PatentPDF Available

Trichoderma longibrachiatumالتلميع الحيوي لألياف قماش الجوت بأستخدام أنزيم السيليوليز المنقى من فطر المعزول محليآ

Authors:

Abstract

The Bio-polishing technique of jute fibers was achieved for the first time in Iraq by using cellulase purified from locally isolated Trichoderma longibrachiatum which recorded first in Iraq in NCBI site as AB1. Enzymatic treatmemt of jute fibers was carried out and the released reducing sugars and percentage of loss in weight of jute fibers were determined , then morphological and structural characteristic were examined by using FT-IR spectroscopy and scanning electron microscope. Enzymatic treatment was achieved by incubating 1200mg of jute fibers with gradual concentrations of purified enzyme (33, 50 and 100%) for 1-6 hours at 40°C (the optimum temperature of enzyme activity and stability). Results showed that the maximum release of reducing sugars has been achieved after three hours of incubation with the enzyme, where the concentration of released reducing sugars was 1.50, 0.89 and 0.69 mg/ml after the treatment with the enzyme in a concentrations of 100, 50 and 33% respectively. The results of enzymatic treatment also indicated a significant decrease in P <0.05) in the weights of jute fibers after enzymatic treatment for three hours at a temperature of 40 ° C in all enzymatic concentrations. As the percentage of weight loss reached 26.5% after treatment with the concentrated enzyme 100% due to the presence of a higher concentration of the enzyme relative to the fixed amount of jute fibers (1200 mg), compared to the loss rate of 19.18% and 15.78% after the treatment with cellulase enzyme at a concentration of 50% and 33%, respectively. Structural and morphological characteristics of enzymatically treated jute fibers were studied. Texture analysis by using scanning electron microscope showed that bio-polishing caused the removal of the protruding hairs and micro fibrils, and loosened fibers to give a smoother product compared with the control sample Finally, The Bio-polishing method has demonstrated,through these criteria used above, that jute fibers have been softened and biologically smoothed as it is considered a cheep, safe and environmentally friendly method instead of using undesired chemicals method that may cause harm to the environment and factory workers

oderma Trich
longibrachiatum
Bio-polishing of jute fibers by using cellulase purified from locally
isolated Trichoderma longibrachiatum

Bio-polishing
Trichoderma longibrachiatum
AB1 NCBI

    
FT-IRSEM
1200 
 33 50 100 6-1 40 

1.50 0.89 0.69 
 100 50 33
P<0.05)
40
26.5 100
120019.18 15.78 
% 50 33


    




Summary
The Bio-polishing technique of jute fibers was achieved for the first time in Iraq
by using cellulase purified from locally isolated Trichoderma longibrachiatum which
recorded first in Iraq in NCBI site as AB1. Enzymatic treatmemt of jute fibers was
carried out and the released reducing sugars and percentage of loss in weight of jute
fibers were determined , then morphological and structural characteristic were examined
by using FT-IR spectroscopy and scanning electron microscope.
Enzymatic treatment was achieved by incubating 1200mg of jute fibers with
gradual concentrations of purified enzyme (33, 50 and 100%) for 1-6 hours at 40°C (the
optimum temperature of enzyme activity and stability). Results showed that the
maximum release of reducing sugars has been achieved after three hours of incubation
with the enzyme, where the concentration of released reducing sugars was 1.50, 0.89
and 0.69 mgml after the treatment with the enzyme in a concentrations of 100, 50 and
33% respectively.
The results of enzymatic treatment also indicated a significant decrease in P <0.05)
in the weights of jute fibers after enzymatic treatment for three hours at a temperature
of 40 ° C in all enzymatic concentrations. As the percentage of weight loss reached
26.5% after treatment with the concentrated enzyme 100% due to the presence of a
higher concentration of the enzyme relative to the fixed amount of jute fibers (1200 mg),
compared to the loss rate of 19.18% and 15.78% after the treatment with cellulase
enzyme at a concentration of 50% and 33%, respectively.
Structural and morphological characteristics of enzymatically treated jute fibers
were studied. Texture analysis by using scanning electron microscope showed that bio-
polishing caused the removal of the protruding hairs and micro fibrils, and loosened
fibers to give a smoother product compared with the control sample
Finally, The Bio-polishing method has demonstrated,through these criteria used
above, that jute fibers have been softened and biologically smoothed as it is considered
a cheep, safe and environmentally friendly method instead of using undesired chemicals
method that may cause harm to the environment and factory workers



63-58 24-211.5-0.8
14-12   1.2 0.6     0.8-0.4   

(1

1
 Bio-polishing)




1 1.9-1.7


(2


Trichoderma longibrachiatum
AB1



3
          
  4 5      






  NCBI AB1



 1-1Trichodrema
1 
TSM agar 
Trichoderma Elade4
50-45 2 

 PDAL- shape 3 2827  4  Trichoderma
(PDA)potato dextrose agarTrichoderma
2827 4
Trichoderma           
Trichoderma TrichodermaSamuels Hebber 5
CMD)Corn Meal Dextrose Agar(CMA) Carboxy Methy Agar (SNA) Spezieller Nahrstoffarmer agar(MEA) Malt extract agar  282
     Trichoderma DNA Extraction Mini Kit     (8) ZYMO    1 150Trichoderma 
2823200D.D.W
 2 750 ( lysis solution ) 
 vortex 5 3 . 5β- mercapto ethanol-8) 
Zp Bashing bead lysis tube 4  10000  5 400 zymo spin iv spin filter
7000 6 1200 fungal DNA binding buffer 800
zymo spin iic column 7     10000       500) fungal DNA wash buffer ( 
zymo spin iic column      10000 . 8    zymo spin iic column     micro centrifuge tube100 DNA elution buffer  
   10000 30          .DNA

 Nano Drop 
1

260

280
PCR1  Primer
) PCR( 
 ) ITS(   )rRNA (S ribosomal RNA 5.8  (9)1
Dnase
100
10

 )ITS(S rRNA 5.8   ) Macrogen(      ) DNA Sequenceing(
 Blast NCBI Mega 6 


 Sequence analysis 

      NCBI National Center for Biotecnology and Information  Query ) 
 ( Sbjct ) 
 BLAST .
1-2
 1  Trichoderma Mandle
 2 
           
HCl-Tris 3 
 4 
) Ion exchange chromatography(elluloseC-DEAE 5  
200-G

. 6      Standards      G200-sephadex)d BSALysozyme, pepsin, Pronase, urease an(
3-1
        T. Longibrachiatum
            Jabasingh
Nachiyar 10 1  2 
50  3 1200  5 
T. longibrachiatum1005033 4 40 
 5    25   
 6  50 
4-1
           
 Otagevwo Aluyi11

1-4-1 1 110 10
3.0- 0.3
3 2 1.5 563
 10  3 21.5 
 4 540  5 540 
2
2-4-1

Fu
120.5 1.5 
1.5  DNS
10
 21.5 
 540   
1-3-12
5-1 
 5072
(12
Weight loss (%)=W° W1 W°] x 100

°
W 
1
W
6-1 1-6-1 FT-IR Spectral Analysis

Bagewadi
(13
º105 

)500- 4000
1
2-6-1
 
 Bagewadi13




Trichoderma
7 Trichoderma longibrachiatum 3
.1Genomic DNA Isolation
2.0-1.841.43 4
.2  Polymerase Chain Reaction 
       Trichoderma    Internal transcribed spacer ( ITS)   ITS1 ITS4   
 5.8S ribosomal RNA ( rRNA)   ITS1  ITS 2
5
 bp 550 


 ITS 5.85 rRNA 
     PCR    
NCBIITS 5.85 rRNAITS1 , ITS4  18s rRNA

3.  ication productsSequence analysis of amplif
 ITS1  rRNA 5.8S
 Trichoderma  Macrogen 6
 491) FASTA( 7
8
   BLAST     NCBI ITS1  rRNA
5.8S NCBI 100KY750397.1 ID: 4
9
 Mega 6.0
   ID: 401554.1   longibrachiatum Trichoderma
 dermaTricho longibrachiatum10
NCBI AB1
KY750397.1 ID: 11

 T. longibrachiatum

 100 50 331200 
40) 
pH4



(pH4) .

(%100 )1.50  0.89 0.69 
 % 50 33P<0.05 
5
P<0.05)
40
26.5 100
120019.18 15.78 
% 50 33
100

   

FT-IR

3000-4000
1
 800-900
1

C-O-C C-O
         3500-3600 
1
 
O-H
12
21
1730
1

4-O-methyl-glucanoacetyl xylan
 xylan71 1500-1600
1


 81  1200-1250 
1
   O-C

91 1107.17
1
 O-C
 (20) 

897.12
1
O-C
 Syringyl Guaiacyl
Hydrophenyl units of lignin)(21)


 T. longibrachiatum
(SEM
13








1  2  3 

1  T. longibrachiatum

NCBIAB1 2  T. longibrachiatum
AB1 3 
 T. longibrachiatum 4    
       
 5 
 6            
 7  8  9 


1   T. longibrachiatum
 2 1 T. longibrachiatum
 Samuels Hebbar7
 3 1
 NCBI AB1 4  T. longibrachiatum
 5 
6  T. longibrachiatum100 50 3340 
6 4 7 100
 3 1.50  0.89 0.69  % 50 33
 8  26.5  
 100            
120019.18 15.78 % 50
33 9 
          
 10 
1730
1
1500-1600
1
1250 -1200
1
1107.17 
1
897.12
1

 11 





12
1) ITS(  S ribosomal RNA 5.8
-
Primer
name
Sequence(5′3′)
m
T
(C)
GC
content(
%)
Product
size(bp)
Company
Forward
ITS1
TCCGTAGGTGAACCTGCGG
60.3
50 %
650
IDT,
Canada
Reverse
ITS4
TCCTCCGCTTATTGATATGC
57.8
41 %
2PCR
No.
C)(
m
T
Time
No. of cycles
1
94
3 min.
1 cycle
2
94
45 sec
35 cycle
3
52
45sec
4
72
45sec
5
72
10 min.
1 cycle
3540 












540

1
0
10
10
0
0
2
0.3
9.7
10
0.3
0.06
3
0.6
9.4
10
0.6
0.141
4
0.9
9.1
10
0.9
0.197
5
1.2
8.8
10
1.2
0.264
6
1.5
8.5
10
1.5
0.315
7
1.8
8.2
10
1.8
0.38
8
2.1
7.9
10
2.1
0.44
9
2.4
7.6
10
2.4
0.505
10
2.7
7.3
10
2.7
0.556
11
3.0
7.0
10
3.0
0.610
2
CMA -A-
y = 0.203x + 0.009
R² = 0.998
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
OD (595nm)
Glucose concentration (mg/ml)
 SNA  -B -
MEA C-
CMDD-
-E-
-F -
3A-DTrichoderma longibrachiatum
EF100X
Genomic DNA
4   
1% 5 
5 ITS1  ITS4  PCR  . S rRNA 5.825 M :  100100001 .Trichoderma
6Trichoderma longibrachiatum
1_ITS4.ab1 491
AAATTACAAAGGTCACTCCAACCCCATGTGAACGTTACCAATCTGTTGCC
TCGGCGGGATTCTCTTGCCCCGGGCGCGTCGCAGCCCCGGATCCCATGGC
GCCCGCCGGAGGACCAACTCCAAACTCTTTTTTCTCTCCGTCGCGGCTCC
CGTCGCGGCTCTGTTTTATTTTTGCTCTGAGCCTTTCTCGGCGACCCTAG
CGGGCGTCTCGAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTC
TGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAG
AATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATT
CTGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGG
GGGGTCGGCGTTGGGGGATCGGCCCCTCACCGGGCCGCCCCCGAAATACA
GTGGCGGGTCTCGCCGCAGCCTCTCCTGCGCAGTAGTTTGC
7 ( FASTA )  ITS1   5. 8 S rRNA   Trichoderma longibrachiatum
1 cctggtgaag cggagggaca ttaccgagtt tacaactccc aaaccccaat gtgaacgtta
61 ccaatctgtt gcctcggcgg gattctcttg ccccgggcgc gtcgcagccc cggatcccat
121 ggcgcccgcc ggaggaccaa ctccaaactc ttttttctct ccgtcgcggc tcccgtcgcg
181 gctctgtttt atttttgctc tgagcctttc tcggcgaccc tagcgggcgt ctcgaaaatg
241 aatcaaaact ttcaacaacg gatctcttgg ttctggcatc gatgaagaac gcagcgaaat
301 gcgataagta atgtgaattg cagaattcag tgaatcatcg aatctttgaa cgcacattgc
361 gcccgccagt attctggcgg gcatgcctgt ccgagcgtca tttcaaccct cgaacccctc
421 cggggggtcg gcgttggggg atcggcccct caccgggccg cccccgaaat acagtggcgg
481 tctcgccgca gcctctcctg cgcagtagtt tgcacactcg caccgggagc gcggcgcggc
541 cacagccgta aaacacccca aacttctgaa atgttgacct cggatcaggt aggaataccc
601 gctgaactta agcatatcaa aaagccggag gaaa
85 . 8 S rRNA   Trichoderma longibrachiatum
4 100%score
Source
Identities
Expect
Score
Sequence ID
Region
Nucleotide
Location
Type of
substitution
No. of repeat
Trichoderma
longibrachiatum
100%
0.0
739
KY750397.1
74 to 473
None
1
Score
Expect
Identities
Gaps
Strand
739 bits(400)
0.0
400/400(100%)
0/400(0%)
Plus/Plus
Query 1 TCGGCGGGATTCTCTTGCCCCGGGCGCGTCGCAGCCCCGGATCCCATGGCGCCCGCCGGA 60
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct 74 TCGGCGGGATTCTCTTGCCCCGGGCGCGTCGCAGCCCCGGATCCCATGGCGCCCGCCGGA 133
Query 61 GGACCAACTCCAAACTCTTTTTTCTCTCCGTCGCGGCTCCCGTCGCGGCTCTGTTTTATT 120
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct 134 GGACCAACTCCAAACTCTTTTTTCTCTCCGTCGCGGCTCCCGTCGCGGCTCTGTTTTATT 193
Query 121 TTTGCTCTGAGCCTTTCTCGGCGACCCTAGCGGGCGTCTCGAAAATGAATCAAAACTTTC 180
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct 194 TTTGCTCTGAGCCTTTCTCGGCGACCCTAGCGGGCGTCTCGAAAATGAATCAAAACTTTC 253
Query 181 AACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATG 240
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct 254 AACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATG 313
Query 241 TGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATT 300
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct 314 TGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATT 373
Query 301 CTGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGGTCGGCG 360
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct 374 CTGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGGTCGGCG 433
Query 361 TTGGGGGATCGGCCCCTCACCGGGCCGCCCCCGAAATACA 400
||||||||||||||||||||||||||||||||||||||||
Sbjct 434 TTGGGGGATCGGCCCCTCACCGGGCCGCCCCCGAAATACA 473
9ITS1 5 . 8 S rRNA
  Trichoderma longibrachiatum   
NCBI 
10T. longibrachiatumMEGA v.6.0
11T.longibrachiatum AB1 NCBI https: //www.ncbi.nlm.nih.gov/nuccore/MF164044.1
5
AB1 T. longibrachiatum
40



50

33
1
0.50
0.33
2
0.69
0.51
3
0.89
0.69
4
0.76
0.56
5
0.45
0.31
6
0.35
0.20
A
B
12A
B
A
B
13A
B

1- Liew, F. K.; Hamdan, S.; Rahman, R. and Rusop, M. (2017). Thermo
mechanical Properties of Jute / Bamboo Cellulose Composite and Its Hybrid
Composites : The Effects of Treatment and Fiber Loading, Advances in
Materials Science and Engineering, 2017, (1-10).
2- Karaduman, Y, Gokcan, D and Onal, L.(2012). Effect of enzymatic
pretreatment on the mechanical properties of jute fiber-reinforced polyester
composites.. Journal of Composite Materials 47(10) 12931302.
3- Mohiuddin, G.: Enhancement of microbial growth for the improvement of
spinning performance of jute cuttings. Bangladesh J. Jute Fiber Res., 10, 1-6
(1985).
4- Kuhad, R. C.; Gupta, R. and Singh, A. (2011). Microbial cellulases and their
industrial applications. Enzyme research, Volume2011(2011). Article ID
280696, 10 pages .http://dx.doi.org/10.4061/2011/280696
5- Gupta, R.; Mehta, G.; Deswal, D.; Sharma, S.; Jain, K. K.; Kuhad, R.C. and
Singh, A. (2013). Cellulases and their biotechnological applications. In
Biotechnology for Environmental Management and Resource Recovery (pp.
89-106). Springer India.
6- Elade, Y.; Chet, I. and Henis, Y. (1981). A selective medium for improving
quantitative isolation of Trichoderma spp. from soil. Phytoparasitica, 9:5968
7- Samuels, G.J. and Hebbar, P.K. (2015). Trichoderma Identification and
Agricultural Applications. The American Phytopathological Society, 1st Edn.,
St. Paul, Minnesto, USA, pp196.
8- Iti, G.M ; Niraji , T. and Shard, T. (2014). A simple and Rabid. DNA
Extraction protocol for filamentous fungi efficient for molecular studies.
Indian Journal of Biotechnology, 13:536-539.
9- White, T. J.; Bruns, T.; Lee, S. and Taylor, J. (1990). Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR
Protocoles: A Guide to Methods and Applications. (Innis, M. A. Gelfand, D.
H. Sninsky, J. J. White, T. J. Eds.). Academic Press, Inc, California. Pp 315-
322.
10- Jabasingh, S. and Nachiyar, C. (2012). Process Optimization for the
Biopolishing of Jute Fibers with Cellulases from Aspergillus Nidulans AJ
SU04. International Journal of Bioscience, Biochemistry and Bioinformatics,
Vol. 2, No.1.
11- Otajevwo, F. and Aluyi, H. (2011). Cultural conditions
necessary for optimal cellulase yield by cellulolytic bacterial organisms as
they relate to residual sugars released in broth medium. Modern Appl. Sci.,
5(3): 141- 151.
12- Fu, J.; Nyanhongo, G.; Silva, C.; Cardinale, M.; Prasetyo, E.; Yu, C. and Bitz,
G. (2012). Bamboo fiber processing : insights into hemicellulase and
cellulase. Biocatalysis and Biotransformation, 30, 27 37.
13- Bagewadi, Z.; Mulla, S. and Ninnekar, H. (2016). Purification and
characterization of endo 1,4-d-glucanase from Trichoderma harzianum strain
HZN11 and its application in production of bioethanol from sweet sorghum
bagasse. Biotechnol., 6(1).
14- Han, G.; Huan, S.; Han, J.; Zhang, Z.; Wu, Q. (2014). Effect of acid
hydrolysis conditions on the properties of cellulose nanoparticle-reinforced
polymethylmethacrylate compostes. Materials, 7, 1629.
15- Sajithkumar, K.; Visakh, P., and Ramasamy, E. (2016). Moringa oleifera
(Drum stick vegetable fibre) based nanocomposeds with natural rubber:
preparation and characterization. Waste and Biomass Valorization;
7(5):1227-1234.
16- Kaith, B. and Kalia S. (2008) Graft Copolymerization of MMA onto Flax
under different Reaction Conditions: A comparative Study. Express Polymer
Letters, 2, 93.
17- Amantes, B.; Melo, R.; Pinto, R. and Neto, C. (2017).
Chemical treatment and modification of jute fiber surface, Chemical
Purification of Cellulose from Jute Fibers, 11(3), 333343.
18- Viera, R. G. P.; Filho, G. R.; Assuncao, R. M. N.; Da, S.; Meireles, C.; Vieira,
J. G. and De Oliveira, G. S. (2007). Synthesis and characterization of
methylcellulose from sugar cane bagasse cellulose,” Carbohydrate Polymers
67, 182-189.
19- Sukmawan, R.; Takagi,H. and Nakagaito, A. N. ( 2016). “Strength evaluation
of cross-ply green composite laminates reinforced by bamboo fiber,”
Composites Part B: Engineering,vol.84,pp.916.
20- Mwaikambo, L. and Ansell, M. (2002). Chemical modification of
hemp sisal jute and kapok fibers by alkalization. J. Appl. Polym. Sci.84:2222-
2234.
21- Buranov, A. and Mazza, G. (2008). Lignin in straw of herbaceous crops.
Industrial crops and products, 28(3), 237-259.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Jute cellulose composite (JCC), bamboo cellulose composite (BCC), untreated hybrid jute-bamboo fiber composite (UJBC), and jute-bamboo cellulose hybrid biocomposite (JBCC) were fabricated. All cellulose hybrid composites were fabricated with chemical treated jute-bamboo cellulose fiber at 1 : 1 weight ratio and low-density polyethylene (LDPE). The effect of chemical treatment and fiber loading on the thermal, mechanical, and morphological properties of composites was investigated. Treated jute and bamboo cellulose were characterized by Fourier transform infrared spectroscopy (FTIR) to confirm the effectiveness of treatment. All composites were characterized by tensile testing, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Additionally, surface morphology and water absorption test was reported. The FTIR results revealed that jute and bamboo cellulose prepared are identical to commercial cellulose. The tensile strength and Young’s modulus of composites are optimum at 10 weight percentage (wt%) fibers loading. All cellulose composites showed high onset decomposition temperature. At 10 wt% fiber loading, JBCC shows highest activation energy followed by BCC and JCC. Significant reduction in crystallinity index was shown by BCC which reduced by 14%. JBCC shows the lowest water absorption up to 43 times lower compared to UJBC. The significant improved mechanical and morphological properties of treated cellulose hybrid composites are further supported by SEM images.
Article
Full-text available
An acidophilic-solvent-thermostable endo β-1,4-d-glucanase produced from a potential Trichoderma harzianum strain HZN11 was purified to homogeneity by DEAE-Sepharose and Sephadex G-100 chromatography with 33.12 fold purification with specific activity of 66.25 U/mg and molecular mass of ~55 kDa. The optimum temperature and pH were 60 °C and 5.5 retaining 76 and 85 % of activity after 3 h, respectively. It showed stability between pH 4.5–6.0 and temperature between 50–70 °C indicating thermostability. Endo β-1,4-d-glucanase was activated by Ca²⁺ and Mg²⁺ but inhibited by Hg²⁺, Pb²⁺ and Cd²⁺. The effect of thiol reagents, metal chelators, oxidizing agents and surfactants on enzyme activity has been studied. Purified endo β-1,4-d-glucanase exhibited highest specificity towards carboxymethyl cellulose. Kinetic analysis showed the Km, Vmax and Ki (cellobiose inhibitor) of 2.5 mg/mL, 83.75 U/mg and 0.066 M, respectively. The storage stability of purified endo β-1,4-d-glucanase showed a loss of mere 13 % over a period of 60 days. The hydrolysis efficiency of purified endo β-1,4-d-glucanase mixed with cocktail was demonstrated over commercial enzyme. Optimized enzymatic hydrolysis of sweet sorghum and sugarcane bagasse released 5.2 g/g (36 h) and 6.8 g/g (48 h) of reducing sugars, respectively. Separate hydrolysis and fermentation of sweet sorghum bagasse yielded 4.3 g/L bioethanol (16 h) confirmed by gas chromatography–mass spectrometry (GC–MS). Morphological and structural changes were assessed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Elemental analysis was carried out by SEM equipped with energy dispersive X-ray technique. These unique properties prove the potentiality of enzyme for biomass conversion to biofuel and other industrial applications. Electronic supplementary material The online version of this article (doi:10.1007/s13205-016-0421-y) contains supplementary material, which is available to authorized users.
Article
Full-text available
Natural fibres have recently become attractive to scientific community as an alternative reinforcement for fibre reinforced polymer (FRP) composites. As compared to conventional fibres, such as glass and carbon FRPs have low cost, fairly good mechanical properties, ecofriendly and bio-degradability characteristics. In the present work, bio based nanocomposites were successfully developed using cellulose nano whisker as filler in natural rubber latex by water evaporation method. The cellulose nano whisker were prepared from “Moringa oleifera” (Drum Stick vegetable Fibre) by acid hydrolysis. The morphology of cellulose whiskers/NR nanocomposites was investigated by Scanning Electron Microscope. The presence of nano cellulose whiskers (CW) in the NR matrix was observed by using Fourier transfer-infra red (FTIR) spectroscopy. The tensile properties such as tensile strength, tensile modules and elongation at break were measured by Universal Testing Machine. Thermal degradation of the nanocomposites were also analyzed using thermal gravimetric analysis (TGA). The result of the study shows that CW in the nanocomposites prepared during this study are randomly oriented and distributed homogeneously throughout the matrix. The FTIR analysis provided clear evidence of the presence of nano CW in the NR matrix that can be observed by the absorption peaks at 1033 and 1057 cm−1 assigned to C–O stretching of cellulose and TGA analysis showed the thermal stability of the nanocomposites increased with increasing CW, tensile strength and modulus values were also increased with CW addition. Hence the present study shows that the cellulose nano whiskers from Moringa oleifera has improved the properties of natural rubber based composite and can be considered as a good natural reinforcing material for future applications.
Chapter
Full-text available
For a long-range solution to the global issues of energy, chemical and food, the most abundant, renewable and sustainable bioresource cellulose could be a feasible solution. The depolymerisation of cellulose by a group of enzyme cellulases could potentially lead to the development of various value-added products. Due to their immense potential, cellulases are involved in various industrial and biotechnological applications related to pulp and paper, textile, fuel and other organic chemical synthesis industries. However, to further economise the cellulase production, extensive research is being carried out using various approaches including genetic manipulation and process engineering. In this chapter, a brief overview of cellulases and their potential applications are being discussed.
Article
Full-text available
A simple and rapid protocol for extracting high-quality DNA from filamentous fungi was studied. The method involved disruption of fungal cells by employing glass bead method, followed by inactivation of proteins using CTAB/proteinase K. The DNA yield from fungal isolates varied from 310-1879 µg g -1 dry mycelium and a clear intact DNA band was observed upon agarose gel electrophoresis. Absorbency ratios (A 260 /A 280) for DNA ranged 1.7-1.9, which indicated minimal presence of contaminating metabolites. PCR analysis like 18S rRNA gene amplification, random amplified polymorphic DNA (RAPD) and PCR-restriction fragment length polymorphism (PCR-RFLP) showed that DNA was compatible for downstream applications. This method can be applied to extract genomic DNA of filamentous fungi from different environmental sources. PCR-based methods have become a common tool for fungal identification and diagnosis. Although PCR amplification can be performed directly on various microbial cultures, prior isolation of DNA is often required for fungi and yeast. DNA extraction process eliminates many unknown interfering substances, such as, salts, proteins, polysaccharides etc., and plays a significant function in ensuring consistent test results. Hence, for any PCR based analysis, the rapid isolation of relatively pure genomic DNA of high mol wt is a prerequisite. Many fungal DNA isolation kits are available in the market, which are quite expensive and cannot be used by laboratories extensively involved with DNA isolation in developing countries. Far-reaching efforts have been made to improve DNA preparation from fungi
Article
Full-text available
A total of 115 samples made up of 42 (36.5%) rumen fluid, 36 (31.3%) cowdung and 37 (32.2%) soil samples were collected with the aid of sterile swab sticks except for rumen fluid samples which were collected by use of stomach tubes inserted into mouths of cows and by suction, liquor was collected into prewarmed thermo flasks under continuous flushing with carbondioxide. Soil samples were collected into sterile universal containers. All samples were obtained from abattoirs situated at three locations in Benin City, Nigeria. Samples were investigated for cellulolytic bacteria by Filter Paper Yeast Mineral broth method. Cellulase production was assayed by Carboxymethyl cellulose submerged broth culture while residual sugar yield and other cellulolytic activities were determined by 3, 5 – Dinitrosalicylic acid, Filter Paper, Microcrystalline and Viscometric methods. Cellullolytic bacterial organisms isolated from both soil and rumen fluids were Bacillus subtilis, Clostridium cellobioparum and Clostridium thermocellum. Pseudomonas aeruginosa was isolated from both soil and cowdung samples while Erwinia spp was obtained from both rumen fluid and cowdung samples. Bacillus circulans and Serratia spp were obtained from soil samples only. Clostridium thermocellum and Erwinia spp produced the highest and lowest cellulase yields respectively. All isolates at 40 o C and pH 6, recorded optimal sugar yields in culture broth of which Clostridium thermocellum recorded the highest. Lowest yields were recorded at 30 o C and pH 3 although there was significant difference in individual yields (P < 0.05). Clostridium thermocellum recorded optimal cellulolytic activities at 50 o C and pH 6. All isolates attained optimal cellulolytic activities at 32.6 ± 6.2 o C and pH 6.29 ± 0.9 with other broth cultural conditions kept constant. Implications of these findings are discussed.
Article
The enzyme cellulase of higher activity (49.82 U/ml) from Aspergillus nidulans AJ SU04 was applied for the biopolishing of jute fibers in this study. Application of cellulase in fabric biofinishing is investigated by treating the jute fibers with partially purified cellulase and studying the enhancement of fiber brightness, smoothness and weight loss. The biofinishing conditions including treatment time, fiber to enzyme ratio (concentration), agitation rate and temperature are optimized for a smooth fiber surface. The results of the scanning electron microscope (SEM) analysis, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) favored maximum surface finishing. The optimized conditions for the biopolishing of jute fibers were found to be 45⁰C, PH 5.0 and 17 h of the treatment. The optimum jute fiber concentration was found to be 16% (w/v).
Article
The effect of various enzyme treatments on the mechanical properties of jute fiber-reinforced polyester composites was investigated in this study. Prior to composite production, jute fabrics were treated with pectinase, laccase, cellulase and xylanase enzyme solutions with varying enzyme mixtures and treatment time according to experimental design. The comparison of NaOH and enzyme-treated samples was also investigated. Jute fabric-reinforced polyester composite samples were produced using compression molding. The effect of enzymatic and NaOH treatment on fibers and fiber-matrix interface was investigated by scanning electron microscopy study. The mechanical properties of enzyme-treated and control (without enzyme treatment) samples were evaluated by means of tensile and flexural tests. It was observed that enzymes destroyed pectin, hemicelluloses and lignin substances from the fiber bundle interface which reduced the technical fiber diameter and hence increased the fiber aspect ratio. Therefore, a greater fiber-matrix interface area was created after enzymatic treatment, which facilitated better fiber-matrix adhesion and improved mechanical properties of the composites. The data indicated that enzyme treatment can be used as an effective, cheap and environmentally friendly fiber modification method for natural fiber-reinforced composite production.