ArticlePDF Available

Getting the privacy calculus right: Analyzing the relations between privacy concerns, expected benefits, and self-disclosure using response surface analysis

Authors:

Abstract and Figures

Rational models of privacy self-management such as privacy calculus assume that sharing personal information online can be explained by individuals’ perceptions of risks and benefits. Previous research tested this assumption by conducting conventional multivariate procedures, including path analysis or structural equation modeling. However, these analytical approaches cannot account for the potential conjoint effects of risk and benefit perceptions. In this paper, we use a novel analytical approach called polynomial regressions with response surface analysis (RSA) to investigate potential non-linear and conjoint effects based on three data sets (N1 = 344, N2 = 561, N3 = 1.131). In all three datasets, we find that people self-disclose more when gratifications exceed concerns. In two datasets, we also find that self-disclosure increases when both risk and benefit perceptions are on higher rather than lower levels, suggesting that gratifications play an important role in determining whether and how risk considerations will factor into the decision to disclose information.
Content may be subject to copyright.
Kezer, M., Dienlin, T., & Baruh, L. (2022). Getting the privacy calculus right: Analyzing the relations between
privacy concerns, expected benefits, and self-disclosure using response surface analysis. Cyberpsychology: Journal
of Psychosocial Research on Cyberspace, 16(4), Article 1. https://doi.org/10.5817/CP2022-4-1
Getting the Privacy Calculus Right: Analyzing the Relations Between
Privacy Concerns, Expected Benefits, and Self-Disclosure Using
Response Surface Analysis
Murat Kezer1, Tobias Dienlin2, & Lemi Baruh3
1 Department of Psychology, University of Oregon, USA
2 Department of Communication, University of Vienna, Austria
3 Department of Communication, Koç University, Turkey
Abstract
Rational models of privacy self-management such as privacy calculus assume that
sharing personal information online can be explained by individuals’ perceptions of
risks and benefits. Previous research tested this assumption by conducting
conventional multivariate procedures, including path analysis or structural equation
modeling. However, these analytical approaches cannot account for the potential
conjoint effects of risk and benefit perceptions. In this paper, we use a novel analytical
approach called polynomial regressions with response surface analysis (RSA) to
investigate potential non-linear and conjoint effects based on three data sets (N1 = 344,
N2 = 561, N3 = 1.131). In all three datasets, we find that people self-disclose more when
gratifications exceed concerns. In two datasets, we also find that self-disclosure
increases when both risk and benefit perceptions are on higher rather than lower levels,
suggesting that gratifications play an important role in determining whether and how
risk considerations will factor into the decision to disclose information.
Keywords: privacy calculus; privacy paradox; response surface analysis; online
self-disclosure; anticipated benefits of self-disclosure; concerns
about privacy; uses and gratifications
Editorial Record
First submission received:
September 29, 2021
Revisions received:
March 6, 2022
May 20, 2022
Accepted for publication:
July 1, 2022
Editor in charge:
Alexander P. Schouten
Introduction
In 2001, in a report aimed to outline how internet users’ experience can be improved, Barry Brown from Hewlett
Packard Laboratories observed “something of a ‘privacy paradox’” (2001, p. 1): Surprisingly, despite voicing
concerns about privacy and security, users gave up their privacy in exchange for only little gain (e.g., supermarket
loyalty points). Since then, the concept of privacy paradox, which generally refers to a gap between reported
concerns/attitudes about privacy and intentions/behavior, has been a central dimension of debates about privacy
self-management (e.g., adoption of protective behavior, use of online services, disclosure of information;
Barnes, 2006; Barth & de Jong, 2017; Baruh et al., 2017; Dienlin & Trepte, 2015; Kokolakis, 2017).
Extant literature offers a number of explanations for the privacy paradox phenomenon. One commonly cited
explanation is that many of the studies observing the privacy paradox (Fogel & Nehmad, 2009; Shin & Kang, 2016;
Taddicken, 2014) focus only on concerns or risk perceptions as a predictor of privacy management behavior. A
commonly cited alternative to this approach is the privacy calculus model (Culnan & Armstrong, 1999), which
predicts that individuals’ decisions about privacy management behavior involve weighing the expected negative
consequences of sharing personal information along with the expected benefits of such behavior. Accordingly,
individuals would be more likely to engage in behaviors such as signing up for a new social media platform or
disclosing information when the anticipated benefits of doing so exceed the expected costs.
While privacy calculus has become a key concept in privacy literature, researchers have mainly used traditional
statistical techniques (e.g., multiple regression) that may not be as informative about privacy calculus mechanism
as relatively novel statistical approaches. In this study, we hence reinvestigate privacy calculus using a novel
technique called Response Surface Analysis (RSA). RSA can put privacy calculus to a statistical test that is more
closely aligned with the premise of privacy calculus by directly analyzing how the difference between concerns
about privacy and anticipated benefits (e.g., benefits being higher than concerns) is related to online self-
disclosure. Therefore, we reanalyze three data sets to determine if the privacy calculus indeed helps explain these
data.
Privacy Calculus
An increasing number of studies offer evidence against the privacy paradox and in favor of the privacy calculus
model: The privacy calculus is observed in different cultures (Trepte et al., 2017), on social networking sites (SNSs;
Krasnova et al., 2010), or in e-commerce, health, and news consumption contexts (Bol et al., 2018). In addition, an
empirical meta-analysis of k = 37 studies found a statistically significant relationship between privacy concerns
and online self-disclosure (Baruh et al., 2017). Although the reported relation is small (r = −.13), it is not trivial and
represents further evidence against the privacy paradox. Contrary to the assertion of the privacy paradox, this
finding implies that people who are more concerned about their privacy disclose less information online. For
instance, we would expect someone with a high level of concern about their privacy to be more likely to have
private social media pages. Moreover, recent reviews of privacy management behavior suggest that perceived
benefits may be a stronger predictor of disclosure intention and behavior than concerns about the anticipated
negative outcomes (Barth & de Jong, 2017; Gerber et al., 2018).
However, the privacy calculus model faces both conceptual and methodical challenges. Conceptually, with its
emphasis on a rational comparison of benefits and costs, the privacy calculus model builds on the “calculus of
behavior” (Laufer & Wolfe, 1977, p. 35) and, more broadly, on the rational choice paradigm (Simon, 1955). As such,
like other rational choice theories, the privacy calculus model has been criticized for assuming (or overstating) that
individuals rationally weigh the risks and benefits of sharing information (Acquisti, 2004; Knijnenburg et al., 2017).
There are several reasons why, in privacy-related decisional contexts, individuals may not be able to engage in a
fully rational calculus. First, in many contexts, privacy-related decisions are often automatic and driven by
emotions (Masur, 2019; Zhang & Fu, 2020). Second, individuals’ privacy-related decisions may often be based on
“incomplete information” because both the risks and the benefits entail tangible as well as intangible dimensions
(Acquisti, 2004). This impedes individuals’ ability to make informed decisions. Specifically, not only will it be difficult
for individuals to accurately estimate the costs of disclosing information (Acquisti, 2004; Acquisti et al., 2018; Barth
& de Jong, 2017), but also lack of information about means of protection may prevent individuals from acting on
their intentions (Brough & Martin, 2020; Park, 2013). Third, the concept of bounded rationality underscores that
insofar as the human ability to engage in cognitive information processing is limited, privacy-related decisions will
often rely on cognitive shortcuts. Reliance on cognitive shortcuts may result in several biases, such as optimistic
bias (underestimating the risk of a negative outcome), status quo bias (preference for sticking to the current
situation), or immediate gratification bias (Acquisti, 2004; Acquisti et al., 2018; Bandara et al., 2020; Hallam &
Zanella, 2017). Participation in social networks, as their use is associated with social validation, connectivity, and
self-presentation (Lee et al., 2013), is a prime example of how expectations about immediate gratifications may
override the consideration of longer-term risks to one’s privacy or security (Barth & de Jong, 2017; Debatin et al.,
2009). Growing research on so-called dark patterns—interface designs that trick users into engaging in a behavior
they did not mean to (Brignull, 2011)—underscores how such cognitive biases may be exploited by organizations
to steer users into suboptimal privacy decisions (Nouwens et al., 2020; Waldman, 2020).
Related to these concerns about individuals’ capacity for making rational calculations, in a recent review, Barth
and De Jong (2017) argue that one explanation for why users may perform actions online which run counter to
their privacy concerns might be that there are contexts when users do not make a risk calculation when thinking
about privacy, but instead focus on the expected benefits. This may happen due to routinized engagement with a
platform, resulting in suppression of considerations about privacy risks. It may also happen in contexts where
“value of desired goal outweighs risk assessment” (Barth & De Jong, 2017, p. 1048). Such contexts would include
those within which the need for a service or product is so high that consideration of risks would be inconsequential
and thereby unnecessary from the standpoint of the user. This would be the case when we consider simple
conveniences in our lives, such as owning a smartphone or a credit card. Conversely, it is also possible that the
expected benefits from a service or a product are insufficient to warrant a risk-benefit calculation, reducing the
chances that risk considerations will factor into the decision to share information. Additionally, social compliance
may be an important factor in reducing our ability to make autonomous decisions about disclosing information.
This would be, for example, the case when disclosure is the norm for other members of a social network platform
(Gerber et al., 2018; Lutz & Strathoff, 2014; Taddicken, 2014).
Reanalysing Privacy Calculus
Methodologically, one can question whether the studies supporting the privacy calculus have put it to a strict
methodical test. For example, to test the hypotheses proposed by privacy calculus, most studies used multiple
linear regression, path analysis, or structural equation modeling. A common approach is to model risks and
benefits as predictors, with risks being negatively and benefits being positively associated with self-disclosure (e.g.,
Dinev & Hart, 2006; Trepte et al., 2017).
While useful for identifying the isolated linear impacts of risk and benefit perceptions of disclosure of personal
information, the aforementioned conventional approaches cannot directly investigate the conjoint effects of both
variables. Specifically, linear models cannot explicitly test whether the direction of the difference between risk and
benefit perceptions influence disclosure (e.g., whether people disclose more if risks are larger than benefits or if
benefits are larger than risks). This pattern would not be possible to test using multiple regression since it only
provides the main effects of individual predictors (by controlling for the other predictors). In a similar vein, the
effects of the respective levels of perceived benefits and risks are difficult to test via conventional methods. For
instance, as discussed above, it may be the case that when expected benefits are at a high level, individuals are
more likely to disclose personal information despite risk perceptions also being at a high level. Alternatively, as
mentioned above, it is also possible that when individuals’ benefit perceptions are low, they may not feel the need
to evaluate risks before deciding not to share information. Unlike conventional methods such as multiple
regression, RSA can test whether both predictors being at high levels (vs. at low levels) are statistically associated
with the outcome.
Because we cannot answer these theoretically important questions using conventional analyses, in this study, we
use a novel analytical technique called polynomial regression with RSA (Edwards & Parry, 1993). While the aim of
this paper is primarily to introduce the application of RSA, as a novel statistical approach, to investigating privacy
calculus, it also expands our theoretical understanding of privacy calculus by providing additional conceptual
insights. First, through applying RSA, we achieve a test of the privacy calculus that is closer to its theoretical
assumptions that the decision to share information is the result of the difference between levels of risk and benefit
perceptions rather than being the result of the isolated influence of risk and benefit perceptions. Second, by
allowing us to investigate at what respective levels of benefit and risk perceptions the difference between them is
most likely to influence the decision to share information, RSA can improve our understanding of the mechanisms
that may result in risk considerations not being related to information sharing. Because RSA is a novel type of
analysis and not routinely used in Communication research, we first provide a brief overview of the technique.
Then, we proceed by discussing how it helps advance the conceptual debates about privacy calculus and introduce
our main hypothesis and our research question.
Response Surface Analysis
RSA is a fine-grained technique suitable for testing conjoint effects, in other words, how differences in two
predictor variables (e.g., the difference between perceived risk and anticipated benefit) relate to an outcome
variable (e.g., intention to disclose personal information in social media). RSA has often been used to investigate
how two predictor variables relate to an outcome variable such as similarity effects (Cemalcılar et al., 2018) and is
suitable to investigate a variety of conjoint effects.
Originally, the conjoint effects of two variables were tested using difference scores, which often take the form of
algebraic, squared, or absolute differences. However, these approaches suffer from a variety of statistical and
conceptual shortcomings, including (a) lower reliability than its components, (b) difficulty in interpretation, and
(c) confounding effects (for a detailed summary, see Edwards, 2002). RSA was developed to overcome these issues
by simultaneously modeling the relationship between the outcome and the two predictors in a polynomial model,
which encompasses both the differences and higher-order terms of these predictors (Edwards, 2002).
RSA starts with a polynomial regression (1). This polynomial regression contains the outcome variable (Z), linear
and quadratic terms for the two predictors (X, X2, Y, Y2), and the interaction of the predictors (XY):
Z = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + e. (1)
As a result, the polynomial regression facilitates the testing of both linear and non-linear relations. However, rather
than merely interpreting the coefficients of the polynomial regression, in RSA the polynomial regression
coefficients are used to create a three-dimensional plot depicting how two predictors relate to the outcome, and
to compute response surface values. In other words, these parameters are used to examine a three-dimensional
representation of the relationship between the predictors and the outcome (Edwards & Parry, 1993; for an
example, see Figure 1).
The response surfaces have several properties that can be used to make inferences. The line of congruence (LOC;
blue line in Figure 1) is mathematically represented by the parameters a1 (i.e., b1 + b2) and a2 (b3 + b4 + b5). It is the
line where the two predictors have the same values (i.e., X = Y). When a1 is significant but a2 is not, LOC is linear. A
positive a1 indicates a linear additive effect, suggesting that the predicted outcome is higher when similar values
of the predictors are on higher levels as compared to lower levels. When a2 is significant, it means that LOC is
curvilinear, producing the shape of a parabola. In other words, if both predictors increase, the outcome increases
even stronger (i.e., exponentially).
Next, the line of incongruence (LOIC; red line in Figure 1) addresses situations when the two predictors have
opposite values (i.e., X = −Y). LOIC is represented by the parameters a3 (i.e., b1 b2) and a4 (i.e., b3 b4 + b5). A
significant a3 and a non-significant a4 indicate that the line along the LOIC is linear and that the direction of the
discrepancy (X > Y or Y > X) between the two predictor variables is important for the outcome. A positive a3 suggests
that the predicted outcome is at high levels when the first predictor is higher than the second predictor. A negative
a3 suggests that the outcome is at high levels when the second predictor is higher than the first predictor. A
significant a4 indicates that the LOIC is curvilinear, producing the shape of a parabola.
For an overview of the coefficients’ meaning, see Table 1. For a more comprehensive explanation and visual
representations of the surface parameters, see Nestler et al. (2019, p. 294). For a tutorial, see Edwards and Parry
(1993).
Table 1. Meaning of the Coefficients.
Coefficient Calculation Meaning
Polynomial Regression
b1 Linear effect of predictor X.
b2 Linear effect of predictor Y.
b3 Curvilinear effect of predictor X.
b4
Interaction of predictor X and
predictor Y.
b5 Curvilinear effect of predictor Y.
Response Surface
a1 b1 + b2
The outcome is higher when
values of the predictors are on
higher levels.
a2 b3 + b4 + b5
The outcome value is highest for a
specific X-Y pair, but is
lower for other combinations of
the predictors.
a3 b1 − b2
The outcome is higher when
predictor X is on a higher level
a4 b3 − b4 + b5
The outcome is higher when
predictors are at similar values.
Note.
For
the interpretation of the response surface parameters, we assume that all other parameters are not significant.
For instance, when interpreting a significant a1, we assume that a2, a3, and a4 are not significant. Also, a significant a4 is not
the only condition for a congruence effect, it also requires a non
-
significant a
5
, which is beyond the scope of this article.
Combining Privacy Calculus and Response Surface Analysis
The use of RSA to investigate privacy calculus enables researchers to pose and answer important and interesting
questions. For example, does the privacy calculus only take place once costs and/or benefits reach a certain
magnitude? If so, at what levels of concerns and gratifications?
Furthermore, this methodology is informative for different explanations of the privacy paradox summarized
above. Consider, for example, how “incomplete information” may both result in an underestimation of risks and/or
a lack of knowledge regarding the implementation of effective protective measures. In RSA, these two potential
consequences of “incomplete information” would, however, manifest themselves differently: When individuals
underestimate risks, we would expect a positive relationship between the size of the difference between benefits
(high) and risks (suppressed, low) and disclosure behavior. Within the RSA framework, we would observe that
while benefits have a positive and linear main effect (significant b1 and non-significant b3–b5), concerns do not have
a main effect (non-significant b2); furthermore, the line of incongruence would be linear and positive (significant
a3 and non-significant a4), but this effect would be driven only by the benefits (significant b1 and non-significant
b2). However, when individuals lack procedural knowledge about protecting themselves, we could expect to see
disclosure behavior even when there is only a negligible difference between perceived benefits and risks. In RSA
terms, we would expect that both benefits (b1) and concerns (b2) are positive and significant while the other
predictors (b3–b5) are non-significant, but because concerns cannot translate into protective behavior, the
difference between benefits (b1) and concerns (b2) would be less likely to predict behavior, leading to a non-
significant line of incongruence (i.e., a3 and a4).
As a second example, let us revisit what Barth and De Jong describe as contexts where the expected value is so
high that individuals do not consider the risks. What is important to note here, though, is the qualitative distinction
between (a) “not considering” risks because the benefits are very high and (b) suppressing concerns about risks
because there is no viable option for acting otherwisea pattern related to what has been called privacy fatigue
(Choi et al., 2018), privacy apathy (Hargittai & Marwick, 2016), or privacy cynicism (Hoffmann et al., 2016; van Ooijen
et al., 2022). In the former, risk estimations might be low and potentially have no main effect on disclosure
behavior, while benefits are high and may have a positive main effect. In RSA terminology, this model would
translate to a linear and positive effect of benefits (significant b1) while all of the other parameters (b2–b5 and
a1–a4) are non-significant. In the latter case, it can be expected that disclosure behavior will be positively associated
with a congruent increase in both benefit and risk perceptions, represented by a negative and non-linear line of
incongruence with no main effects of the predictors (i.e., non-significant a1–a3, significant a4; non-significant b1–b2
and significant b3–b5).
These examples suggest that RSA can contribute to the literature on privacy calculus in several ways. Notably,
there is a growing body of literature that challenges the rationality assumption to investigate privacy management
behavior. Such studies incorporate factors such as cognitive biases and affective states into the calculus, which
would also be possible to test using RSA methodology (Kehr et al., 2015; Wilson & Valacich, 2012;
Zhang & Fu, 2020). To untangle the intricate relationship of perceived benefits and concerns with online self-
disclosure, in this study, we focus on the line of incongruence. Specifically, we formulate the following hypothesis:
H1: People are more likely to share information when perceived risks are lower than perceived benefits.
Accordingly, we expect a significant linear line of incongruency along with a non-significant line of congruence (i.e.,
significant a3 and non-significant a1, a2, and a4). Figure 1 visualizes this relationship. For instance, we expect that
sharing behavior is at its highest (i.e., +2) for a participant that scored +2 on benefits and −2 on concerns, whereas
the outcome is at its lowest (i.e., −2) for another participant that scored −2 on benefits and +2 on concerns. The
same pattern can be observed for any pair of scores. A linear LOIC (as well as a nonsignificant LOC) informs us
that this comparison is statistically significant.
The examples discussed above also raise the possibility that the relationship between these two predictors and
sharing information will vary as a function of whether the perceived risks and benefits are low, moderate, or high.
In this light, we additionally aim to investigate the following research question:
RQ1: At what levels of perceived benefits and risks does the difference influence disclosure the most?
Figure 1. Example Plot for Assumed Relationships.
Note. The x-axis represents Uses & Gratifications, the y-axis represents concerns about privacy, and the z-axis represents sharing personal
information online. The values of variables come from a hypothetical distribution (i.e., z-scores). LOIC is the red line and represents cases
where the predictors have opposite values. According to privacy calculus, we expect that it has a positive slope: If gratifications are larger than
benefits, self-disclosure increases. LOC is the blue line, where both concern and Uses & Gratifications have the same values.
Methods
Data Analysis
We analyzed the data in R (R Core Team, 2020) using the package RSA (Schönbrodt, 2017). The factorial validity of
all scales was tested by confirmatory factor analysis (CFA) using the raw data and lavaan package in R
(Rosseel, 2012), and the model fits were evaluated based on the guidelines that can be found in Kline (2015). We
estimated the RSA after centering the predictors around their mid-scale point, whose composite scores were
computed by taking the average of the items indicated by the CFA models. Centering around mid-scale facilitates
interpretation of the coefficients and deals with multicollinearity (Aiken et al., 1991; Edwards & Parry, 1993). The
regressions were conducted using ordinary least squares, which require that residuals are normally distributed.
Analyses showed that the residuals of study 2 were not normally distributed. Because RSA uses robust estimators,
which help address non-normality (Pek et al., 2018), we are nonetheless optimistic that the violation of the
normality assumptions is not problematic. The data, the items, the analysis scripts, and a detailed documentation
of the results, and the descriptive summary of the variables can be found in the online supplementary materials:
(https://osf.io/sy2az/?view_only=1394c169381845408f8d3134db535b3a).
Since we used secondary data, we were not able to conduct a priori power analysis. However, a sensitivity power
analysis conducted using G*Power 3.1 (Faul et al., 2009) with five predictors for polynomial regression (i.e., R2 going
from two to five predictors) indicated that we could detect an effect size as small as f2 = .028 (i.e., R2 = .027), f2 = .017
(i.e., R2 = .017), f2 = .008 (i.e., R2 = .008) for Dataset 1, 2, and 3, respectively, with 80% power at α = 0.05. Furthermore,
the observed effect sizes across the datasets were greater than the values indicated by the sensitivity power
analyses (see Table 2 for the effect sizes).
Dataset 1
Procedure and Participants
The data come from an online survey, conducted online via Qualtrics survey platform, focusing on the relationship
between personality traits and social media use tendencies.
A total of 344 students at a private university in Turkey during April in 2015 completed the survey. The average
age was 21.20 years (SD = 2.25), 60% were female, and 30% reported having a college or graduate degree.
Measures
Anticipated benefits were captured with uses and gratifications of Twitter scale (Baruh, 2010; Chen, 2011). The
current study measured four dimensions of Twitter uses and gratifications: Using Twitter to (a) network with others
(e.g., to meet new people); (b) satisfy social curiosity (e.g., to learn about daily lives of other people); (c) self-express
(e.g., to make people understand me better); and to (d) maintain relationships (e.g., to keep in contact with family and
friends). All items described above were measured on a 5-point scale (1 = strongly disagree to 5 = strongly agree). A
hierarchical measurement model including all 15 items (M = 2.75, SD = 0.72) and four dimensions showed good
factorial validity, χ2(86) = 229.48, p < .001, CFI = .95, RMSEA = .07, 90% CI [.06, .08], SRMR = .07. The reliability for
the second-order factor (i.e., general UG factor) was high ( = .90).
Perceived risks of disclosing personal information are operationalized as concerns about privacy, which was
assessed with 7 items adapted from existing privacy scales on a 5-point scale (e.g., I worry about sharing information
with more people than I intend to; Baruh & Cemalcılar, 2014; Stieger et al., 2013). We ran a series of CFAs to
investigate the factorial structure of the scale. Three items were removed due to insufficient factor loadings. The
resulting scale with 4 items (M = 3.11, SD = 0.75) showed acceptable levels of factorial validity, χ2(2) = 19.57, p < .001,
CFI = .93, RMSEA = .16, 90% CI [.10, .23], SRMR = .04. Reliability was also at an acceptable level ( = .73).
The dependent variable, sharing information on Twitter, was assessed using eight items adapted from the self-
disclosure index (Miller et al., 1983). Respondents were asked to rate, on a 4-point scale (1 = never to 4 = more than
once a day), the frequency with which they would tweet about various topics about themselves (e.g., my personal
habits). A measurement model with 6 items (M = 1.99, SD = 0.48) showed just acceptable factorial validity,
χ2(9) = 58.18, p < .001, CFI = .93, RMSEA = .13, 90% CI [.10, .16], SRMR = .04 and reliability was high ( = .84).
Dataset 2
Procedure and Participants
The data come from an online experiment conducted in Germany during the fall term of 2017, which analyzed the
privacy calculus using actual behavioral data (for more details on the study, see Dienlin et al., 2020). The field
phase of the experiment lasted for one week. On an authentic website, participants were invited to discuss a
current political topic (i.e., how to prevent terrorist attacks). Afterwards, participants answered a follow-up
questionnaire about privacy concerns and obtained gratifications.
The final data set consists of 561 participants, of which 51% were female. The average age was 46.20 years
(SD = 15.60), and 29% reported having a college degree.
Measures
Anticipated benefits of using the social networking site were captured with a 15-item scale of specific uses and
gratifications. The scale consisted of five dimensions (informativeness, relevance, participation, meaningfulness,
help). One example item is Using the participation platform it has been possible for me to learn things I would not
otherwise have noticed. The scale had a 7-point answer format, with options ranging from 1 = completely disagree
to 7 = completely agree (M = 4.71, SD = 1.00). Factorial validity was okay, χ2(85) = 448.03, p < .001, CFI = .93,
RMSEA = .09, 90% CI [.08, .10], SRMR = .06 and reliability was good ( = .95).
The perceived risks of disclosing personal information were operationalized with a 7-item scale of online privacy
concerns. One example item is Using the participation platform I had concerns about my privacy. The scale had a 7-
point answer format, with options ranging from 1 = completely disagree to 7 = completely agree (M = 3.45, SD = 1.25).
The scale showed good factorial validity, χ2(14) = 44.22, p < .001, CFI = .99, RMSEA = .06, 90% CI [.04, .09],
SRMR = .01 and reliability was high ( = .92).
The dependent variable measured the number of words, likes, and dislikes shared on the website, which was then
log-scaled (M = 1.92, SD = 2.28).
Dataset 3
Procedure and Participants
The data come from an online experiment conducted in the Netherlands during the fall term of 2017 that aimed
to examine privacy calculus using hypothetical scenarios (Bol et al., 2018). Participants were instructed to read
different scenarios in randomly assigned conditions and to look for information using a search engine, followed
by visiting a website. After the experiment, participants filled out an online survey about perceived concerns and
benefits and willingness for future self-disclosure (for more details about the experiment, see Bol et al., 2018).
The final sample consisted of 1131 participants (Mage = 56.00, SDage = 16.30; 50% female, 37% higher education),
and was representative of Dutch population.
Measures
Anticipated benefits were assessed by eight items, answered on a 7-point scale ranging from 1 = strongly disagree
to 7 = strongly agree, either generated by the authors or based on the previous literature (M = 3.01, SD = 1.35). One
sample item was I find sharing my personal information with [health/shopping/news] websites useful in my daily life.
The factorial validity of the scale was okay, χ2(20) = 480.53, p < .001, CFI = .94, RMSEA = .13, 90% CI [.14, .15],
SRMR = .04. Reliability was high ( = .95).
Privacy concerns were assessed by 5 items adopted from Baek and Morimoto (2012). Items were on a 7-point scale
ranging from 1 = strongly disagree to 7 = strongly agree (M = 5.25, SD = 1.35). One sample item was When I visit
[health/shopping/news] websites, I have the feeling that others keep track of where I click. The scale showed good
factorial validity, χ2(5) = 23.81, p < .001, CFI = .99, RMSEA = .06, 90% CI [.04, .08], SRMR = .01. Reliability was high
( = .95).
To assess willingness for future online self-disclosure, participants were asked to report how likely it is for them to
share personal information (e.g., their name) if they visited a similar website in the future on a 7-point scale
(M = 2.24, SD = 1.28). The scale showed good factorial validity, χ2(21) = 117.33, p < .001, CFI = .99, RMSEA = .05, 90%
CI [.06, .08], SRMR = .03. Reliability was high ( = .92).
Results
The data were analyzed using RSA.1 RSA requires that there be sufficient numbers of cases representing all
possible combinations of two predictors (i.e., risks > benefits; benefits > risks; risks ≈ benefits; Shanock et al., 2010).
Across all datasets, we fulfill that condition. For example, for Dataset 1, in 47.7% of the cases, perceived benefits
were lower than privacy concerns, in 21.8% of the cases perceived benefits exceeded privacy concerns while in
30.5% of the cases perceived benefits and privacy concerns were equal (see online supplementary materials for
all distributions of congruent and incongruent cases). In addition, because RSA is based on polynomial regression,
another requirement is that residuals are normally distributed. Analyses revealed that the residuals of Dataset 2
were not normally distributed. To investigate whether the results are affected by the non-normally distributed
residuals, we also conducted a bootstrapped RSA with 1000 samples. This technique is a valid strategy to
effectively handle non-normally distributed residuals (Pek et al., 2018). The bootstrapped results were closely
aligned with the regular ones (e.g., the same effects were significant). Because RSA is conducted with robust
estimators and hence robust to violations of the normality assumption of residuals, and because results were
virtually identical, in what follows we report the results of the regular RSAs. The results of the bootstrapped RSA
can be found in the online supplementary materials. Table 2 presents the coefficients for polynomial regression
and surface parameters.
Our focus is on the incongruence between risk and benefit perceptions (i.e., risks > benefits vs. benefits > risks).
In RSA, this is represented by a3 and a4. As explained above, a significant a3 with a non-significant a4 shows that
the incongruence effect is significant and linear (i.e., not curvilinear). As expected, in Dataset 2, this is exactly the
pattern we observe. That is, a3 was positive (i.e., .50) while other surface parameters were non-significant. This
finding suggests that the number of words shared by participants was greater when perceived benefits exceeded
perceived risks. For example, the predicted value of the number of words shared is around 2.15 (M = 1.92) for
someone who scores 6 (on a 7-point scale) on benefits and who scores 4 (on a 7-point scale) on concerns about
privacy; whereas the predicted value of the outcome is around 1.12 for someone with the opposite pattern (also,
see Figure 2).
Table 2. Polynomial Regression Coefficients and Surface Parameters.
Dataset 1
Dataset 2
Dataset 3
Label
Description
b
SE
p
b
SE
p
b
SE
p
Polynomial Model
b
1
Benefit
.24
0
.04
< .001
.30
0
.10
.004
.44
0
.06
< .001
b
2
Concern
.07
0
.04
.037
.20
0
.08
.013
.13
0
.05
.008
b
3
Benefit
2
.05
0
.03
.086
.01
0
.05
.933
.05
0
.03
.043
b
4
Benefit × Concern
.06
0
.04
.149
.04
0
.05
.411
.03
0
.02
.121
b
5
Concern
2
.04
0
.03
.165
.01
0
.04
.831
.04
0
.02
.004
Response Surface Parameters
a
1
b
1
+ b
2
.17
0
.05
< .001
.10
0
.14
.492
.31
0
.08
< .001
a
2
b
3
+ b
4
+ b
5
.07
0
.05
.159
.05
0
.09
.595
.03
0
.04
.528
a
3
b
1
b
2
.32
0
.06
< .001
.50
0
.12
< .001
.58
0
.08
< .001
a
4
b
3
b
4
+ b
5
.05
0
.07
.434
.04
0
.07
.59
0
.04
0
.03
.136
Note
. Statistically significant
coefficients are in bold. The dependent variables are self
-
reported personal information
sharing on Twitter, the number of words posted on a website, and the willingness for future online self-disclosure for
Dataset 1, 2, and 3, respectively. The R2 values for Dataset 1, 2, and 3, are .176, .046, and .185, respectively; all ps < .001.
In Dataset 1 and 3, findings were similar to one another but slightly different from the findings in Dataset 2. Both
LOC and LOIC were positive and linear (i.e., positive a1 and non-significant a2; positive a3 and non-significant a4). As
in Dataset 2, the positive a3 indicates that participants reported (the willingness for) sharing more information
online when their anticipated benefits were higher than their concern for their privacy (compared to the other
way around). At the same time, unlike in Dataset 2, the positive a1 indicates that the outcome variables (i.e., self-
reported self-disclosure on Twitter in Dataset 1 and the willingness for future online self-disclosure in Dataset 3)
were greatest when both benefits and concerns about privacy were high (see Table 2 and Figure 1 for the
parameters and plots).
Figure 2. Response Surfaces for Dataset 1–3.
Note. X-axis shows perceived benefits of online disclosure, y-axis shows concerns about privacy, z-axis shows specific outcome variables. The
bag plots, as displayed on the surfaces, indicate the location, spread, correlation, skewness, and tails of the data (Rousseeuw et al., 1999),
analogous to boxplots. The area inside the larger bag contains half of the observations, and the rest are located in the region between the
inner and outer bag.
The findings suggest that, overall, the willingness for sharing information was highest when both the benefits and
risks were highest, and the benefits were greater than the concerns compared to the opposite pattern. For
example, in Dataset 1, the predicted value of information sharing on Twitter is around 2.26 (M = 1.99) for someone
who scores 4 (on a 5-point scale) on benefits and who scores 3 (on a 5-point scale) on concerns about privacy;
whereas the predicted value of the outcome is around 2.04 for someone with the opposite pattern (see Figure 2).
In a similar fashion, in Dataset 3, the predicted value of the willingness for the future online self-disclosure is
around 3.76 (M = 2.24) for someone who scores 6 (on a 7-point scale) on benefits and who scores 4 (on a 7-point
scale) on concerns about privacy; whereas the predicted value of the outcome is around 2.43 for someone with
the opposite pattern, which is still above the mean level, indicating the additivity effect of benefits and concerns.
Discussion
The present study reanalyzed three datasets by applying a novel analytical technique called RSA to understand
better the relationship of anticipated benefits and risks of information sharing with online self-disclosure. While
techniques like linear regression test how the benefits and concerns separately predict online self-disclosure, they
do not offer a direct test of the main premise of the privacy calculus model, which predicts that self-disclosure
depends on the difference between these variables, or more precisely, whether perceived benefits exceed
perceived risks. The use of RSA allowed us to explicitly test how the difference between the benefits and concerns
was associated with online self-disclosure.
Consistent with our expectations, the findings demonstrate that individuals are more likely to engage in online
self-disclosure when their anticipated benefits exceed their concerns about privacy. In addition, the findings from
Datasets 1 and 3 indicate that online self-disclosure is greatest when both benefits and concerns are high. This
finding underscores the importance of perceived benefits as a factor that qualifies the nature of the risk-benefit
calculation in privacy calculus because it implies that, unless they expect a benefit, users will not engage in
disclosure just because it is not risky to do so. In other words, benefit considerations may act as a steppingstone
for the privacy calculus in the sense that users will potentially first consider whether there is sufficient benefit
from the act of disclosure and then will evaluate potential risks only if they expect benefits. Conversely, as we will
further discuss below, there may also be contexts within which expected benefits are so important that risk
considerations are suppressed. These possibilities have several important implications for research on privacy
calculus. First, it supports the need to apply a more situational perspective (Masur, 2019) in assessing the relative
role that risk-benefit considerations play in predicting disclosure. Second, it points to the need to collect more
finely grained data that can help investigate in further detail the risk-benefit evaluation processes of individuals
(e.g., the sequence with which they are considered in varying contexts). Third, it underlines the importance of
decisions regarding the selection of disclosure behavior that will be treated as the dependent variable. Specifically,
especially in studies that investigate the linear relationship between risk perceptions/concerns and disclosure
behavior, researchers should be cognizant of the possibility that for disclosure behaviors that are not perceived
to be highly beneficial, risk perceptions will be less likely to be a factor that predicts the behavior.
More generally, these findings suggest that a privacy calculus that emphasizes the relationship between the
concerns and benefits is a more suitable model to explain self-disclosure than the privacy paradox, which
overlooks the anticipated benefits of self-disclosure. This is also consistent with the findings of a recent study that
used an elaboration likelihood model to investigate privacy calculus and privacy fatigue within the context of a
health application (Zhu et al., 2021). The authors found that while perceived benefits of sharing personal
information was positively associated with disclosure intentions, this relationship was reversed for privacy
concerns. More importantly, perceived benefits were a stronger predictor of disclosure intentions than privacy
concerns (Zhu et al., 2021).
One potential explanation of this pattern of results is that having “incomplete information” regarding benefits and
privacy concerns promotes high levels of self-disclosure either because estimation of risk is inaccurate, or because
individuals have inadequate information regarding how to protect their privacy in online settings. For instance,
research shows that although older individuals (i.e., 65+) are concerned about their privacy, they lack the
knowledge and skills to protect it (Kezer et al., 2016). Moreover, in a context where individuals perceive
disproportionately more benefits of sharing personal information, individuals may fail to conduct a risk
assessment. Alternatively, in contexts where individuals habitually spend a considerable amount of time online,
they may not be cognizant of the risks of self-disclosure. Similarly, in such contexts, it is possible to observe norms
that compel self-disclosure, which may be leading them to suppress or disregard their concerns about privacy. We
recommend that future research models these factors explicitly, so that our theoretical explanations can be tested
empirically.
In line with the immediate gratification bias (Acquisti, 2004), another possible explanation for why individuals are
influenced by the benefits of self-disclosure more than by concerns for privacy is that self-disclosure is intrinsically
rewarding (Tamir & Mitchell, 2012). That is, humans feel rewarded when sharing information about themselves,
in the same way when satisfying primal needs such as hunger. Similarly, research shows that we like people who
disclose to us and vice versa (Collins & Miller, 1994). Indeed, from an evolutionary standpoint, self-disclosure brings
about many adaptive advantages such as strengthening social relationships and receiving feedback from others
about one’s self (Dunbar, 1997).
In conclusion, our findings in all three datasets indicate that the anticipated benefits of self-disclosure outweigh
concerns about privacy for individuals to engage in online self-disclosure. Therefore, we posit that people engage
in a privacy calculus where online self-disclosure takes place only when benefits exceed concerns. In other words,
there is a privacy calculus, and the benefits are more important.
Limitations
Although in this paper we hypothesize that privacy concerns and expected benefits influence self-disclosure and
not vice versa, this assumption is based purely on theoretical grounds, because all three studies do not allow for
causal statements. In particular, the correlational nature of the current research does not eliminate the effect of
unobserved factors on both predictors and outcomes. For instance, participants’ mood at the time of data
collection may have impacted the results. Someone who is in a highly positive mood may have perceived higher
benefits and may have disclosed more as a result of their mood.
RSA allows us to statistically compare the role of both benefits and costs. As a result, we can now state that people
are more likely to disclose if the benefits actually exceed the costs. At the same time, we still do not know whether
participants explicitly compare benefits to costs. It might be that this process takes place implicitly, for example
via heuristics (Sundar et al., 2013). Similarly, RSA may not be a suitable technique to test all models related to
privacy calculus. Nevertheless, RSA can be a useful analytical tool when including additional predictors and
covariates, such as declarative and procedural privacy literacy.
As discussed above, across two datasets, in addition to our main finding, we observed that levels of self-disclosure
increased if both benefits and concerns were on higher levels. However, this relationship was not replicated in the
second dataset. Therefore, this finding might not be generalizable and robust. Future research with the same
research design as in the second dataset is required to provide stronger evidence to support or to reject this
association.
We have explained self-disclosure using two variables. However, other variables likely also explain self-disclosure
(e.g., mood, context, or culture), which could attenuate the effects reported here. Hence, the coefficients might be
overestimated. On the other hand, because response surface analysis is based on polynomial regression analysis
using manifest variables, it is not possible to partial out error variance by using latent factors, which is why the
effects might also be underestimated.
Our measures for concerns and benefits in Dataset 1 somewhat differed in their degree of specificity. While we
measured gratifications obtained from using Twitter to operationalize positive aspects of self-disclosure, the scale
used to measure negative attitudes toward self-disclosure touched upon more general concerns about one’s
privacy. Even though such general concerns may encompass specific concerns, the results would be more precise
with predictors measured at similar levels of specificity. Acknowledging the shortcomings of the secondary
datasets used in the present research, we believe that future research should pay more attention to the
measurement of risks and benefits of self-disclosure such that both predictors should be measured on the same
level.
In a similar vein, the measures employed to assess risks and benefits of self-disclosure in Dataset 3 evaluate risks
and benefits of self-disclosure at a general level for the websites that the participants visited. A measurement of
the risks and benefits for the specific task that they were asked to complete would also be informative so as to
understand how self-disclosure in a specific situation may deviate from a general privacy calculus. Thus,
researchers should also investigate specific situations across different contexts (e.g., Twitter vs Instagram) to
reveal whether (or how) assessments of general and specific risks and benefits of self-disclosure are related to
self-disclosure.
Another potential issue with our use of secondary datasets for this paper concerns the content validity of the
disclosure items we used as the dependent variable. In Dataset 1, we used a self-reported frequency with which
respondents tweeted about different topics about themselves. In Dataset 2, disclosure was operationalized using
the number of words, likes and dislikes shared on the website. In Dataset 3, disclosure was assessed with items
asking intentions to share various information about themselves. In general, the extant literature on self-
disclosure distinguishes between two dimensions of disclosure: breadth and depth. The former refers to the
quantity of information, the number of utterances, or the number of topics, whereas the latter refers to the level
of sensitivity (i.e., how private the information is; Collins & Miller, 1994; Greene et al., 2006). Research indicates
that these two dimensions not only differ from each other in terms of their potential predictors but also in terms
of how they may influence relational outcomes (Baruh & Cemalcılar, 2018; Bazarova & Choi, 2014; Orben &
Dunbar, 2017). Unfortunately, due to lack of access to a dataset that measured depth, all the datasets we used
were primarily about the breadth of disclosure; nevertheless, the RSA technique can readily be applied to studies
that investigate predictors of the depth of disclosure.
Our study was not preregistered. Two of the datasets we used come from studies that have already supported
the privacy calculus. We recommend utilizing RSA while conducting novel, preregistered studies using new data.
We emphasize the need to run a priori power analysis. Response surface analyses are based on polynomial
regression; consequently, they need two to three times the usual sample size (Aiken et al., 1991).
Implications and Conclusion
Despite the study’s limitations, the findings suggest that the anticipated benefits contribute more to the decision
to share personal information in online settings, using a relatively more precise statistical method (i.e., RSA).
Importantly, online self-disclosure seems to be at its highest when the perceived benefits exceed the concerns
about privacy.
Finally, one of the most important implications of the study lies in its methodology. The study underscores the
potential utility of the RSA technique in further exploring how and why people engage in self-disclosure, even
when they are highly concerned about the consequences of such exposure. We recommend that future research
now takes into consideration additional key predictors such as literacy, trust, and affect, to further contextualize
the nuances of online self-disclosure.
Footnotes
1 We also conducted condition-based regression analysis (CRA; Humberg et al., 2018) for each dataset. CRA is
similar to RSA in that, like RSA can, it also tests whether one predictor being greater than the other predictor
affects the outcome or only one predictor accounts for the results. Applying CRA in our datasets, we found the
same results as with the RSA, suggesting that online self-disclosure is higher when anticipated benefits of self-
disclosure exceed perceived concerns about privacy. It should be noted that although the finding for Dataset 1
was in the same direction as the findings in the other datasets, it was not statistically significant. See online
supplementary material for the analyses and results.
Conflict of Interest
The authors do not have any conflicts of interest to report.
Authors’ Contribution
Murat Kezer: conceptualization, methodology, formal analysis, data curation, writing original draft, writing
review & editing, visualization. Tobias Dienlin: methodology, formal analysis, data curation, writing original draft,
writing review & editing, visualization. Lemi Baruh: conceptualization, methodology, data curation, writing
original draft, writing – review & editing.
References
Acquisti, A. (2004). Privacy in electronic commerce and the economics of immediate gratification. In Proceedings
of the 5th ACM Conference on Electronic Commerce - EC ’04 (pp. 21–29). https://doi.org/10.1145/988772.988777
Acquisti, A., Adjerid, I., Balebako, R., Brandimarte, L., Cranor, L. F., Komanduri, S., Leon, P. G., Sadeh, N., Schaub,
F., Sleeper, M., Wang, Y., & Wilson, S. (2018). Nudges for privacy and security: Understanding and assisting users’
choices online. ACM Computing Surveys, 50(3), Article 44. https://doi.org/10.1145/3054926
Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. SAGE
Publications.
Baek, T. H., & Morimoto, M. (2012). Stay away from me. Journal of advertising, 41(1), 59-76.
https://doi.org/10.2753/JOA0091-3367410105
Bandara, R., Fernando, M., & Akter, S. (2020). Explicating the privacy paradox: A qualitative inquiry of online
shopping consumers. Journal of Retailing and Consumer Services, 52, Article 101947.
https://doi.org/10.1016/j.jretconser.2019.101947
Barnes, S. B. (2006). A privacy paradox: Social networking in the United States. First Monday, 11(9).
https://doi.org/10.5210/fm.v11i9.1394
Barth, S., & de Jong, M. D. T. (2017). The privacy paradox – Investigating discrepancies between expressed privacy
concerns and actual online behavior – A systematic literature review. Telematics and Informatics, 34(7), 1038–
1058. https://doi.org/10.1016/j.tele.2017.04.013
Baruh, L. (2010). Mediated voyeurism and the guilty pleasure of consuming reality television. Media Psychology,
13(3), 201–221. https://doi.org/10.1080/15213269.2010.502871
Baruh, L., & Cemalcılar, Z. (2014). It is more than personal: Development and validation of a multidimensional
privacy orientation scale. Personality and Individual Differences, 70, 165–170.
https://doi.org/10.1016/j.paid.2014.06.042
Baruh, L., & Cemalcılar, Z. (2018). When more is more? The impact of breadth and depth of information
disclosure on attributional confidence about and interpersonal attraction to a social network site profile owner.
Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 12(1), Article 1. https://doi.org/10.5817/CP2018-1-
1
Baruh, L., Secinti, E., & Cemalcılar, Z. (2017). Online privacy concerns and privacy management: A meta-analytical
review. Journal of Communication, 67(1), 26–53. https://doi.org/10.1111/jcom.12276
Bazarova, N. N., & Choi, Y. H. (2014). Self-disclosure in social media: Extending the functional approach to
disclosure motivations and characteristics on social network sites. Journal of Communication, 64(4), 635–657.
https://doi.org/10.1111/jcom.12106
Bol, N., Dienlin, T., Kruikemeier, S., Sax, M., Boerman, S. C., Strycharz, J., Helberger, N., & de Vreese, C. H. (2018).
Understanding the effects of personalization as a privacy calculus: Analyzing self-disclosure across health, news,
and commerce contexts. Journal of Computer-Mediated Communication, 23(6), 370–388.
https://doi.org/10.1093/jcmc/zmy020
Brignull, H. (2011, November 1). Dark patterns: Deception vs. honesty in UI design. A List Apart.
https://alistapart.com/article/dark-patterns-deception-vs-honesty-in-ui-design/
Brough, A. R., & Martin, K. D. (2020). Critical roles of knowledge and motivation in privacy research. Current
Opinion in Psychology, 31, 11–15. https://doi.org/10.1016/j.copsyc.2019.06.021
Brown, B. (2001). Studying the internet experience (HPL-2001-49). HP Laboratories Bristol.
https://hplabs.itcs.hp.com/techreports/2001/HPL-2001-49.html
Cemalcılar, Z., Baruh, L., Kezer, M., Kamiloglu, R. G., & Nigdeli, B. (2018). Role of personality traits in first
impressions: An investigation of actual and perceived personality similarity effects on interpersonal attraction
across communication modalities. Journal of Research in Personality, 76, 139–149.
https://doi.org/10.1016/j.jrp.2018.07.009
Chen, G. M. (2011). Tweet this: A uses and gratifications perspective on how active Twitter use gratifies a need to
connect with others. Computers in Human Behavior, 27(2), 755–762. https://doi.org/10.1016/j.chb.2010.10.023
Choi, H., Park, J., & Jung, Y. (2018). The role of privacy fatigue in online privacy behavior. Computers in Human
Behavior, 81, 42–51. https://doi.org/10.1016/j.chb.2017.12.001
Collins, N. L., & Miller, L. C. (1994). Self-disclosure and liking: A meta-analytic review. Psychological Bulletin, 116(3),
457–475. https://doi.org/10.1037/0033-2909.116.3.457
Culnan, M. J., & Armstrong, P. K. (1999). Information privacy concerns, procedural fairness, and impersonal trust:
An empirical investigation. Organization Science, 10(1), 104–115. https://doi.org/10.1287/orsc.10.1.104
Debatin, B., Lovejoy, J. P., Horn, A.-K., & Hughes, B. N. (2009). Facebook and online privacy: Attitudes, behaviors,
and unintended consequences. Journal of Computer-Mediated Communication, 15(1), 83–108.
https://doi.org/10.1111/j.1083-6101.2009.01494.x
Dienlin, T., Bräunlich, K., & Trepte, S. (2020). How Do Like and Dislike Buttons Affect Communication? Testing the
Privacy Calculus in a Preregistered One-Week Field Experiment [Preprint]. SocArXiv.
https://doi.org/10.31235/osf.io/7kjf2
Dienlin, T., & Trepte, S. (2015). Is the privacy paradox a relic of the past? An in-depth analysis of privacy attitudes
and privacy behaviors. European Journal of Social Psychology, 45(3), 285–297. https://doi.org/10.1002/ejsp.2049
Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information
Systems Research, 17(1), 61–80. https://doi.org/10.1287/isre.1060.0080
Dunbar, R. I. M. (1997). Groups, gossip, and the evolution of language. In A. Schmitt, K. Atzwanger, K. Grammer,
& K. Schäfer (Eds.), New aspects of human ethology (pp. 77–89). Springer. https://doi.org/10.1007/978-0-585-
34289-4_5
Edwards, J. R. (2002). Alternatives to difference scores: Polynomial regression analysis and response surface
methodology. In F. Drasgow & N. Schmitt (Eds.), Measuring and analyzing behavior in organizations: Advances in
measurement and data analysis (pp. 350–400). Jossey-Bass.
Edwards, J. R., & Parry, M. E. (1993). On the use of polynomial regression equations as an alternative to
difference scores in organizational research. Academy of Management Journal, 36(6), 1577–1613.
https://doi.org/10.5465/256822
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for
correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.
https://doi.org/10.3758/BRM.41.4.1149
Fogel, J., & Nehmad, E. (2009). Internet social network communities: Risk taking, trust, and privacy concerns.
Computers in Human Behavior, 25(1), 153–160. https://doi.org/10.1016/j.chb.2008.08.006
Gerber, N., Gerber, P., & Volkamer, M. (2018). Explaining the privacy paradox: A systematic review of literature
investigating privacy attitude and behavior. Computers & Security, 77, 226–261.
https://doi.org/10.1016/j.cose.2018.04.002
Greene, K., Derlega, V. J., & Mathews, A. (2006). Self-disclosure in personal relationships. In A. Vangelisti &
D. Perlman (Eds.), The Cambridge handbook of personal relationships (pp. 409–427). Cambridge University Press.
Hallam, C., & Zanella, G. (2017). Online self-disclosure: The privacy paradox explained as a temporally discounted
balance between concerns and rewards. Computers in Human Behavior, 68, 217–227.
https://doi.org/10.1016/j.chb.2016.11.033
Hargittai, E., & Marwick, A. (2016). “What can I really do?” Explaining the privacy paradox with online apathy.
International Journal of Communication, 10, 3737–3757. https://ijoc.org/index.php/ijoc/article/view/4655
Hoffmann, C. P., Lutz, C., & Ranzini, G. (2016). Privacy cynicism: A new approach to the privacy paradox.
Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 10(4), Article 7. https://doi.org/10.5817/CP2016-4-
7
Humberg, S., Dufner, M., Schönbrodt, F. D., Geukes, K., Hutteman, R., van Zalk, M. H. W., Denissen, J. J. A., Nestler,
S., & Back, M. D. (2018). Enhanced versus simply positive: A new condition-based regression analysis to
disentangle effects of self-enhancement from effects of positivity of self-view. Journal of Personality and Social
Psychology, 114(2), 303–322. https://doi.org/10.1037/pspp0000134
Kehr, F., Kowatsch, T., Wentzel, D., & Fleisch, E. (2015). Blissfully ignorant: The effects of general privacy concerns,
general institutional trust, and affect in the privacy calculus. Information Systems Journal, 25(6), 607–635.
https://doi.org/10.1111/isj.12062
Kezer, M., Sevi, B., Cemalcılar, Z., & Baruh, L. (2016). Age differences in privacy attitudes, literacy and privacy
management on Facebook. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 10(1), Article 2.
https://doi.org/10.5817/CP2016-1-2
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications.
Knijnenburg, B., Raybourn, E., Cherry, D., Wilkinson, D., Sivakumar, S., & Sloan, H. (2017, February 27). Death to
the privacy calculus? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2923806
Kokolakis, S. (2017). Privacy attitudes and privacy behaviour: A review of current research on the privacy paradox
phenomenon. Computers & Security, 64, 122–134. https://doi.org/10.1016/j.cose.2015.07.002
Krasnova, H., Spiekermann, S., Koroleva, K., & Hildebrand, T. (2010). Online social networks: Why we disclose.
Journal of Information Technology, 25(2), 109–125. https://doi.org/10.1057/jit.2010.6
Laufer, R. S., & Wolfe, M. (1977). Privacy as a concept and a social issue: A multidimensional developmental
theory. Journal of Social Issues, 33(3), 22–42. https://doi.org/10.1111/j.1540-4560.1977.tb01880.x
Lee, H., Park, H., & Kim, J. (2013). Why do people share their context information on social network services? A
qualitative study and an experimental study on users’ behavior of balancing perceived benefit and risk.
International Journal of Human-Computer Studies, 71(9), 862–877. https://doi.org/10.1016/j.ijhcs.2013.01.005
Lutz, C., & Strathoff, P. (2014, April 16). Privacy concerns and online behavior not so paradoxical after all? Viewing
the privacy paradox through different theoretical lenses. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.2425132
Masur, P. K. (2019). Situational privacy and self-disclosure. Springer. https://doi.org/10.1007/978-3-319-78884-5
Miller, L. C., Berg, J. H., & Archer, R. L. (1983). Openers: Individuals who elicit intimate self-disclosure. Journal of
Personality and Social Psychology, 44(6), 1234–1244. https://doi.org/10.1037/0022-3514.44.6.1234
Nestler, S., Humberg, S., & Schönbrodt, F. D. (2019). Response surface analysis with multilevel data: Illustration
for the case of congruence hypotheses. Psychological Methods, 24(3), 291–308.
https://doi.org/10.1037/met0000199
Nouwens, M., Liccardi, I., Veale, M., Karger, D., & Kagal, L. (2020). Dark patterns after the GDPR: Scraping consent
pop-ups and demonstrating their influence. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (pp. 1–13). https://doi.org/10.1145/3313831.3376321
Orben, A. C., & Dunbar, R. I. M. (2017). Social media and relationship development: The effect of valence and
intimacy of posts. Computers in Human Behavior, 73, 489–498. https://doi.org/10.1016/j.chb.2017.04.006
Park, Y. J. (2013). Digital literacy and privacy behavior online. Communication Research, 40(2), 215–236.
https://doi.org/10.1177/0093650211418338
Pek, J., Wong, O., & Wong, A. C. M. (2018). How to address non-normality: A taxonomy of approaches, reviewed,
and illustrated. Frontiers in Psychology, 9, Article 2104. https://doi.org/10.3389/fpsyg.2018.02104
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical
Computing. https://www.R-project.org/
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–
36. https://doi.org/10.18637/jss.v048.i02
Rousseeuw, P. J., Ruts, I., & Tukey, J. W. (1999). The bagplot: A bivariate boxplot. The American Statistician, 53(4),
382–387. https://doi.org/10.1080/00031305.1999.10474494
Schönbrodt, F. D. (2017). RSA: An R package for response surface analysis (version 0.9.11). https://cran.r-
project.org/package=RSA
Shin, W., & Kang, H. (2016). Adolescents’ privacy concerns and information disclosure online: The role of parents
and the internet. Computers in Human Behavior, 54, 114–123. https://doi.org/10.1016/j.chb.2015.07.062
Simon, H. A. (1955). A behavioral model of rational choice. The quarterly journal of economics, 69(1), 99-118.
https://doi.org/10.2307/1884852
Stieger, S., Burger, C., Bohn, M., & Voracek, M. (2013). Who commits virtual identity suicide? Differences in
privacy concerns, internet addiction, and personality between Facebook users and quitters. Cyberpsychology,
Behavior, and Social Networking, 16(9), 629-634. https://doi.org/10.1089/cyber.2012.0323
Sundar, S. S., Kang, H., Wu, M., Gu, E., & Zhang, B. (2013). Unlocking the privacy paradox: Do cognitive heuristics
hold the key? In S. Bødker, S. Brewster, P. Baudisch, M. Beaudouin-Lafon, & W. E. Mackay (Eds.), CHI 2013:
Changing Perspectives (pp. 811–816). ACM. https://dl.acm.org/doi/proceedings/10.1145/2470654
Taddicken, M. (2014). The ‘privacy paradox’ in the social web: The impact of privacy concerns, individual
characteristics, and the perceived social relevance on different forms of self-disclosure. Journal of Computer-
Mediated Communication, 19(2), 248–273. https://doi.org/10.1111/jcc4.12052
Tamir, D. I., & Mitchell, J. P. (2012). Disclosing information about the self is intrinsically rewarding. In Proceedings
of the National Academy of Sciences (pp. 8038–8043). PNAS. https://doi.org/10.1073/pnas.1202129109
Trepte, S., Reinecke, L., Ellison, N. B., Quiring, O., Yao, M. Z., & Ziegele, M. (2017). A cross-cultural perspective on
the privacy calculus. Social Media + Society, 3(1), 1–13. https://doi.org/10.1177/2056305116688035
van Ooijen, I., Segijn, C. M., & Opree, S. J. (2022). Privacy cynicism and its role in privacy decision-making.
Communication Research. Advance online publication. https://doi.org/10.1177/00936502211060984
Waldman, A. E. (2020). Cognitive biases, dark patterns, and the ‘privacy paradox’. Current Opinion in Psychology,
31, 105–109. https://doi.org/10.1016/j.copsyc.2019.08.025
Wilson, D. W., & Valacich, J. S. (2012). Unpacking the privacy paradox: Irrational decision-making within the
privacy calculus. International Conference on Information Systems, 5, 4152–4162.
https://experts.arizona.edu/en/publications/unpacking-the-privacy-paradox-irrational-decision-making-within-t
Zhang, R., & Fu, J. S. (2020). Privacy management and self-disclosure on social network sites: The moderating
effects of stress and gender. Journal of Computer-Mediated Communication, 25(3), 236–251.
https://doi.org/10.1093/jcmc/zmaa004
Zhu, M., Wu, C., Huang, S., Zheng, K., Young, S. D., Yan, X., & Yuan, Q. (2021). Privacy paradox in mHealth
applications: An integrated elaboration likelihood model incorporating privacy calculus and privacy fatigue.
Telematics and Informatics, 61, Article 101601. https://doi.org/10.1016/j.tele.2021.101601
© Author(s). The articles in Cyberpsychology: Journal of Psychosocial Research on Cyberspace are open access
articles licensed under the terms of the Creative Commons BY-NC-ND 4.0 International License which permits
unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly
cited.
Cyberpsychology: Journal of Psychosocial Research
on Cyberspace
(
https://cyberpsychology.eu/
)
ISSN: 1802-7962 | Faculty of Social Studies, Masaryk University
About Authors
Murat Kezer (M.A. Koc University) is a doctoral student of psychology at University of Oregon. His research
interests include privacy, empathy, interpersonal perception, and moral judgments.
Tobias Dienlin (Ph.D University of Hohenheim) is an assistant professor for Interactive Communication at
Department of Communication at University of Vienna. His research interests include social media, privacy, mental
health, and open science.
Lemi Baruh (Ph.D University of Pennsylvania) is an associate professor at Koç University Media and Visual Arts
Department. His research interests include new media technologies, surveillance, privacy—especially pertaining
to attitudes about privacy—and culture of voyeurism.
Correspondence to
Murat Kezer, Department of Psychology, University of Oregon, Eugene, OR 97403-1227, USA,
mkezer@uoregon.edu
... Users go for self-disclose more in case their gratifications surpass privacy concerns. This means gratifications play a crucial role while making a choice to disclose information (Kezer, Dienlin, & Baruh, 2022). ...
Article
Full-text available
The constantly evolving world and the advent of social media gave birth to excessive digitalized human interaction enhancing connectivity among users. These new modes of interaction added to the excitement of sharing, but at the same time it has placed some concerns about the excessive sharing of personal information on digital platforms. The boundaries of subsequent privacy violations are critical concerns in the advance of the technological age. Pakistan is a country with an enormously growing number of internet users, from diverse socio-cultural backgrounds and the platforms are used for distinctive reasons, resulting in millions of posts every minute of the day. A qualitative approach of in-depth interviews was used for the study. Considering the qualitative nature of the study interviews was conducted based on the semi-structured questionnaire. The sample using a purposive sampling technique included users for the sake of highlighting the privacy concerns and experts like media academics, psychologists, lawyers, representatives from the cyber-crime wing of FIA, and the country representatives of social media platforms for understanding the approaches to bridge the gaps regarding those concerns. Social media representatives ensured users' sense of security as a priority of social platforms. Users' inferences and privacy awareness were also gauged which showed concerns about the layout of privacy policies. The privacy calculus approach helped understand the user's psyche of disclosure while having privacy concerns.
Article
Full-text available
In the era of data-driven communication, managing one’s online privacy is a necessary, yet burdensome challenge. While individuals have concerns about firms’ data collection practices, they sometimes appear to disclose personal information for relatively small rewards. We demonstrate that privacy cynicism—an attitude toward privacy protection characterized by frustration, hopelessness, and disillusionment—explains this paradox by moderating the relationship between the appraisal of privacy threats and privacy coping behaviors on one side, and privacy protection behaviors on the other side. Results of a U.S. national survey ( N = 993) show that privacy cynicism is negatively related to privacy protection behaviors and significantly moderates relationships of perceived vulnerability, response efficacy, disclosure benefits, and response costs on protection behaviors. Hence, this work has important implications for communication theory by extending existing models of privacy management behaviors, as well as for communication practice, by stressing the importance of creating awareness about privacy cynicism.
Article
Full-text available
A plethora of research has examined the effects of privacy concerns on individuals' self-disclosure on social network sites (SNSs). However, most studies are based on the rational choice paradigm, without taking into account the influence of individuals' emotional states. This study examines the roles of stress in influencing the relationship between privacy concerns and self-disclosure on SNSs, as well as gender differences in the effects of stress. Results from a survey of 556 university students in Hong Kong suggest that privacy concerns are negatively related to the amount, intimacy, and honesty of self-disclosure on SNSs. Yet a person's level of stress dampens the association between privacy concerns and disclosure amount and intimacy, suggesting that people may worry less about privacy when highly stressed. Moreover, the moderating effect of stress varies based on gender. This study provides insights into the emotional component of privacy management online.
Article
Full-text available
Response surface analysis (RSA) is a statistical approach that enables researchers to test congruence hypotheses; the proposition that the degree of congruence between people's values in 2 psychological constructs should be positively or negatively related to their value in an outcome variable. This is done by estimating a polynomial regression model and using the graph of the model and several parameters as a guide to interpret the resulting regression coefficients in terms of the congruence hypothesis. One problem with using RSA in applied research is that the model and the interpretation of the model's parameters in terms of congruence effects have only been thoroughly developed for single-level data. Here, we present an extension of RSA to multilevel data. Among other things we show how the standard errors can be computed and how researchers can decide whether the occurrence of a congruence effect depends on a Level 2 covariate. We illustrate the suggested extension with 2 examples that guide readers through the test of congruence effects in the case of multilevel data. We also provide R scripts that researchers can adopt to conduct multilevel RSA. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Article
Full-text available
The privacy calculus suggests that online self-disclosure is based on a cost-benefit trade-off. However, although companies progressively collect information to offer tailored services, the effect of both personalization and context-dependency on self-disclosure has remained understudied. Building on the privacy calculus, we hypothesized that benefits, privacy costs, and trust would predict online self-disclosure. Moreover, we analyzed the impact of personalization, investigating whether effects would differ for health, news, and commercial websites. Results from an online experiment using a representative Dutch sample (N = 1,131) supported the privacy calculus, revealing that it was stable across contexts. Personalization decreased trust slightly and benefits marginally. Interestingly, these effects were context-dependent: While personalization affected outcomes in news and commerce contexts, no effects emerged in the health context.
Article
Full-text available
The linear model often serves as a starting point for applying statistics in psychology. Often, formal training beyond the linear model is limited, creating a potential pedagogical gap because of the pervasiveness of data non-normality. We reviewed 61 recently published undergraduate and graduate textbooks on introductory statistics and the linear model, focusing on their treatment of non-normality. This review identified at least eight distinct methods suggested to address non-normality, which we organize into a new taxonomy according to whether the approach: (a) remains within the linear model, (b) changes the data, and (c) treats normality as informative or as a nuisance. Because textbook coverage of these methods was often cursory, and methodological papers introducing these approaches are usually inaccessible to non-statisticians, this review is designed to be the happy medium. We provide a relatively non-technical review of advanced methods which can address non-normality (and heteroscedasticity), thereby serving a starting point to promote best practice in the application of the linear model. We also present three empirical examples to highlight distinctions between these methods' motivations and results. The paper also reviews the current state of methodological research in addressing non-normality within the linear modeling framework. It is anticipated that our taxonomy will provide a useful overview and starting place for researchers interested in extending their knowledge in approaches developed to address non-normality from the perspective of the linear model.
Article
As people’s health awareness and standard of living improve, mHealth applications are being increasingly used. However, mHealth application services are mainly based on the collection of personal and behavioral data, which conflicts with users’ growing privacy concerns. In that context, this study considers the privacy paradox phenomenon, in which privacy concerns co-exist with disclosure behavior. This study explores the privacy paradox in mHealth applications using an integrated elaboration likelihood model (ELM) from the perspective of privacy calculus and privacy fatigue. Results from the quasi-experiment and partial least squares structural equation modeling reveal that, compared with privacy concerns, perceived benefits have a greater impact on users’ disclosure intention, which further supports the existence of the privacy paradox in the mHealth context; this process is found to originate in users’ privacy calculus. However, privacy fatigue is found to have an insignificant impact on users’ disclosure intention, which may be due to the low sunk cost of users’ investment in mHealth applications. The results indicate that designers of mHealth applications should optimize their interaction functions to enhance benefits to users.
Preprint
According to the privacy calculus, both privacy concerns and expected gratifications explain self-disclosure online. So far, however, most findings were based on self-reports, and little is known about whether the privacy calculus can be used to explain observations of actual behavior. Likewise, we still know little as to whether the privacy calculus is influenced by the design of online websites, including for example popularity cues such as like and dislike buttons. To answer these questions, we ran a preregistered one-week field experiment. Participants were randomly distributed to three different websites, on which they discussed a current political topic. The websites featured either (a) like buttons, (b) like and dislike button, or (c) no like/dislike buttons, and were otherwise identical. The final sample consisted of 590 participants. Although the originally preregistered model was rejected, the results showed that a considerable share of actual self-disclosure could be explained by privacy concerns, gratifications, privacy deliberation, trust, and self-efficacy. The impact of the popularity cues on self-disclosure and the privacy calculus was negligible.
Online consumers often voice discontent and concern over their privacy and yet fail to take adequate precautions. Nor do they abstain from disclosing information. This study aims to explore this phenomenon which is known as the privacy paradox. Based on semi-structured interviews with online shopping consumers and thematic analysis of data, this paper illuminates the privacy paradox using three themes: psychological distance of privacy, perceived social contracts of privacy, and learned helplessness and privacy empowerment. Our findings contribute to the privacy paradox discourse and provide several implications for consumers, online retailers, and policymakers.
Article
Much research has focused on privacy concern, which describes individuals' motivation to protect personal information from unauthorized access, collection, storage, and use. Variation in privacy concern has been attributed to differences in three key factors: 1) chronic privacy attitudes, 2) information sensitivity, and 3) context. While each factor affects individuals' motivation to protect personal information, none of them explicitly accounts for differences in individuals' privacy knowledge (or privacy literacy), which consists of factual, procedural, or experiential familiarity with privacy-related issues. Calling attention to how little research has investigated both privacy concern and privacy literacy, we argue that understanding how knowledge and motivation interact is critical to accurately predicting how people will respond to privacy threats.