40][41][42][43] ...
Article
Full-text available
A study on the diversity of diatom Coscinodiscus species was carried out in the coastal water of Dhamra during pre-monsoon, monsoon, and post-monsoon period (2021-2022).
Article
Full-text available
Diatoms are a globally successful and eukaryotic photosynthetic organism with an ornamented silica external wall. The relationship between their valve morphology and habitat means that diatoms can be used as bioindicators to characterize the aquatic environment. To estimate the differential distribution and diversity of diatom assemblages along the coastal line, we collected phytoplankton samples from 114 coastal sites of waters of R. O. Korea. We applied the unweighted pair-group technique using the arithmetic averages clustering method to cluster the sampling sites, apart from those where the biota consisted of other groups, such as dinoflagellates, into four regions: the Yellow Sea, South Sea, southern East Sea, and northern East Sea. Indicator species analysis in each region led to the selection of tychoplanktonic, chain-forming, attached species to substrates and psychrophilic indicator diatoms, respectively, each of which represented a planktonic lifestyle associated with one of the four regions. This study shows the diatom assemblages to serve as bioindicators of Korean coastal water in winter, and the subsequent seasonal survey will provide a starting point for the improved understanding of Korean diatom-based ecoregions, in both time and space.
Article
Full-text available
The properties of incident light play a crucial role in the mating process of diatoms, a group of ecologically important microalgae. While species-specific requirements for light intensity and photoperiod have been observed in several diatom species, little is known about the light spectrum that allows sexual reproduction. Here, we study the effects of spectral properties and light intensity on the initiation and progression of sexual reproduction in the model benthic diatom Seminavis robusta. We found that distinct stages of the mating process have different requirements for light. Vigorous mating pair formation occurred under a broad range of light intensities, ranging from 10 to 81 µE m⁻² s⁻¹, while gametogenesis and subsequent stages were strongly affected by moderate light intensities of 27 µE m⁻² s⁻¹ and up. In addition, light of blue or blue–green wavelengths was required for the formation of mating pairs. Combining flow cytometric analysis with expression profiling of the diatom-specific cyclin dsCyc2 suggests that progression through a blue light-dependent checkpoint in the G1 cell cycle phase is essential for induction of sexual reproduction. Taken together, we expand the current model of mating in benthic pennate diatoms, which relies on the interplay between light, cell cycle and sex pheromone signaling.
Article
Full-text available
Diatoms are key phytoplankton in the modern ocean that are involved in numerous biotic interactions, ranging from symbiosis to predation and viral infection, which have considerable effects on global biogeochemical cycles. However, despite recent large-scale studies of plankton, we are still lacking a comprehensive picture of the diversity of diatom biotic interactions in the marine microbial community. Through the ecological interpretation of both inferred microbial association networks and available knowledge on diatom interactions compiled in an open-access database, we propose an ecosystems approach for exploring diatom interactions in the ocean.
Article
Full-text available
In the traditional view, riverine organic matter typically has a higher C:N ratio than marine phytoplankton 6.7:1 and has therefore been thought to be a carbon source in estuaries and coastal waters. Thus, a decrease in the riverine organic C:N ratio to <6.7:1 would potentially switch riverine organic matter from a coastal carbon source to sink. However, few studies have paid an attention to such a change. Our field investigation showed that organic C:N ratio was 11.8:1 in the pristine upstream section of a natural reserve, but decreased after the river passed through several urban cities, reaching 5.0:1 in near the Pearl River estuary. Along the river, dissolved inorganic nitrogen, total organic carbon and nitrogen all increased and they were highly negatively correlated with organic C:N ratios. The observation has a great implication that organic matter with a decreased C:N ratio from the Pearl River would potentially switch from a coastal carbon source of 2.8 × 1011 g C/year to a sink of 2.2 × 1011 g C/year. This carbon sink (2.2 × 1011 g C/year) contributes to 56% of the previous estimate of the Pearl River estuarine-coastal net carbon sink. Such a decrease in organic C:N ratio also occurs in some other large rivers, which should be considered in the assessment of global coastal carbon budgets and metabolic balance.
Article
Full-text available
The current decrease in biodiversity affects all ecosystems, and the impacts of diversity on ecosystem functioning need to be resolved. So far, marine studies about diversity–ecosystem productivity‐relationships have concentrated on small‐scale, controlled experiments, with often limited relevance to natural ecosystems. Here, we provide a real‐world study on the effects of microorganismal diversity (measured as the diversity of benthic diatom communities) on ecosystem productivity (using chlorophyll a concentration as a surrogate) in a heterogeneous marine coastal archipelago. We collected 78 sediment cores at 17 sites in the northern Baltic Sea and found exceptionally high diatom diversity (328 observed species). We used structural equation models and quantile regression to explore relationships between diatom diversity and productivity. Previous studies have found contradictory results in the relationship between microorganismal diversity and ecosystem productivity, but we showed a linear and positive basal relationship between diatom diversity and productivity, which indicates that diatom diversity most likely forms the lowest boundary for productivity. Thus, although productivity can be high even when diatom diversity is low, high diatom diversity supports high productivity. The trait composition was more effective than taxonomical composition in showing such a relationship, which could be due to niche complementarity. Our results also indicated that environmental heterogeneity leads to substantial patchiness in the diversity of benthic diatom communities, mainly induced by the variation in sediment organic matter content. Therefore, future changes in precipitation and river runoff and associated changes in the quality and quantity of organic matter in the sea, will also affect diatom communities and, hence, ecosystem productivity. Our study suggests that benthic microorganisms are vital for ecosystem productivity, and together with the substantial heterogeneity of coastal ecosystems, they should be considered when evaluating the potential productivity of coastal areas.
Article
Full-text available
Yanbu is considered one of the most important industrial and touristic areas on Saudi coast of the eastern side of the Red Sea. It is a developing and expanding city with modern facilities and industries which can affect the coastal environment and influence the qualitative and quantitative dynamics of the phytoplankton community. The present study was carried seasonally on the species composition and abundance of phytoplankton concurrently with the surrounding physico-chemical conditions of Sharm Yanbu lagoon. The results revealed that water temperature ranged 22.00 o C and 33.30 o C, and chlorophyll a concentration of 0.07−2.20 µg.L-1. A total of 168 phytoplankton species were identified, including 94 Bacillariophyceae, 69 Dinophyceae, 3 Cyanophyceae, 1 Chlorophyceae and 1 Mediophyceae. Cell abundance varied from 2.34×10 3 to 12.07×10 3 cells.L-1 , with the highest count occurred in spring and the lowest in winter. Bacillariophyceae contributed (54.95%), followed by Dinophyceae (40.07%), Cyanophyceae (3.79%), Chlorophyceae (0.60%) and Mediophyceae (0.60%) to total of phytoplankton. Among Bacillariophyceae, the pennate forms constituted 32.34% and centric 22.28%. Phytoplankton exhibited positive correlation with chlorophyll a in spring, summer and autumn (r = 0.64, r = 0.59 and r = 0.66), respectively.
Article
Full-text available
Jabbari M, Salahi M, Ghorbani R. 2018. Spatio-temporal influence of physicochemical parameters on phytoplankton assemblage in coastal brackish lagoon: Gomishan Lagoon, Caspian Sea, Iran. Biodiversitas 19: 2020-2027. The objective of this study was to determine the spatiotemporal distribution pattern of phytoplankton assemblage due to physico-chemical heterogeneity in coastal brackish lagoon of Gomishan. An inter-annual cycle of sampling period (April 2014-March 2015) and spatially stratified random sampling were established to examine 24 spatiotemporal scenarios. Water samples were preserved in 1 and 0.5 liter dark Polythene bottles from each station for assessing plankton community and chlorophyll a, respectively. The applied multivariate approach including hierarchical cluster analysis for (dis)similarity test of environmental factors, principle component analysis (PCA) and canonical correspondence analysis (CCA) was used to illustrate the pattern of phytoplankton variability in relation to environmental characteristics. The results showed that mean salinity, temperature, pH, total nitrogen, phosphorus, silica, turbidity, and electrical conductivity (EC) were 22.8±5.9 (ppt), 23.4° C, 8.18, 2.49 (mg.l-1), 0.258 (mg.l-1), 3.39 (mg.l-1), 42.12 (NTU), and 3.78 (dS/m3), respectively. Scenarios S5AT, S5W, S6W, S6AT were distinguished from other scenarios with more than 90% similarity, subsequently S1SU and S5SU with about 80% similarity. Inter-annual mean density of total phytoplankton (cell.l-1) was 2.45×10 6 , whereas in northern sector it was constant with only a peak in June, but in southern sector it was more tolerant, so in April it tended to increase with a peak (7.2×10 6) in July which was the maximum density over the year. The phytoplankton assemblage of the lagoon comprised 47 species from 5 different classes including Bacillariophyta, Pyrrophyta, Chlorophyta, Cyanophyta, and Euglenophyta.
Article
Long-term observation of aquatic habitat is invaluable as it reveals trends that are not evident from shorter-term measurements. In this study, we assessed measurements of dissolved nitrogen species over a 12-year period (2004–2015) at Port Klang estuary and Port Dickson coastal water. Total suspended solids (TSS) was also measured, and increased at 6–9 mg L ⁻¹ yr ⁻¹ . In contrast, total dissolved nitrogen (TDN) did not increase but was higher at Port Klang (8–320 μM) relative to Port Dickson (2–30 μM). Chl a concentration was also higher at Port Klang (5.18 ± 7.79 μg L ⁻¹ ) than at Port Dickson (2.27 ± 1.39 μg L ⁻¹ ). Among the dissolved nitrogen species, we found that ammonium (NH 4 ) was predominant at Port Klang where dissolved inorganic nitrogen (DIN) contributed 71 ± 3% of TDN. At Port Dickson, dissolved organic nitrogen (DON) predominated, contributing 92 ± 7% of TDN. When we calculated the nitrogen loading at Port Klang, dissolved nitrogen load increased over time (1.13 ± 0.29 kg d ⁻¹ for TDN, 1.11 ± 0.29 kg d ⁻¹ for DIN, and 0.15 ± 0.06 kg d ⁻¹ for DON). We showed that the nitrogen loading increase at Port Klang was not due to climatic forcing but was most probably due to urbanization occurring upstream that inevitably increased river discharge rates (4.04 ± 0.12 m ³ s ⁻¹ yr ⁻¹ ).