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Abstract: Diabetes is a serious health condition that requires patients to regularly monitor their
blood glucose level, making the development of practical, compact, and non-invasive techniques
essential. Optical glucose sensors—and, specifically, NIR sensors—have the advantages of being
non-invasive, compact, inexpensive, and user-friendly devices. However, these sensors have low
accuracy and are yet to be adopted by healthcare providers. In our previous work, we introduced a
non-invasive dual-channel technique for NIR sensors, in which a long channel is utilized to measure
the glucose level in the inner skin (dermis) layer, while a short channel is used to measure the noise
signal of the superficial skin (epidermis) layer. In this work, we investigated the use of dual-NIR
channels for patients with different skin colors (i.e., having different melanin concentrations). We
also adopted a Monte Carlo simulation model that takes into consideration the differences between
different skin layers, in terms of blood content, water content, melanin concentration in the epidermis
layer, and skin optical proprieties. On the basis of the signal-to-noise ratio, as well as the sensitivities
of both the epidermis and dermis layers, we suggest the selection of wavelengths and source-to-
detector separation for optimal NIR channels under different skin melanin concentrations. This work
facilitates the improved design of a compact and non-invasive NIR glucose sensor that can be utilized
by patients with different skin colors.

Keywords: bioinstrumentation; dual-channel; glucose; near-infrared; NIR technology; sensors

1. Introduction

Diabetes is a long-lasting health condition that impacts the process of turning food
into energy in the human body, commonly known as metabolism. Over time, diabetes
can lead to serious health issues, such as heart disease, kidney disease, and vision loss.
Therefore, the regular monitoring of blood glucose levels is vital for diabetic patients.
Over the past few years, scientists and engineers have developed practical invasive and
non-invasive techniques that allow patients to regularly monitor their blood glucose level.
Invasive electrochemical sensors are considered to be the gold standard for measuring
blood glucose [1]. The review article [2] comprehensively investigated recent advancements
in non-invasive blood glucose sensors that are optical, electrochemical, and microwave-
based sensors. Non-invasive microwave blood glucose sensors have attracted the attention
of many researchers due to their high skin penetration depth and low cost. Nevertheless,
the sensitivity of microwave-based sensors still needs to be improved to be clinically
accepted [2]. Non-invasive electrochemical reaction techniques are currently available, but
their accuracy and lifetime are limited [3–5]. Moreover, continuous glucose monitoring
(CGM) electrochemical devices are currently in use. CGM devices are minimally invasive
techniques based on an implanted needle [6,7]. The article [8] identified 34 non-invasive
and 31 minimally invasive glucose monitoring products, and it reviewed their regulatory,
technological, and consumer features.
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Optical glucose measurement devices are emerging and promising techniques. These
techniques have the advantages of being non-invasive, compact, and user-friendly de-
vices [9,10]. Photoacoustic spectroscopy [11], optical coherence tomography [12,13], Ra-
man spectroscopy [14], and near-infrared (NIR) technology are all non-invasive optical
techniques that have been investigated for the measurement of glucose. One study [10]
reviewed the recent developments of different optical techniques, and their features and
limitations were also highlighted. NIR techniques are the most-used and -studied optical
techniques, due to their compactness and low cost. They contain three main parts—an
NIR source, a tissue sample, and a photodiode—to detect the scattered or attenuated
transmitted NIR light. NIR spectroscopy has been utilized in many medical applications,
such as neuroimaging [15,16], the detection of breast cancer [17–19], and for blood glucose
measurements and monitoring [20–22].

There have been great efforts in the scientific community to tackle the complexity
of skin optical measurements. Notably, the article [23] studied the effect of changing the
glucose concentration on light transport using a Monte Carlo simulation model. It is evident
that, with a single wavelength approach, there is a potential challenge to measure glucose
concentration due to the optical complexity of the skin. Another study [24] proposed an
optical probe model with two concentric rings to measure the reflected optical signals at
two different positions. This allowed estimating the variations in skin optical properties
by variations in the blood glucose level. The authors of [25] proposed a technique using
Monte Carlo simulation to reduce glucose prediction errors produced by temperature and
scattering variations. The authors found that small changes in the temperature or volume
fraction of the scattering particle would lead to large glucose prediction errors.

In a previous study [26], we introduced an optimized NIR sensor with two channels
for blood glucose measurements. The long channel is utilized to measure the glucose
level in the inner skin (dermis) layer. This measured signal carries important information
regarding the glucose content. The short channel is used to estimate the interference noise
arising from the superficial skin (epidermis) layer. Thus, the long channel signal can be
used to determine the glucose content in the dermis layer, and the short channel signal can
then be eliminated from the long channel signal. The dual-channel NIR sensor approach
uses two sources with different wavelengths. The two wavelengths of the two sources and
source–detector separation (SDS) were determined on the basis of a Monte Carlo simulation
(MCS) model. The module was specifically investigated for the NIR wavelength range
between 1200 and 1900 nm. However, this model does not consider the detailed anatomical
features of skin layers, such as blood, water, and melanin concentrations. These parameters
are important to consider specifically when investigating the diagnostic window of the NIR
spectrum, which ranges between 450 and 1000 nm [16,27,28].

In this manuscript, we systematically studied the effect of the diagnostic window of
the NIR wavelength spectrum, the effect of different skin colors (i.e., different skin melanin
concentrations), and the source-to-detector separation (SDS) of these wavelength ranges on
the optimal selection of the short and long NIR channels. In addition, an improved and
more detailed skin model [29–32] was adopted for Monte Carlo simulation (MCS). This
model takes into consideration the differences between different skin layers, in terms of
the blood volume fraction, water volume fraction, melanin concentrations in the epidermis
layer, and optical skin proprieties. The absorption of this NIR range (from 450 to 1050 nm)
by the melanin of the epidermis layer and by different dermis layers differs. Therefore, we
expect the optimal selections of the short and long NIR channels to be different for different
wavelengths and for different skin colors.

2. Methods
Monte Carlo Skin Model

The Monte Carlo simulation (MCS) method was used in this study, which was de-
scribed in [33,34]. The light source was modeled as a pencil beam light towards the
z-direction. A detector with a radius of 2 mm is located at a distance from the source as
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shown in Figure 1. The photons detection replay mode described in the paper [35] was
utilized. In brief, the method, initiated by launching millions of photons (here, 100 million)
and the propagation of any launched photon in the skin layers, is calculated on the basis of
the optical properties of the tissues.
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Figure 1. Schematic drawing of the skin model for Monte Carlo simulation. The light propagation
distribution, having a “banana shape”, is illustrated by the dashed lines between the source (S) and
the detector (D).

The skin media are represented as a 3D volume, and each section in the volume is
labeled to represent a specific layer of the skin. Therefore, the location of each voxel in the
skin layers is pre-identified. At the reflection interface, the reflection coefficient is calculated
based on Fresnel’s equation. The coefficient is then multiplied by the photon packet weight.
For more details, the reader is referred to [33,34]. The history of each propagated photon
is tracked with prior knowledge of the optical properties of different skin layers. In the
MCS of the tissue, we considered the absorption coefficient (µa), scattering coefficient (µs),
and refractive index (n) of each skin layer. These optical properties are all wavelength-
dependent. As a photon travels deeper into the tissue, it loses its energy, which results
in a low signal-to-noise ratio (SNR) at the detector side. Therefore, with a long SDS, one
can measure deeper layers; however, this requires a highly sensitive detector to measure
signals with a low SNR. On the other hand, with a short SDS, one can detect photons that
are scattered from superficial layers with a good SNR. Therefore, the choice of both the
operating source wavelength and the optimal SDS is critical in the design of both the long
and short channels for NIR glucose sensors.

For this study, a skin model was built to mimic the propagation of light photons in
the NIR diagnostic window, which ranges from 450 to 1050 nm, with an increment of
100 nm. It is also worth noting that, when choosing the operating source wavelengths, [36]
was considered for spectral glucose absorptivity. The spectral range 450–1050 nm, known
as the “diagnostic window”, has attracted the interest of researchers for many different
diagnostic applications because water absorption is at its minimum [10,16]. This allows
light to penetrate deeper into the tissue. In [36], the authors showed the wavelength-
dependent absorptivity of glucose in an aqueous solution and a glassy state. This range
is less sensitive for temperature changes on the absorptivity of glucose in comparison to
longer wavelengths (>1200 nm).

The anatomical skin model consisted of seven layers, where the layers were optically
inhomogeneous. The different skin layers are illustrated in Figure 1.
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In this model, according to [29], the absorption coefficients for each dermis layer
were calculated considering the differences of important anatomical parameters between
different layers:

µ
layer
a (λ) = (1 − S)γVbloodµHb

a (λ) + SγVbloodµHbO2
a (λ) + (1 − γVblood) VH2O µH2O

a (λ)

+(1 − γVblood)
(
1 − VH2O

)
µother

a (λ),
(1)

where Vblood and VH2O are the blood and water volume fractions, respectively; µH2O
a , µHb

a ,
and µHbO2

a are the absorption coefficients for water, deoxyhemoglobin, and oxyhemoglobin,
respectively; γ is calculated on the basis of the assumption that hemoglobin is only con-
tained in the erythrocytes, which is zero for the stratum corneum and epidermis layers and
0.1 for the dermis layers [29]; µother

a is the calculated absorption coefficient for hemoglobin-
free tissue, which can be estimated as follows [29,37]:

µother
a (λ) = 7.84 × 107 × λ−3.25. (2)

According to [29,31], the absorption coefficients (µa) for the stratum corneum and the
epidermis layers are calculated as follows:

µStratum
a (λ) =

(
0.1 − 8.3 × 10−4 × λ

)
+ 0.125 × µother

a (λ), (3)

µ
epidermis
a (λ) = Vmel µmel

a (λ) + VH2O µHbO2
a (λ) +

(
1 −

(
Vmel + VH2O

) )
µother

a (λ), (4)

where µmel
a is the melanin absorption coefficient, estimated as

µmel
a (λ) = 6.6 × 1010 × λ−3.33. (5)

According to the values reported in [38,39] for melanosome volume concentrations
(Vmel) in the epidermis layer for people having different skin colors, Vmel ranges between
1% and 3% for light-skinned Caucasians, from 11% to 16% for Mediterranean people, and
from 18% to 43% for darkly pigmented Africans. In this study, we used values of 2%, 10%,
20%, and 30% to study the effect of the melanin concentration on the optimal selection of
the NIR channels.

Table 1 summarizes the values utilized in Equation (1) for the estimation of the
absorption coefficients of the various skin layers. The values of other optical properties
utilized in this model, including the scattering coefficients µs and the absorption coefficients
for water (µH2O

a ), deoxyhemoglobin (µHb
a ), and oxyhemoglobin (µHbO2

a ), are illustrated in
Figure 2. The refractive index values used in this model are 1 for air and 1.4 for tissue [31].

Table 1. Values utilized in Equation (1) for the estimation of the absorption coefficients. The values
were taken from [31].

Skin Layer Vblood VH2O Thickness (mm)

Stratum corneum 0 0.05 0.02 mm
Epidermis 0 0.2 0.25 mm

Papillary dermis 0.04 0.5 0.1 mm
Upper blood net dermis 0.3 0.6 0.08 mm

Reticular dermis 0.04 0.7 0.2 mm
Deep blood net dermis 0.1 0.7 0.3 mm

Subcutaneous tissue 0.05 0.7 2 mm
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absorption coefficients for water (µH2O

a ), deoxyhemoglobin (µHb
a ), and oxyhemoglobin (µHbO2

a ) [27,31,38].

To systematically assess the performance when changing the wavelength and the SDS
in order to choose the optimal NIR channel for measuring glucose content, we previously
introduced [26] three metrics. Briefly, the first metric is the epidermis sensitivity, which is
the summation of the photon density function (PMDF) for all voxels in the epidermis layer
over the summation of all photon density functions (PMDF) in the model:

ES = 100 ×
∑Epidermis PMDF

∑total, PMDF
(6)

The PMDF is computed by taking the voxelwise product of the fluence distribution of
the source and the fluence distribution of the detector; details on the computation of the
PMDF can be found in [40]. The second metric is the dermis sensitivity, which is calculated
similarly to that for the epidermis, as follows:

DS = 100 × ∑Dermis PMDF
∑total, PMDF

(7)

These metrics can provide an indication of how sensitive a particular NIR channel
(with a specific wavelength and SDS) is to the epidermis and the dermis layers, respectively.

The third metric involves the calculation of the SNR for each NIR channel. As the SDS
increases, light penetrates deeper into the tissue, i.e., the dermis layer, but the SNR decreases.
Therefore, there is a tradeoff between a good SNR and a high depth of light penetration
into the tissue. Thus, a balance between high dermis sensitivity and an acceptable SNR
should be carefully considered.

By running the MCS for multiple independent seeded simulations, one can calculate
the mean (µ) and standard deviation (σ) at each voxel in the model. Thus, one can calculate
the SNR (in decibels) as follows [26]:

SNR(SD) = 20log10
µ(SD)

σ(SD)
(8)

The SNR is calculated for all MCS models, i.e., for all different wavelengths and all
different ranges of the SDS. To calculate µ and σ, all the voxels in the model are considered.
The calculation of the SNR was introduced and detailed [41]. As indicated above, the
study was conducted considering various important parameters. First, the simulation
was performed for the wavelength range from 450 to 1050 nm with an increment of
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100 nm. For each wavelength, the simulation was completed for a range of source-to-
detector separations (SDSs); specifically from 0.5 to 8 mm with a step size of 0.5 mm. In
a previous study [26], we found that, by running multiple independently seeded MCSs
(N = 15 to 30) for each wavelength and SDS, one could achieve an acceptable convergence
when calculating the SNR. Here, N = 15 was sufficient for calculating the SNR for longer
wavelengths, while N = 20 was sufficient for shorter wavelengths. For consistency, we
adopted N = 20 for all MCS runs.

3. Results and Discussion

The calculated sensitivity for the epidermis layer is shown in Figure 3. The epidermis
sensitivity was calculated for different melanin concentrations, ranging from 2% (which
represents light skin) to 30% (which is for dark skin). The figure also shows the effect of
different wavelengths (450 to 1050 nm) and the effect of increasing the SDS from 0.5 to
8 mm. There was a clear reduction in epidermis sensitivity when increasing the melanin
concentration from 2% to 10%, but the reduction in epidermis sensitivity was not strong
when the melanin concentration was further increased from 20% to 30%. In darker skin, the
epidermis layer was very sensitive to wavelengths from 450 to 650 nm for an SDS of up to
2.5 mm. For light skin (2% melanin concentration), the epidermis layer was very sensitive
to the same wavelengths from 450 to 650 nm, and the SDS could be up to 4.5 mm.
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Figure 3. Epidermis sensitivity for various melanin concentrations and with the wavelength ranging
between 450 and 1050 nm. Sensitivity also shown for SDS ranging from 0.5 to 8 mm.

Similarly, the calculated sensitivity for the dermis layers is shown in Figure 4. For
shorter wavelengths, dermis sensitivity increased as the melanin concentration increased.
The SDS from 4 to 8 mm had high dermis sensitivity. However, for a 2% melanin con-
centration, dermis sensitivity was only 50% when the SDS was longer than 5.5 mm. For
darker skin, the wavelengths of 650 and 750 nm had 50% dermis sensitivity when the SDS
was longer than 3 mm. For all different melanin concentrations, wavelengths from 450 to
650 nm had the lowest dermis sensitivity (less than 20%) with the SDS less than 2.5 mm.
For all wavelengths at all different melanin concentrations, for an SDS of 1.5 mm or less,
dermis sensitivity was always less than 30%.
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Figure 5 shows the calculated SNR for all scenarios. As the melanin concentration
increased, the SNR clearly deceased. For lighter skin (2% melanin concentration) and wave-
lengths between 650 and 1050 nm, the SNR was always above 15 dB. As the wavelength
increased, the general trend of the SNR increased as well. For wavelengths of 450 and
550 nm, the SNR was almost zero for darker skin when the SDS was longer than 1.5 mm.
The SNR was better for light skin at these two wavelengths, where the signal could be
measured up to 1.5 mm at 450 nm and up to 4 mm at 550 nm.
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At a 30% melanin concentration, one needs to go longer than the 750 nm wavelength to
have a good SNR with a longer SDS. More specifically, the 850 nm wavelength had an SNR
of 5–10 dB with the SDS ranging from 4–7.5 mm. For the same SDS range, a wavelength
of 950 nm had a better SNR, of 20–30 dB. Similarly, the SNR was greatly improved for the
same SDS range when increasing the wavelength to 1050 nm, to about 25–32 dB.

As the SDS increased, the general trend of the SNR decreased. In comparison to
light skin, the SNR in darker skin decreased at a higher rate when the SDS increased. For
an SDS of 0.5 to 1 mm, the SNR range was always above 20 dB for all different melanin
concentrations and wavelengths.

In the design of dual-channel NIR glucose sensors, epidermis and dermis sensitivity,
as well as SNR factors should be considered. From a practical perspective, the channels
should have enough source-to-detector separation such that the sensor is easy to design
and build. The aim of the short channel is to suppress the noise arising from the superficial
epidermis layer. In contrast, the long channel is employed to measure the glucose content
confined in the blood-containing inner dermis layer.

For light skin (2% melanin concentration), wavelengths of 450 and 550 nm at an SDS
of up to 2.5 mm showed the highest epidermis sensitivity (Figure 3). However, looking at
the SNRs of the two wavelengths at the same SDS range, it is clear that a wavelength of
550 nm at a 2.5 mm SDS is a better choice for the short channel. For the long channel, we
looked for the highest dermis sensitivity (Figure 4), which was at the long SDS, and the
SNR was only good for longer wavelengths. Therefore, the optimal long channel uses the
wavelength of 650 nm with an SDS between 4 and 6 mm.

For skin with a 10% melanin concentration, epidermis sensitivity was 80% at 550 nm
and 70% at 650 nm at a 2 mm SDS. The SNR at 550 nm was 5 dB, while it was 25 dB at
650 nm at the same SDS. Therefore, the optimal short channel uses the wavelength of 650 nm
at a 2 mm SDS. For the long channel, the maximal dermis sensitivity for all wavelengths
was between 4.5 and 8 mm SDS. As shown in Figure 4, the dermis sensitivity decreased
with increasing wavelength. The optimal long channel uses a wavelength of 650 nm with an
SDS between 4.5 and 6 mm.

For darker skin (20% and 30% melanin concentration), the challenge for choosing
the short channel was that the SNR was attenuated very quickly with increasing the SDS,
specifically for the wavelengths of 450 and 550 nm, which had the highest epidermis
sensitivity. Therefore, one must choose a very short SDS, of 1.5 mm or less, at 550 nm. For
the long channel, one can choose 750 nm at a 4 to 5 mm SDS. However, for very dark skin
(30% melanin concentration), one must assume a longer channel (950 or 1050 nm) to ensure
a good SNR. Table 2 summarizes the selections of the wavelengths of the sources and the
SDSs for the optimal NIR channels under different skin melanin concentrations.

Table 2. Summary of suggested optimal NIR channels.

Melanin
Concentration

Optimal for Short Channel Optimal for Long Channel

Wavelength SDS Wavelength SDS

2% 550 nm 2.5 mm 650 nm 4–6 mm
10% 650 nm 2 mm 650 nm 4–6 mm
20% 550 nm 1.5 mm 750 nm 4–5 mm
30% 550 nm 1.5 mm 950/1050 nm 4–5 mm

4. Conclusions

In this work, we investigated the selection of the optimal dual-NIR channels for
glucose measurements under different skin melanin concentrations, specifically for the
diagnostic window of the NIR spectrum. The selection was based on the SNR and the
sensitivity of both the epidermis and dermis layers considering different skin melanin
concentrations. The detailed skin layer model that was adopted through MCS allowed us
to take into consideration the differences between different skin layers, in terms of blood
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volume fraction, water volume fraction, melanin concentration in the epidermis layer, and
optical skin proprieties. Since this work focused on the design of the dual-channel and the
verifications of its parameters using MC simulation, future work should be experimentally
conducted. Future work should also investigate the signal processing for this sensor and
may include adopting an estimation model to filter the “noise” measured by the short
channel.
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