Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The inability to extinguish learned fear is a hallmark of trauma- and stress-related disorders. A form of inhibitory learning called fear extinction is an effective way to treat these disorders. However, the neurobiology of fear extinction has not been clarified. The involvement of a dopaminergic pathway from the ventral tegmental area (VTA) to the nucleus accumbens shell (AcbSh) in fear extinction has been suggested. Several neuropeptide systems, including neuropeptide S (NPS), modulate the activity of VTA dopaminergic neurons. Herein, we investigated the role of NPS in modulating the VTA-AcbSh circuit in fear extinction. While the NPS-containing neurons of the pericoerulear (periLC) area project to the VTA, the recipient cells are equipped with NPS receptors. Using a Pavlovian fear conditioning procedure, we tested the effect of NPS on fear extinction in male Wistar rats. Intra-VTA administration of NPS prior to fear extinction training facilitated the fear extinction learning and memory, however, NPS receptors antagonist had the opposite effect. Fear extinction training increased the dopamine efflux and cFOS immunoreactivity in the AcbSh area of NPS-treated rats compared with the vehicle-injected controls. We suggest that the NPS neurons of the periLC project to the VTA and might facilitate fear extinction by enhancing the activity of mesolimbic dopaminergic circuit.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... We have explored the involvement of various neuropeptides such as neuropeptide Y (NPY) [1][2][3][4], alpha-melanocyte-stimulating hormone (α-MSH) [5], corticotropin-releasing factor (CRF), urocortin [6], cholecystokinin (CCK) [7], ghrelin [8], and cocaine-and amphetamine-regulated transcript peptide (CARTp) [9][10][11][12][13][14][15][16] in the regulation of feeding, body weight, anxiety, depression, reward, and memory. Recently, we investigated the interaction of neuropeptide S (NPS) with dopamine (DA) in the extinction of fear [17]. ...
... Further, the elements of fear have been identified in different brain nuclei such as hippocampus, NAc (including BNST), amygdala (and its subnuclei), thalamic nuclei, VMH, insular cortex, PAG, and several prefrontal regions (primarily infralimbic cortex) [150,151]. NPS/NPSR1 signaling plays a role in fear extinction, and change in this system may affect an individual's ability to extinguish fear memories [17] CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9)-mediated gene editing in mice to produce a "humanized" mouse strain. These mice express either NPSR1 I107 or NPSR1 N107, variation in the gene may lead to high anxiety sensitivity and may indirectly point to fear [54]. ...
... DAergic neurons are involved in the processing of rewarding and motivational stimuli in regions such as the NAc and VTA [159,160]. When NPS was administered intra-VTA, the neurons of the pericoerulear project to the VTA increased the activity of the mesolimbic DAergic circuit, which assists fear extinction [17]. When given via the i.c.v. ...
... At the end of sampling, KCl (60 mM) was injected into the system to test the performance of the microdialysis probe (Kawade et al., 2022). The aCSF solution containing 60 mM K + was infused for 1 h after acquiring stable baseline values of 5-HT in the dialysate. ...
... The dialysate (20 μL) was injected into the HPLC-ECD system and the retention time (RT) was recorded. (Kawade et al., 2022). K + stimulation increased the DA content in dialysate thereby attesting to the performance of the microdialysis system. ...
Article
Full-text available
The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self‐stimulation (ICSS) via an electrode implanted in the lateral hypothalamus‐medial forebrain bundle (LH‐MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up‐regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7‐nitroindazole (7‐NI) showed decreased lever press activity in a dose‐dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4‐dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre‐administration of 7‐NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal‐directed behavior. image
Article
Neuropeptide S (NPS), a 20-amino acid bioactive molecule has emerged as a promising treatment target for substance abuse in preclinical research. However, its role in nicotine reward, a major contributor to tobacco addiction, remains unexplored. This study investigated the involvement of the NPS system in reward-related effects of nicotine using the intracranial self-stimulation (ICSS) procedure in operant chamber. Adult male Wistar rats were implanted with bipolar electrode targeting the lateral hypothalamus-medial forebrain bundle and trained under a fixed-ratio 1 schedule across a range of brain stimulation frequencies (165-33 Hz). Under control conditions, the trained rats displayed a frequency-dependent increase in lever-press activity. Intracerebroventricular (i.c.v.) infusion of NPS (0.5–2 nmol) facilitated ICSS behaviour, while NPS receptor antagonist SHA-68 (0.1–10 nmol) was not effective. However, SHA-68 pretreatment (i.c.v.) dose dependently blocked the ICSS-facilitatory action of nicotine (0.25 mg/kg; subcutaneous, s.c.). A single nicotine injection (s.c.) activated NPS-containing neurons in the pericoerulear area (peri-LC), and increased NPS protein levels in the lateral hypothalamus (LH). Repeated nicotine administration (s.c.) elevated NPS mRNA expression in the peri-LC, and increased protein levels in the LH, paraventricular thalamus and peri-LC. However, these changes seem region specific since the nicotine treatment, in single or multiple doses, ensued no response in parabrachial nucleus, amygdala or ventral tegmental area. In sum, we suggest that the endogenous NPS system plays a critical role in reward-related effects of nicotine.
Article
Full-text available
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Article
Full-text available
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1–4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Article
Full-text available
Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue–dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.
Article
Full-text available
Neuropeptide cocaine‐ and amphetamine‐regulated transcript (CART) is known to influence the activity of the canonical mesolimbic dopaminergic pathway and modulate reward seeking behaviour. CART neurons of the lateral hypothalamus (LH) send afferents to the ventral tegmental area (VTA) and paraventricular thalamic nucleus (PVT) and these nuclei, in turn, send secondary projections to nucleus accumbens. We try to dissect the precise sites of CART’s action in these circuits in promoting reward. Rats were implanted with bipolar electrode targeted at the lateral hypothalamus‐medial forebrain bundle (LH‐MFB) and trained to press the lever through intracranial self‐stimulation (ICSS) protocol. CART (55–102) administered directly into posterior VTA (pVTA) or PVT of the conditioned rats significantly increased the number of lever presses, indicating reward‐promoting activity of the peptide. Concomitant increase in dopamine (DA) and 3, 4‐dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysate collected from the nucleus accumbens shell (AcbSh). On the other hand, immunoneutralization of endogenous CART with CART antibodies injected directly in the pVTA or PVT reduced the lever press activity as well as DA and DOPAC efflux in the AcbSh. Injection of CART (1–39) in pVTA or PVT was ineffective. We suggest that CART cells in the LH‐MFB area send afferents to (a) pVTA and influence dopaminergic neurons projecting to AcbSh and (b) PVT, from where the secondary neurons may feed into the AcbSh. Excitation of the CARTergic pathway to the pVTA as well as the PVT seems to promote DA release in the AcbSh and contribute to the generation of reward. image
Article
Full-text available
The ability to extinguish fear memories when threats are no longer present is critical for adaptive behavior. Fear extinction represents a new learning process that eventually leads to the formation of extinction memories. Understanding the neural basis of fear extinction has considerable clinical significance as deficits in extinction learning are the hallmark of human anxiety disorders. In recent years, the dopamine (DA) system has emerged as one of the key regulators of fear extinction. In this review article, we highlight recent advances that have demonstrated the crucial role DA plays in mediating different phases of fear extinction. Emerging concepts and outstanding questions for future research are also discussed.
Article
Full-text available
Extinction of fear responses is critical for adaptive behavior and deficits in this form of safety learning are hallmark of anxiety disorders. However, the neuronal mechanisms that initiate extinction learning are largely unknown. Here we show, using single-unit electrophysiology and cell-type specific fiber photometry, that dopamine neurons in the ventral tegmental area (VTA) are activated by the omission of the aversive unconditioned stimulus (US) during fear extinction. This dopamine signal occurred specifically during the beginning of extinction when the US omission is unexpected, and correlated strongly with extinction learning. Furthermore, temporally-specific optogenetic inhibition or excitation of dopamine neurons at the time of the US omission revealed that this dopamine signal is both necessary for, and sufficient to accelerate, normal fear extinction learning. These results identify a prediction error-like neuronal signal that is necessary to initiate fear extinction and reveal a crucial role of DA neurons in this form of safety learning.
Article
Full-text available
Overcoming aversive emotional memories requires neural systems that detect when fear responses are no longer appropriate so that they can be extinguished. The midbrain ventral tegmental area (VTA) dopamine system has been implicated in reward and more broadly in signaling when a better-than-expected outcome has occurred. This suggests that it may be important in guiding fear to safety transitions. We report that when an expected aversive outcome does not occur, activity in midbrain dopamine neurons is necessary to extinguish behavioral fear responses and engage molecular signaling events in extinction learning circuits. Furthermore, a specific dopamine projection to the nucleus accumbens medial shell is partially responsible for this effect. In contrast, a separate dopamine projection to the medial prefrontal cortex opposes extinction learning. This demonstrates a novel function for the canonical VTA-dopamine reward system and reveals opposing behavioral roles for different dopamine neuron projections in fear extinction learning.
Article
Full-text available
Paraventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used. Intra-PVT administration of CART (55-102) dose-dependently (10-50 ng/rat) lowered intracranial self-stimulation (ICSS) threshold and increased lever press activity, suggesting reward-promoting action of the peptide. However, treatment with CART antibody (intra-PVT) or MK-801 (NMDA antagonist, intra-AcbSh) produced opposite effects. A combination of sub-effective dose of MK-801 (0.01 µg/rat, intra-AcbSh) and effective dose of CART (25 ng/rat, intra-PVT) attenuated CART's rewarding action. Further, we screened the LH-PVT-AcbSh circuit for neuroadaptive changes induced by conditioning experience. A more than twofold increase was noticed in the CART mRNA expression in the LH on the side ipsilateral to the implanted electrode for ICSS. In addition, the PVT of conditioned rats showed a distinct increase in the (a) c-Fos expressing cells and CART fiber terminals, and (b) CART and vesicular glutamate transporter 2 immunostained elements. Concomitantly, the AcbSh showed a striking increase in expression of NMDA receptor subunit NR1. We suggest that CART in LH-PVT and glutamate in PVT-AcbSh circuit might support food-seeking behavior under natural conditions and also store reward memory.
Article
Full-text available
Manipulations that increase dopamine (DA) signaling can enhance fear extinction, but the circuits involved remain unknown. DA neurons originating in the substantia nigra (SN) projecting to the dorsal striatum (DS) are traditionally viewed in the context of motor behavior, but growing data implicate this nigrostriatal circuit in emotion. Here we investigated the role of nigrostriatal DA in fear extinction. Activation of SN DA neurons with designer Gq-coupled receptors exclusively activated by designer drugs (Gq-DREADD) during fear extinction had no effect on fear extinction acquisition, but enhanced fear extinction memory and blocked the renewal of fear in a novel context; a pattern of data paralleled by cFos expression in the central amygdala. D1 receptors in the DS are a likely target mediating the effects of SN DA activation. D1-expressing neurons in the medial DS (DMS) were recruited during fear extinction, and Gq-DREADD-induced DA potentiated activity of D1-expressing neurons in both the DMS and the lateral DS (DLS). Pharmacological activation of D1 receptors in the DS did not impact fear extinction acquisition or memory, but blocked fear renewal in a novel context. These data suggest that activation of SN DA neurons and DS D1 receptors during fear extinction render fear extinction memory resistant to the disrupting effects of changes in contextual contingencies, perhaps by recruiting habitual learning strategies involving the DLS. Nigrostriatal DA thus represents a novel target to enhance long-term efficacy of extinction-based therapies for anxiety and trauma-related disorders.
Article
Full-text available
The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N-methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.
Article
Full-text available
Background: Despite its success in treating specific anxiety disorders, the effect of exposure therapy is limited by problems with tolerability, treatment resistance, and fear relapse after initial response. The identification of novel drug targets facilitating fear extinction in clinically relevant animal models may guide improved treatment strategies for these disorders in terms of efficacy, acceleration of fear extinction, and return of fear. Methods: The extinction-facilitating potential of neuropeptide S, D-cycloserine, and a benzodiazepine was investigated in extinction-impaired high anxiety HAB rats and 129S1/SvImJ mice using a classical cued fear conditioning paradigm followed by extinction training and several extinction test sessions to study fear relapse. Results: Administration of D-cycloserine improved fear extinction in extinction-limited, but not in extinction-deficient, rodents compared with controls. Preextinction neuropeptide S caused attenuated fear responses in extinction-deficient 129S1/SvImJ mice at extinction training onset and further reduced freezing during this session. While the positive effects of either D-cycloserine or neuropeptide S were not persistent in 129S1/SvImJ mice after 10 days, the combination of preextinction neuropeptide S with postextinction D-cycloserine rendered the extinction memory persistent and context independent up to 5 weeks after extinction training. This dual pharmacological adjunct to extinction learning also protected against fear reinstatement in 129S1/SvImJ mice. Conclusions: By using the potentially nonsedative anxiolytic neuropeptide S and the cognitive enhancer D-cycloserine to facilitate deficient fear extinction, we provide here the first evidence of a purported efficacy of a dual over a single drug approach. This approach may render exposure sessions less aversive and more efficacious for patients, leading to enhanced protection from fear relapse in the long term.
Article
Full-text available
Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS-NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.
Article
Full-text available
The canonical view on the central amygdala has evolved from a simple output station towards a highly organized microcircuitry, in which types of GABAergic neurons in centrolateral (CeL) and centromedial (CeM) subnuclei regulate fear expression and generalization. How these specific neuronal populations are connected to extra-amygdaloid target regions remains largely unknown. Here we show in mice that a subpopulation of GABAergic CeL and CeM neurons projects monosynaptically to brainstem neurons expressing neuropeptide S (NPS). The CeL neurons are PKCδ-negative and are activated during conditioned fear. During fear memory retrieval, the efficacy of this GABAergic influence on NPS neurons is enhanced. Moreover, a large proportion of these neurons (~50%) contain prodynorphin and somatostatin, two neuropeptides inhibiting NPS-neurons. We conclude that CeL and CeM neurons inhibit NPS-neurons in the brainstem by GABA release and that efficacy of this connection is strengthened upon fear memory retrieval. Thereby, this pathway provides a possible feedback mechanism between amygdala and brainstem routes involved in fear and stress coping.Neuropsychopharmacology accepted article preview online, 04 May 2015. doi:10.1038/npp.2015.125.
Article
Full-text available
Neuropeptide S (NPS) has generated substantial interest due to its anxiolytic and fear-attenuating effects in rodents, while a corresponding receptor polymorphism associated with increased NPS receptor (NPSR1) surface expression and efficacy has been implicated in an increased risk of panic disorder in humans. To gain insight into this paradox, we examined the NPS system in rats and mice bred for high anxiety-related behavior (HAB) versus low anxiety-related behavior, and, thereafter, determined the effect of central NPS administration on anxiety- and fear-related behavior. The HAB phenotype was accompanied by lower basal NPS receptor (Npsr1) expression, which we could confirm via in vitro dual luciferase promoter assays. Assessment of shorter Npsr1 promoter constructs containing a sequence mutation that introduces a glucocorticoid receptor transcription factor binding site, confirmed via oligonucleotide pull-down assays, revealed increased HAB promoter activity-an effect that was prevented by dexamethasone. Analogous to the human NPSR1 risk isoform, functional analysis of a synonymous single nucleotide polymorphism in the coding region of HAB rodents revealed that it caused a higher cAMP response to NPS stimulation. Assessment of the behavioral consequence of these differences revealed that intracerebroventricular NPS reversed the hyperanxiety of HAB rodents as well as the impaired cued-fear extinction in HAB rats and the enhanced fear expression in HAB mice, respectively. These results suggest that alterations in the NPS system, conserved across rodents and humans, contribute to innate anxiety and fear, and that HAB rodents are particularly suited to resolve the apparent discrepancy between the preclinical and clinical findings to date. Copyright © 2015 the authors 0270-6474/15/354599-15$15.00/0.
Article
Full-text available
Significance Research on Pavlovian fear conditioning has been very successful in revealing what has come to be called the brain’s fear system. The field has now matured to the point where a sharper conceptualization of what is being studied could be very useful as we go forward. Terms like “fear conditioning” and “fear system” blur the distinction between processes that give rise to conscious feelings of fear and nonconscious processes that control defense responses elicited by threats. These processes interact but are not the same. Using terms that respect the distinction will help focus future animal research on brain circuits that detect and respond to threats, and should also help clarify the implications of this work for understanding how normal and pathological feelings of fear come about in the human brain.
Article
Full-text available
Background: Published findings indicate that acetaldehyde (ACD; the first metabolite of ethanol [EtOH]) and salsolinol (SAL; formed through the nonenzymatic condensation of ACD and dopamine [DA]) can be formed following EtOH consumption. Both ACD and SAL exhibit reinforcing properties within the posterior ventral tegmental area (pVTA) and both exhibit an inverted "U-shaped" dose-response curve. The current study was undertaken to examine the dose-response effects of microinjections of ACD or SAL into the pVTA on DA efflux in the nucleus accumbens shell (AcbSh). Methods: For the first experiment, separate groups of male Wistar rats received pulse microinjections of artificial cerebrospinal fluid (aCSF) or 12-, 23-, or 90-μM ACD into the pVTA, while extracellular DA levels were concurrently measured in the AcbSh. The second experiment was similarly conducted, except rats were given microinjections of aCSF or 0.03-, 0.3-, 1.0-, or 3.0-μM SAL, while extracellular levels of DA were measured in the AcbSh. Results: Both ACD and SAL produced a dose-dependent inverted "U-shaped" response on DA release in the AcbSh, with 23-μM ACD (200% baseline) and 0.3-μM SAL (300% baseline) producing maximal peak responses with higher concentrations of ACD (90 μM) and SAL (3.0 μM) producing significantly lower DA efflux. Conclusions: The findings from the current study indicate that local application of intermediate concentrations of ACD and SAL stimulated DA neurons in the pVTA, whereas higher concentrations may be having secondary effects within the pVTA that inhibit DA neuronal activity. The present results parallel the studies on the reinforcing effects of ACD and SAL in the pVTA and support the idea that the reinforcing effects of ACD and SAL within the pVTA are mediated by activating DA neurons.
Article
Full-text available
Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems.
Article
Full-text available
The construct of emotion regulation has been increasingly investigated in the last decade, and this work has important implications for advancing anxiety disorder theory. This paper reviews research demonstrating that: 1) emotion (i.e., fear and anxiety) and emotion regulation are distinct, non-redundant, constructs that can be differentiated at the conceptual, behavioral, and neural levels of analysis; 2) emotion regulation can augment or diminish fear, depending on the emotion regulation strategy employed; and 3) measures of emotion regulation explain incremental variance in anxiety disorder symptoms above and beyond the variance explained by measures of emotional reactivity. The authors propose a model by which emotion regulation may function in the etiology of anxiety disorders. The paper concludes with suggestions for future research.
Article
Full-text available
Stressful and traumatic events can create aversive memories, which are a predisposing factor for anxiety disorders. The amygdala is critical for transforming such stressful events into anxiety, and the recently discovered neuropeptide S transmitter system represents a promising candidate apt to control these interactions. Here we test the hypothesis that neuropeptide S can regulate stress-induced hyperexcitability in the amygdala, and thereby can interact with stress-induced alterations of fear memory. Mice underwent acute immobilization stress (IS), and neuropeptide S and a receptor antagonist were locally injected into the lateral amygdala (LA) during stress exposure. Ten days later, anxiety-like behavior, fear acquisition, fear memory retrieval, and extinction were tested. Furthermore, patch-clamp recordings were performed in amygdala slices prepared ex vivo to identify synaptic substrates of stress-induced alterations in fear responsiveness. (1) IS increased anxiety-like behavior, and enhanced conditioned fear responses during extinction 10 days after stress, (2) neuropeptide S in the amygdala prevented, while an antagonist aggravated, these stress-induced changes of aversive behaviors, (3) excitatory synaptic activity in LA projection neurons was increased on fear conditioning and returned to pre-conditioning values on fear extinction, and (4) stress resulted in sustained high levels of excitatory synaptic activity during fear extinction, whereas neuropeptide S supported the return of synaptic activity during fear extinction to levels typical of non-stressed animals. Together these results suggest that the neuropeptide S system is capable of interfering with mechanisms in the amygdala that transform stressful events into anxiety and impaired fear extinction.
Article
Full-text available
Neuropeptide S (NPS) and its receptor are thought to define a set of specific brain circuits involved in fear and anxiety. Here we provide evidence for a novel, NPS-responsive circuit that shapes neural activity in the mouse basolateral amygdala (BLA) via the endopiriform nucleus (EPN). Using slice preparations, we demonstrate that NPS directly activates an inward current in 20% of EPN neurons and evokes an increase of glutamatergic excitation in this nucleus. Excitation of the EPN is responsible for a modulation of BLA activity through NPS, characterized by a general increase of GABAergic inhibition and enhancement of spike activity in a subset of BLA projection neurons. Finally, local injection of NPS to the EPN interferes with the expression of contextual, but not auditory cued fear memory. Together, these data suggest the existence of a specific NPS-responsive circuitry between EPN and BLA, likely involved in contextual aspects of fear memory.
Article
Full-text available
Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In Experiment 2, rats extinguished under an intracerebroventricular (ICV) infusion of haloperidol suppressed fear responses across extinction but froze more on a subsequent drug-free retention test than control rats. In Experiment 3, rats extinguished under an infusion of haloperidol in the nucleus accumbens were impaired in suppressing fear responses across extinction and froze more on subsequent drug-free retention test than control rats. These results show that learning to inhibit fear responses in extinction requires dopamine activity in the nucleus accumbens. They were interpreted to mean that dopaminergic activity in the nucleus accumbens regulates the prediction error required for learning to inhibit fear responses in extinction.
Article
Full-text available
Adrenergic agents modulate the activity of midbrain ventral tegmental area (VTA) neurons. However, the sources of noradrenergic and adrenergic inputs are not well characterized. Immunostaining for dopamine beta-hydroxylase revealed fibers within dopamine (DA) neuron areas, with the highest density in the retrorubral field (A8 cell group), followed by the VTA (A10 cell group), and very few fibers within substantia nigra compacta. A less dense, but a similar pattern of fibers was also found for the epinephrine marker, phenylethanolamine N-methyl transferase. Injection of the retrograde tracer wheat germ agglutinin-apo (inactivated) horseradish peroxidase conjugated to colloidal gold, or cholera toxin subunit b, revealed that the noradrenergic innervation of the A10 and A8 regions arise primarily from A1, A2, A5, and locus ceruleus neurons. Selective lesions of the ventral noradrenergic bundle confirmed a prominent innervation from A1 and A2 areas. Retrogradely labeled epinephrine neurons were found mainly in the C1 area. The identification of medullary noradrenergic and adrenergic afferents to DA neuron areas indicates new pathways for visceral-related inputs to reward-related areas in the midbrain.
Article
Full-text available
Biological effects of vasopressin (VP) are mediated by four different receptors, two of which (the V1a and the oxytocin receptors) have been well characterized in the rodent brain, suggesting that these are the main receptors responsible for the central effects of VP. However, transcripts of the V1b VP receptor (V1bR) have been detected throughout the rat brain by RT-PCR and in situ hybridization, indicating that the V1bR adds to the population of central VP receptors. Because there are no specific ligands for the V1bR, the receptor protein itself has been difficult to visualize. In the present study, the distribution of the V1bR protein was investigated in the rat forebrain, midbrain, hindbrain, and cerebellum by immunohistochemistry using an antiserum raised against a synthetic fragment of the carboxylterminal of the rat V1bR protein. Immunohistochemistry revealed the presence of the V1bR in pituitary corticotrophs as expected. In naive, untreated rats, fiber networks containing V1bR-immunoreactivity were mainly concentrated in the hypothalamus, amygdala, cerebellum, and particularly in those areas with a leaky blood brain barrier or close to the circumventricular organs (medial habenula, subfornical organ, organum vasculosum laminae terminalis, median eminence, and nuclei lining to the third and fourth ventricles). A strikingly dense network was present in the external zone of the median eminence. Colchicine treatment was required to reveal the localization of V1bR-immunoreactive cell bodies. V1bR-containing cell bodies and associated protrusions were mainly located in the hippocampus, caudate putamen, cortex, thalamus, olfactory bulb, and cerebellum. These results demonstrate the widespread distribution of the V1bR protein in the rat brain over multiple, functionally distinct neuronal systems. These data suggest that the V1bR mediates different physiological functions of VP in the brain.
Article
Neuropeptide S (NPS) has anxiolytic effects and facilitates extinction of cued fear in rodents. Here, we investigated whether NPS reverses social fear and social avoidance induced by social fear conditioning (SFC) and acute social defeat (SD), respectively, in male CD1 mice. Our results revealed that intracerebroventricular NPS (icv; 10 and 50 nmol/2 μl) reversed fear of unknown con-specifics induced by SFC and dose-dependently reduced avoidance of known aggressive con-specifics induced by SD. While 50 nmol of NPS completely reversed social avoidance and reinstated social preference, 10 nmol of NPS reduced social avoidance, but did not completely reinstate social preference in socially-defeated mice. Further, a lower dose (1 nmol/2 μl) of NPS facilitated the within-session extinction of cued fear, while a higher dose (10 nmol/2 μl) reduced the expression of cued fear. We could also confirm the anxiolytic effects of NPS (1, 10 and 50 nmol/2 μl) on the elevated plus-maze (EPM), which were not accompanied by alterations in locomotor activity either on the EPM or in the home cage. Finally, we could show that icv infusion of the NPS receptor 1 antagonist D-Cys((t)Bu)(5)-NPS (10 nmol/2 μl) did not alter SFC-induced social fear, general anxiety and locomotor activity. Taken together, our study extends the potent anxiolytic profile of NPS to a social context by demonstrating the reduction of social fear and social avoidance, thus providing the framework for studies investigating the involvement of the NPS system in the regulation of different types of social behaviour.
Article
We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning.
Article
Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive–aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes.
Article
Prevalence of posttraumatic stress disorder (PTSD) defined according to the American Psychiatric Association's Diagnostic and Statistical Manual fifth edition (DSM-5; 2013) and fourth edition (DSM-IV; 1994) was compared in a national sample of U.S. adults (N = 2,953) recruited from an online panel. Exposure to traumatic events, PTSD symptoms, and functional impairment were assessed online using a highly structured, self-administered survey. Traumatic event exposure using DSM-5 criteria was high (89.7%), and exposure to multiple traumatic event types was the norm. PTSD caseness was determined using Same Event (i.e., all symptom criteria met to the same event type) and Composite Event (i.e., symptom criteria met to a combination of event types) definitions. Lifetime, past-12-month, and past 6-month PTSD prevalence using the Same Event definition for DSM-5 was 8.3%, 4.7%, and 3.8% respectively. All 6 DSM-5 prevalence estimates were slightly lower than their DSM-IV counterparts, although only 2 of these differences were statistically significant. DSM-5 PTSD prevalence was higher among women than among men, and prevalence increased with greater traumatic event exposure. Major reasons individuals met DSM-IV criteria, but not DSM-5 criteria were the exclusion of nonaccidental, nonviolent deaths from Criterion A, and the new requirement of at least 1 active avoidance symptom.
Article
"The magnitude of [anxiety] is measured by its effect upon… the rate with which [hungry] rats pressed a lever under periodic reinforcement with food. Repeated presentations of a tone terminated by an electric shock produced a state of anxiety in response to the tone… . When the shock was thus preceded by a period of anxiety it produced a much more extensive disturbance in behavior than an 'unanticipated' shock… . During experimental extinction of the response to the lever the tone produced a decrease in the rate of responding, and the terminating shock was followed by a compensatory increase in rate which probably restored the original projected height of the extinction curve. The conditioned anxiety state was extinguished when the tone was presented for a prolonged period without the terminating shock. Spontaneous recovery from this extinction was nearly complete on the following day." (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Article
Drug addiction is a chronic disorder characterized by compulsive drug-seeking behavior despite severe negative consequences. Most abused drugs increase dopamine release in the ventral tegmental area (VTA) and in the nucleus accumbens (NA). The medial prefrontal cortex (mPFC), a part of the mesocorticolimbic dopaminergic system, receives dopaminergic projections from VTA; and in turn, sends glutamatergic projections to both VTA and NA. The present study was designed to further investigate the involvement of the mPFC in the release of dopamine in the VTA by using in vivo microdialysis and high performance liquid chromatography with electrochemical detection (HPLC–ECD). Electrical lesion of the mPFC decreased the level of dopamine in the VTA to approximately 26.8% of basal level. Acute morphine (40 mg/kg i.p.) treatment increased the level of dopamine in the VTA, while the lesion of mPFC immediately before morphine administration attenuated the effects of acute morphine on the level of dopamine. These results suggest that the mPFC modulates dopamine release into the VTA.
Chapter
Fear conditioning is an experimental tool that has been, and continues to be, widely used in the field of neuroscience. It is used to understand the neural and psychological bases for fear learning and more recently for fear extinction, along with several other phenomena such as reinstatement and spontaneous recovery. Like any other experimental paradigm, there are several variants of fear conditioning that are employed by investigators. The parameters utilized, such as the type of conditioned stimuli and the unconditioned stimuli, vary from one study to another depending on the scientific question being tested. In this chapter, we will provide an overall summary of the most commonly used parameters and discuss the reasons for changing and/or modifying such parameters. We discuss technical problems that may arise when using the fear-conditioning paradigm in both rodents and humans and how best to resolve them. Key words:Context conditioning-fear-potentiated startle-fear extinction-conditioned stimulus-unconditioned stimulus
Article
The psychology of extinction has been studied for decades. Approximately 10 years ago, however, there began a concerted effort to understand the neural circuits of extinction of fear conditioning, in both animals and humans. Progress during this period has been facilitated by a high degree of coordination between rodent and human researchers examining fear extinction. Here we review the major advances and highlight new approaches to understanding and exploiting fear extinction. Research in fear extinction could serve as a model for translational research in other areas of behavioral neuroscience.
Article
Mice and rats are widely used in stress-related behavioral studies while little is known about the distribution of the stress hormone, corticotropin-releasing factor (CRF) in the mouse brain. We developed and characterized a novel rat/mouse CRF polyclonal antibody (CURE ab 200101) that was used to detect and compare the brain distributions of CRF immunoreactivity in naïve and colchicine-treated rats and mice. We also assessed whether the visceral stressor of abdominal surgery activated brain CRF neurons using double labeling of Fos/CRF in naïve rats. CRF-ir neurons were visualized in the cortex, bed nucleus of the stria terminalis, central amygdala, hypothalamic paraventricular nucleus (PVN), Barrington's nucleus and dorsolateral tegmental area in naïve rats. CRF-immunoreactive (ir) neurons in the mouse brain were detected only after colchicine. The pattern shows fundamental similarity compared to the colchicine-treated rat brain, however, there were differences with a lesser distribution in both areas and density except in the lateral septum and external subnucleus of the lateral parabrachial nucleus which contained more CRF-ir neurons in mice, and CRF-ir neurons in the dorsal motor nucleus of the vagus were found only in mice. Abdominal surgery in naïve rats induced Fos-ir in 30% of total CRF-ir neurons in the PVN compared with control (anesthesia alone) while Fos was not co-localized with CRF in other brain nuclei. These data indicate that CRF-ir distribution in the brain displays similarity as well as distinct features in mice compared to rats that may underlie some differential stress responses. Abdominal surgery activates CRF-ir neurons selectively in the PVN of rats without colchicine treatment.
Article
Recent studies demonstrated potent behavioral effects of centrally applied neuropeptide S (NPS) in mice and rats. These include increased arousal and wakefulness, facilitation of fear extinction and object memory consolidation and anxiolysis. Here, we compared the effects of NPS on both social and non-social memory, in male rats, and on social preference/social anxiety versus non-social anxiety after either intracerebroventricular (icv) or nasal application. Intranasal application of neuropeptides has been successfully employed to alter behavioral parameters in humans and rodents, but studies concerning nasal application of NPS are lacking so far. First, we confirmed the facilitatory effect of icv NPS (1 nmol) on object discrimination after an inter-exposure interval (IEI) of 240 min. These effects were context-dependent, as icv NPS (1 nmol) did not prolong social memory in a social discrimination paradigm. Second, we confirmed the anxiolytic effect of icv NPS (1 nmol) on the elevated plus-maze, whereas neither icv NPS (1 nmol) nor NPS receptor antagonist (10 nmol) altered social preference/social avoidance behavior. Third, nasal NPS (4–40 nmol applied topically on the rhinarium) facilitated object discrimination in a dose-dependent manner. Also, the anxiolytic effect of NPS on the elevated plus-maze could be confirmed after nasal administration (40 nmol). In contrast, identical doses of subcutaneously injected NPS failed to produce corresponding behavioral effects in both tests.
Article
Recent evidence has demonstrated that the ventromedial prefrontal cortex (vmPFC) is a critical site of the neural circuits underlying fear extinction memory. The ventrolateral prefrontal cortex (vlPFC) is not directly involved in extinction processes within the aversive domain. However, most of the current cumulated data on extinction is based on a classical delay fear conditioning paradigm in which the interval between the onset of the conditioned stimulus (CS) and the unconditioned stimulus (US) is consistent in a given protocol. In the present study, we developed a modified delay fear conditioning paradigm in which the temporal distribution of the footshock US during the duration of the tone CS is programmed to be pseudorandom. Here, we examined the effects of electrolytic vmPFC and vlPFC lesions made before training on conditioned fear response in the modified paradigm. The behavioral procedure involved four sessions with a 24-h interval: habituation, fear conditioning, extinction training, and extinction test. Percent freezing to tone was assessed as a measure of conditioned fear response. The results show that neither vmPFC nor vlPFC lesions affect acquisition or extinction of conditioned fear response during the fear conditioning and extinction training sessions, respectively. During the extinction test session, both vmPFC- and vlPFC-lesioned rats showed deficits in the recall of the between-session extinction memory. The deficits could not be attributed to altered nonspecific responses (footshock sensitivity, locomotor activity, and nonspecific freezing response). Furthermore, vlPFC lesions made before training had no effect on conditioned fear response in the classical fear conditioning paradigm. These data suggest a preserved role of the vmPFC in fear extinction and a selective involvement of the vlPFC in extinction process in certain fear conditioning tasks.
Article
Neuropeptide S (NPS) is the endogenous ligand for GPR154, now referred to as neuropeptide S receptor (NPSR). Physiologically, NPS has been characterized as a modulator of arousal and has been shown to produce anxiolytic-like effects in rodents. Neuroanatomical analysis in the rat revealed that the NPS precursor mRNA is strongly expressed in the brainstem in only three distinct regions: the locus coeruleus area, the principal sensory trigeminal nucleus, and the lateral parabrachial nucleus. NPSR mRNA expression in the rat is widely distributed, with the strongest expression in the olfactory nuclei, amygdala, subiculum, and some cortical structures, as well as various thalamic and hypothalamic regions. Here we report a comprehensive map of NPS precursor and receptor mRNA expression in the mouse brain. NPS precursor mRNA is only expressed in two regions in the mouse brainstem: the Kölliker-Fuse nucleus and the pericoerulear area. Strong NPSR mRNA expression was found in the dorsal endopiriform nucleus, the intra-midline thalamic and hypothalamic regions, the basolateral amgydala, the subiculum, and various cortical regions. In order to elucidate projections from NPS-producing nuclei in the brainstem to NPSR-expressing structures throughout the brain, we performed immunohistochemical analysis in the mouse brain by using two polyclonal anti-NPS antisera. The distribution of NPS-immunopositive fibers overlaps well with NPSR mRNA expression in thalamic and hypothalamic regions. Mismatches between NPSR expression and NPS-immunoreactive fiber staining were observed in hippocampal, olfactory, and cortical regions. These data demonstrate that the distribution pattern of the central NPS system is only partially conserved between mice and rats.
Article
J. Neurochem. (2010) 115, 475–482. Neuropeptide S (NPS) is known to produce anxiolytic-like effects and facilitate extinction of conditioned fear. Catecholaminergic neurotransmission in the medial prefrontal cortex (mPFC) has been suggested to be crucially involved in these brain functions. In the current study, we investigated the effect of NPS on the release of dopamine and serotonin in the mPFC by in vivo microdialysis in rats. Central administration of NPS dose-dependently enhanced extracellular levels of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid, with maximal effects lasting up to 120 min. In contrast, no effect on serotonergic neurotransmission was detected. Dopamine release in the mPFC has been previously linked to modulation of anxiety states and fear extinction. The present results may thus provide a physiological and anatomical basis for the reported effects of NPS on these behaviors.
Article
The newly identified neuropeptide S (NPS) is mainly expressed in a group of neurons located between the locus coeruleus and Barrington's nucleus in the brainstem. Central administration of NPS increases motor activity and wakefulness, and it decreases anxiety-like behavior and feeding. The NPS receptor (NPSR) is widely distributed in various brain regions including the ventral tegmental area (VTA). The mesolimbic dopaminergic system originates in the VTA, and activation of the system produces hypermotor activity. Therefore, we hypothesized that NPS-induced hypermotor activity might be mediated by activation of the mesolimbic dopaminergic pathway via the NPSR expressed in the VTA. Intra-VTA injection of NPS significantly and dose-dependently increased horizontal and vertical motor activity in rats, and the hyperactivity was significantly and dose-dependently inhibited by pre-administration of sulpiride, a DA D(2)-like receptor antagonist, into the shell of the nucleus accumbens (NAcSh). Intra-VTA injection of NPS also significantly increased extracellular 3,4-dihydroxy-phenyl acetic acid and homovanillic acid levels in the NAcSh of freely moving rats. These results support the idea that NPS activates the mesolimbic dopaminergic system presumably via the NPSR located in the VTA, thereby stimulating motor activity.
Article
Classical fear conditioning is a powerful behavioral paradigm that is widely used to study the neuronal substrates of learning and memory. Previous studies have clearly identified the amygdala as a key brain structure for acquisition and storage of fear memory traces. Whereas the majority of this work has focused on principal cells and glutamatergic transmission and its plasticity, recent studies have started to shed light on the intricate roles of local inhibitory circuits. Here, we review current understanding and emerging concepts of how local inhibitory circuits in the amygdala control the acquisition, expression, and extinction of conditioned fear at different levels.
Article
Neuropeptide S (NPS) is a recently discovered peptide which induces hyperlocomotion, anxiolysis and wakefulness. This study aimed to compare behavioral and biochemical effects of NPS with amphetamine (AMPH), and diazepam (DZP). To this aim, the effects of NPS (0.01, 0.1 and 1 nmol, ICV), AMPH (2 mg/kg, IP) and DZP (1 mg/kg, IP) on locomotion and oxidative stress parameters were assessed in mouse brain structures. The administration of NPS and AMPH, but not DZP, increased locomotion compared to control. Biochemical analyses revealed that AMPH increased carbonylated proteins in striatum, but did not alter lipid peroxidation. DZP increased lipid peroxidation in the cortex and cerebellum, and increased protein carbonyl formation in the striatum. In contrast, NPS reduced carbonylated protein in the cerebellum and striatum, and also lipid peroxidation in the cortex. Additionally, the treatment with AMPH increased superoxide dismutase (SOD) activity in the striatum, while it did not affect catalase (CAT) activity. DZP did not alter SOD and CAT activity. NPS inhibited the increase of SOD activity in the cortex and cerebellum, but little influenced CAT activity. Altogether, this is the first evidence of a putative role of NPS in oxidative stress and brain injury.
Article
A deficient extinction of memory is particularly important in the regime of fear, where it limits the beneficial outcomes of treatments of anxiety disorders. Fear extinction is thought to involve inhibitory influences of the prefrontal cortex on the amygdala, although the detailed synaptic mechanisms remain unknown. Here, we report that neuropeptide S (NPS), a recently discovered transmitter of ascending brainstem neurons, evokes anxiolytic effects and facilitates extinction of conditioned fear responses when administered into the amygdala in mice. An NPS receptor antagonist exerts functionally opposing responses, indicating that endogenous NPS is involved in anxiety behavior and extinction. Cellularly, NPS increases glutamatergic transmission to intercalated GABAergic neurons in the amygdala via presynaptic NPS receptors on connected principal neurons. These results identify mechanisms of NPS in the brain, a key role of intercalated neurons in the amygdala for fear extinction, and a potential pharmacological avenue for treating anxiety disorders.
Article
The present study determined the effect of bilateral lesions of specific cortical or thalamic nuclei that provide excitatory amino acid afferents to the nucleus accumbens (i.e. the dorsal prefrontal cortex, ventral prefrontal cortex, amygdala, hippocampus and periventricular thalamus) on the expression of cocaine-induced behavioral sensitization. Lesions of these nuclei were made during a three-week withdrawal period following repeated daily injections of cocaine or saline. The results indicate that dorsal prefrontal cortex lesions block the expression of behavioral sensitization to cocaine, while ventral prefrontal cortex, fimbria fornix, amygdala and thalamic lesions have no effect. A subsequent microdialysis experiment was performed in order to evaluate the effect of dorsal prefrontal cortex lesions on glutamate transmission in the nucleus accumbens core of cocaine- and saline-pretreated rats. The systemic injection of cocaine produced a significant increase in extracellular glutamate in the nucleus accumbens core among animals with a sham surgery; this effect was blocked by a bilateral lesion of the dorsal prefrontal cortex. Taken together, these results indicate that the dorsal prefrontal cortex, which provides excitatory amino acid input selectively to the core region of the nucleus accumbens, enhances the expression of behavioral sensitization to cocaine by increasing glutamate transmission in this subnucleus.
Article
The effects of cocaine-and amphetamine-regulated transcript (CART) peptide on extracellular concentrations of dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the shell region of the nucleus accumbens (AcbSh) were determined by microdialysis in conscious rats. Intracerebroventricular injections of various doses (0.1-5 microg/5 microl/rat) of CART(55-102) elicited dose-dependent increases of extracellular DOPAC and HVA concentration in the AcbSh, suggesting that CART(55-102) peptide has a psychostimulant-like effect via activation of the mesolimbic dopaminergic system.
Article
Arousal and anxiety are behavioral responses that involve complex neurocircuitries and multiple neurochemical components. Here, we report that a neuropeptide, neuropeptide S (NPS), potently modulates wakefulness and could also regulate anxiety. NPS acts by activating its cognate receptor (NPSR) and inducing mobilization of intracellular Ca2+. The NPSR mRNA is widely distributed in the brain, including the amygdala and the midline thalamic nuclei. Central administration of NPS increases locomotor activity in mice and decreases paradoxical (REM) sleep and slow wave sleep in rats. NPS was further shown to produce anxiolytic-like effects in mice exposed to four different stressful paradigms. Interestingly, NPS is expressed in a previously undefined cluster of cells located between the locus coeruleus (LC) and Barrington's nucleus. These results indicate that NPS could be a new modulator of arousal and anxiety. They also show that the LC region encompasses distinct nuclei expressing different arousal-promoting neurotransmitters.
Article
The learning and remembering of fearful events depends on the integrity of the amygdala, but how are fear memories represented in the activity of amygdala neurons? Here, we review recent electrophysiological studies indicating that neurons in the lateral amygdala encode aversive memories during the acquisition and extinction of Pavlovian fear conditioning. Studies that combine unit recording with brain lesions and pharmacological inactivation provide evidence that the lateral amygdala is a crucial locus of fear memory. Extinction of fear memory reduces associative plasticity in the lateral amygdala and involves the hippocampus and prefrontal cortex. Understanding the signalling of aversive memory by amygdala neurons opens new avenues for research into the neural systems that support fear behaviour.
Article
Glutamate-containing pyramidal neurons in the medial prefrontal cortex (mPfc) project to the ventral tegmental area (VTA) where they synapse on mesocorticolimbic dopamine containing cell bodies and GABA interneurons. In the present study we employed dual probe microdialysis in intact conscious rat brain to investigate the effects of intra-mPfc perfusion with a depolarising concentration of potassium chloride (KCl) (100 mM, 20 min) alone and in the presence of local GABA(A) and GABA(B) receptor blockade on VTA glutamate release. Intra-mPfc KCl transiently increased VTA glutamate release (+71.48+/-14.29%, 20 min). Intra-mPfc perfusion with a concentration of the GABA(A) receptor antagonist bicuculline (10 microM, 120 min) did not influence the intra-mPfc KCl-induced increase in VTA glutamate release (+102.35+/-33.61%, 20 min). In contrast, intra-mPfc perfusion with a concentration of the GABA(B) receptor antagonist CGP35348 (100 microM, 120 min) which when given alone did not influence basal glutamate levels in the VTA was associated with an enhanced KCl-induced stimulation of VTA glutamate release (+375.19+/-89.69%, 40 min). Furthermore, this enhancement was reversed in the presence of the selective GABA(B) receptor agonist baclofen (10 microM, 120 min). The present findings suggest a key role for the prefrontal cortex in the regulation of glutamate release in the VTA. Furthermore, we demonstrate a selective cortical GABA(B) receptor-mediated inhibition of glutamate transmission in the VTA. These findings may be important in the context of abnormalities in amino acid neurotransmission at the network level in schizophrenia.
Article
Neuropeptide S (NPS) is a recently discovered bioactive peptide that has shed new light on the neurobiology of sleep/wakefulness regulation and anxiety-like behavior. NPS can potently promote arousal and suppress all stages of sleep. This effect might be modulated by NPS receptors expressed in thalamic centers that are relays for transmitting arousing stimuli originating from the brainstem to the cortex. The peptide precursor is expressed most prominently in a novel nucleus located directly adjacent to the noradrenergic locus coeruleus, a brain structure with well-defined functions in arousal, stress, and anxiety. NPS was also found to induce anxiolytic-like behavior in a battery of four different tests of innate responses to stress. This unique pharmacological profile of NPS offers significant potential for developing new drugs for the treatment of sleep and/or anxiety disorders.
Article
Although recent reports underscore a close association between the ethanol consumption and the central melanocortin (MC) system in rats, neurobehavioral component of this association has not been explored. In this study, we investigated the role of alpha-melanocyte stimulating hormone (alpha-MSH) in ethanol (1.5-2 g/kg, i.p.) induced anxiolysis and anxiety-like behavior following withdrawal from prolonged ethanol (9% v/v ethanol, 15 days) consumption, using elevated plus maze (EPM) test in rats. While alpha-MSH (1-5 microg/rat, i.c.v.) showed dose-dependent anxiogenic-like effect, the MC4 receptor antagonist HS014 (1-10 nM/rat, i.c.v.) or antiserum against alpha-MSH (1:500-1:50 dilution, 5 microl/rat, i.c.v.) failed to produce any effect in the EPM test. The anxiolytic-like effect of ethanol was suppressed by central administration of alpha-MSH (0.5 microg/rat, i.c.v.). On the other hand, pretreatment with either HS014 (5 nM/rat, i.c.v.) or antiserum against alpha-MSH (1:100 dilution, 5 microl/rat, i.c.v.) enhanced anxiolytic action of ethanol. Moreover, ethanol withdrawal anxiety was markedly blocked by HS014 (1-10 nM/rat, i.c.v.). These results suggest that alpha-MSH may be implicated in ethanol-induced anxiolysis and withdrawal anxiety. These findings also suggest MC4 receptors as possible therapeutic target for development of drugs to address the ethanol withdrawal-related conditions.
Article
Neuropeptide S (NPS) and its receptor (NPSR) constitute a novel neuropeptide system that is involved in regulating arousal and anxiety. The NPS precursor mRNA is highly expressed in a previously undescribed group of neurons located between the locus coeruleus (LC) and Barrington's nucleus. We report here that the majority of NPS-expressing neurons in the LC area and the principal sensory trigeminal nucleus are glutamatergic neurons, whereas many NPS-positive neurons in the lateral parabrachial nucleus coexpress corticotropin-releasing factor (CRF). In addition, we describe a comprehensive map of NPSR mRNA expression in the rat brain. High levels of expression are found in areas involved in olfactory processing, including the anterior olfactory nucleus, the endopiriform nucleus, and the piriform cortex. NPSR mRNA is expressed in several regions mediating anxiety responses, including the amygdaloid complex and the paraventricular hypothalamic nucleus. NPSR mRNA is also found in multiple key regions of sleep neurocircuitries, such as the thalamus, the hypothalamus, and the preoptic region. In addition, NPSR mRNA is strongly expressed in major output and input regions of hippocampus, including the parahippocampal regions, the lateral entorhinal cortex, and the retrosplenial agranular cortex. Multiple hypothalamic nuclei, including the dorsomedial and the ventromedial hypothalamic nucleus and the posterior arcuate nucleus, express high levels of NPSR mRNA, indicating that NPS may regulate energy homeostasis. These data suggest that the NPS system may play a key role in modulating a variety of physiological functions, especially arousal, anxiety, learning and memory, and energy balance.
Article
Excessive fear and anxiety are hallmarks of a variety of disabling anxiety disorders that affect millions of people throughout the world. Hence, a greater understanding of the brain mechanisms involved in the inhibition of fear and anxiety is attracting increasing interest in the research community. In the laboratory, fear inhibition most often is studied through a procedure in which a previously fear conditioned organism is exposed to a fear-eliciting cue in the absence of any aversive event. This procedure results in a decline in conditioned fear responses that is attributed to a process called fear extinction. Extensive empirical work by behavioral psychologists has revealed basic behavioral characteristics of extinction, and theoretical accounts have emphasized extinction as a form of inhibitory learning as opposed to an erasure of acquired fear. Guided by this work, neuroscientists have begun to dissect the neural mechanisms involved, including the regions in which extinction-related plasticity occurs and the cellular and molecular processes that are engaged. The present paper will cover behavioral, theoretical and neurobiological work, and will conclude with a discussion of clinical implications.