Chapter

Nutritional Epigenetics and Fetal Metabolic Programming

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

The current global epidemic of obesity and metabolic disorders underlines the challenge of metabolic mapping by responsive epigenome. It is increasingly accepted that nutrients and their metabolites influence long-term epigenetic alterations, and may be involved in the development of metabolic diseases. Here, we review dietary factors that influence the epigenome and provide combined neuroendocrine and immunological view for metabolic reprogramming. Therefore, we will consider future preventive strategies for metabolic diseases via the nutritional epigenome.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.
Article
Full-text available
Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals. Zhang et al. identify a nuclear role for the glycolytic enzyme TPI1 in connecting nutrient status and cell cycle status to global histone acetylation.
Article
Full-text available
Background Sufficient choline and betaine during pregnancy are needed for fetal growth and development. Objectives We aimed to investigate the associations between maternal plasma choline and betaine in the third trimester of pregnancy and child growth from birth up to 8 years of age. Methods Concentrations of choline and betaine were measured in plasma of 1331 pregnant women from the KOALA (Kind, Ouders en gezondheid: Aandacht voor Leefstijl en Aanleg) Birth Cohort Study in the Netherlands. Child weight and height were measured at birth and at 1 (91% complete), 2 (86%), and 6–8 y (76%). Birth weight, weight gain in the first year, and z scores for weight and height at 1 and 2 y were used as continuous outcome variables. BMI z scores at 1 and 2 y were used as continuous and dichotomous outcomes, and BMI z scores at age 6–8 y were used to study overweight at that age. Results Each 1-µmol/L increase of maternal plasma choline was associated with a mean 20-g (95% CI: 1.1, 38.0 g) higher weight gain in the first year of life, and a higher BMI z score (β: 0.02; 95% CI: 0.00, 0.04) and slightly higher odds of BMI z score >85th percentile (OR: 1.08; 95% CI: 1.03, 1.10) at 1–2 y. Each 1-µmol/L increase of plasma betaine was associated with a mean 12-g (95% CI: 0.8, 23.9 g) higher weight gain in the first year of life and higher odds of BMI z score >85th percentile at 1–2 y (OR: 1.03; 95% CI: 1.00, 1.07). Lastly, betaine was associated with overweight at 6–8 y (OR: 1.17; 95% CI: 1.02, 1.34), only in boys. Conclusions Third-trimester pregnancy plasma choline and betaine were positively associated with childhood anthropometric measures. In boys, some of the associations may have persisted up to 8 y of age. Further studies may investigate the validity of maternal plasma choline and betaine concentrations as markers of maternal intake and fetal transfer.
Article
Full-text available
Lactate is an end product of glycolysis. As a critical energy source for mitochondrial respiration, lactate also acts as a precursor of gluconeogenesis and a signaling molecule. We briefly summarize emerging concepts regarding lactate metabolism, such as the lactate shuttle, lactate homeostasis, and lactate-microenvironment interaction. Accumulating evidence indicates that lactate-mediated reprogramming of immune cells and enhancement of cellular plasticity contribute to establishing disease-specific immunity status. However, the mechanisms by which changes in lactate states influence the establishment of diverse functional adaptive states are largely uncharacterized. Posttranslational histone modifications create a code that functions as a key sensor of metabolism and are responsible for transducing metabolic changes into stable gene expression patterns. In this review, we describe the recent advances in a novel lactate-induced histone modification, histone lysine lactylation. These observations support the idea that epigenetic reprogramming-linked lactate input is related to disease state outputs, such as cancer progression and drug resistance.
Article
Full-text available
Background Vitamins B12 and folate participate in the one-carbon metabolism cycle and hence regulate fetal growth. Though vitamin B12 deficiency is widely prevalent, the current public health policy in India is to supplement only iron and folic acid for the prevention of anaemia. Prompted by our research findings of the importance of maternal vitamin B12 status for a healthy pregnancy, birth and offspring health outcomes, we evaluated available literature evidence using a systematic review approach, to inform policy. Methods A systematic search was performed for relevant Indian studies in the MEDLINE/PubMed and IndMed databases. We selected studies reporting maternal vitamin B12 status (dietary intake or blood concentrations), and/or metabolic markers of vitamin B12 deficiency (homocysteine, methylmalonic acid) or haematological indices during pregnancy and their associations with outcomes of pregnancy, infancy or in later life. Intervention trials of vitamin B12 during pregnancy were also included. Quality of evidence was assessed on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results Of the 635 articles identified, 46 studies met the inclusion criteria (cohort studies-26, case-control studies-13, RCT’s -7). There is a high prevalence of vitamin B12 deficiency in Indian women during pregnancy (40-70%) (3 studies). Observational studies support associations (adjusted for potential sociodemographic confounders, maternal body size, postnatal factors) of lower maternal B12, higher homocysteine or an imbalance between vitamin B12-folate status with a higher risk of NTDs (6 studies), pregnancy complications (recurrent pregnancy losses, gestational diabetes, pre-eclampsia) (9 studies), lower birth weight (10 studies) and adverse longer-term health outcomes in the offspring (cognitive functions, adiposity, insulin resistance) (11 studies). Vitamin B12 supplementation (7 RCT’s) in pregnancy showed a beneficial effect on offspring neurocognitive development and an effect on birth weight was inconclusive. There is a high quality evidence to support the role of low maternal vitamin B12 in higher risk for NTD and low birth weight and moderate-quality evidence for higher risk of gestational diabetes and later life adverse health outcomes (cognitive functions, risk for diabetes) in offspring. Conclusion In the Indian population low maternal vitaminB12 status, is associated with adverse maternal and child health outcomes. The level of evidence supports adding vitamin B12 to existing nutritional programs in India for extended benefits on outcomes in pregnancy and offspring health besides control of anaemia. Systematic Review Registration [website], identifier [registration number]
Article
Full-text available
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, coexisting disease and other factors. During pregnancy, metabolic changes related to the protection of energy homeostasis are of fundamental importance for the developing fetus, its future metabolic fate and the mother’s health. SCFAs act as signaling molecules that regulate the body’s energy balance through G-protein receptors. GPR41 receptors affect metabolism through the microflora, while GPR43 receptors are recognized as a molecular link between diet, microflora, gastrointestinal tract, immunity and the inflammatory response. The possible mechanism by which the gut microflora may contribute to fat storage, as well as the occurrence of gestational insulin resistance, is blocking the expression of the fasting-induced adipose factor. SCFAs, in particular propionic acid via GPR, determine the development and metabolic programming of the fetus in pregnant women. The mechanisms regulating lipid metabolism during pregnancy are similar to those found in obese people and those with impaired microbiome and its metabolites. The implications of SCFAs and metabolic disorders during pregnancy are therefore critical to maternal health and neonatal development. In this review paper, we summarize the current knowledge about SCFAs, their potential impact and possible mechanisms of action in relation to maternal metabolism during pregnancy. Therefore, they constitute a contemporary challenge to practical nutritional therapy. Material and methods: The PubMed database were searched for “pregnancy”, “lipids”, “SCFA” in conjunction with “diabetes”, “hypertension”, and “microbiota”, and searches were limited to work published for a period not exceeding 20 years in the past. Out of 2927 publication items, 2778 papers were excluded from the analysis, due to being unrelated to the main topic, conference summaries and/or articles written in a language other than English, while the remaining 126 publications were included in the analysis.
Article
Full-text available
Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage. By studying brain DNA methylation across 13 distantly related animals, the authors show that non-CpG DNA methylation, which plays a regulatory role in cognition, is restricted to vertebrates and was assembled at the origin of the vertebrate lineage as a result of the ancestral vertebrate whole-genome duplication.
Article
Full-text available
Obesity is one of the biggest public health concerns identified by an increase in adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining to the importance of adipose tissue in various biological processes, any alteration in its function results in impaired metabolic health. In this review, we discuss how adipose tissue maintains the metabolic health through secretion of various adipokines and inflammatory mediators and how its dysfunction leads to the development of severe metabolic disorders and influences cancer progression. Impairment in the adipocyte function occurs due to individuals’ genetics and/or environmental factor(s) that largely affect the epigenetic profile leading to altered gene expression and onset of obesity in adults. Moreover, several crucial aspects of adipose biology, including the regulation of different transcription factors, are controlled by epigenetic events. Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its relevance in underlying disease conditions and identifying the therapeutic interventions for obesity and metabolic syndrome.
Article
Full-text available
Acetylation is the most studied histone acyl modification and has been recognized as a fundamental player in metabolic gene regulation, whereas other short-chain acyl modifications have only been recently identified, and little is known about their dynamics or molecular functions at the intersection of metabolism and epigenetic gene regulation. In this study, we aimed to understand the link between nonacetyl histone acyl modification, metabolic transcriptional regulation, and cellular adaptation. Using antibodies specific for butyrylated, propionylated, and crotonylated H3K23, we analyzed dynamic changes of H3K23 acylation upon various metabolic challenges. Here, we show that H3K23 modifications were highly responsive and reversibly regulated by nutrient availability. These modifications were commonly downregulated by the depletion of glucose and recovered based on glucose or fatty acid availability. Depletion of metabolic enzymes, namely, ATP citrate lyase, carnitine acetyltransferase, and acetyl-CoA synthetase, which are involved in Ac-CoA synthesis, resulted in global loss of H3K23 butyrylation, crotonylation, propionylation, and acetylation, with a profound impact on gene expression and cellular metabolic states. Our data indicate that Ac-CoA/CoA and central metabolic inputs are important for the maintenance of histone acylation. Additionally, genome-wide analysis revealed that acyl modifications are associated with gene activation. Our study shows that histone acylation acts as an immediate and reversible metabolic sensor enabling cellular adaptation to metabolic stress by reprogramming gene expression.
Article
Full-text available
N⁶-methyladenosine (m⁶A) is one of the most abundant modifications on mRNAs and plays important roles in various biological processes. The formation of m⁶A is catalyzed by a methyltransferase complex (MTC) containing a key factor methyltransferase-like 3 (Mettl3). However, the functions of Mettl3 and m⁶A modification in hepatic lipid and glucose metabolism remain unclear. Here, we showed that both Mettl3 expression and m⁶A level increased in the livers of mice with high fat diet (HFD)-induced metabolic disorders. Overexpression of Mettl3 aggravated HFD-induced liver metabolic disorders and insulin resistance. In contrast, hepatocyte-specific knockout of Mettl3 significantly alleviated HFD-induced metabolic disorders by slowing weight gain, reducing lipid accumulation, and improving insulin sensitivity. Mechanistically, Mettl3 depletion-mediated m⁶A loss caused extended RNA half-lives of metabolism-related genes, which consequently protected mice against HFD-induced metabolic syndrome. Our findings reveal a critical role of Mettl3-mediated m⁶A in HFD-induced metabolic disorders and hepatogenous diabetes.
Article
Full-text available
Similar to DNA epigenetic modifications, multiple reversible chemical modifications on RNAs have been uncovered in a new layer of epigenetic modification. N6-methyladenosine (m ⁶ A), a modification that occurs in ~30% transcripts, is dynamically regulated by writer complex (methylase) and eraser (RNA demethylase) proteins, and is recognized by reader (m ⁶ A-binding) proteins. The effects of m ⁶ A modification are reflected in the functional modulation of mRNA splicing, export, localization, translation, and stability by regulating RNA structure and interactions between RNA and RNA-binding proteins. This modulation is involved in a variety of physiological behaviors, including neurodevelopment, immunoregulation, and cellular differentiation. The disruption of m ⁶ A modulations impairs gene expression and cellular function and ultimately leads to diseases such as cancer, psychiatric disorders, and metabolic disease. This review focuses on the mechanisms and functions of m ⁶ A modification in a variety of physiological behaviors and diseases.
Article
Full-text available
PurposeDiabetes alters maternal metabolism and can lead to aberrant fetal growth. In addition to insulin treatment, nutritional diet interventions are recommended for promoting fetal health against diabetes-induced adverse effects. Therefore, we conducted an in vivo study to investigate betaine efficacy on fetal development against maternal diabetes.Methods Thirty-two dams were divided into four equal groups: control (C), betaine supplementation (BS), diabetic pregnancy (DP) and diabetic pregnancy plus betaine supplementation (DP + BS). Fasting blood sugar (FBS) and body weight (BW) were monitored during pregnancy. After physiological delivery, dams glycated hemoglobin (HbA1c) concentrations were measured, followed by fetal development indices including litter size (LS), neonatal weight (NW) and crown-rump (CR). Also, maternal oxidative status was assessed by evaluating glutathione (GSH) content, glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and malondialdehyde (MDA) concentration in the erythrocytes.ResultsBetaine supplementation significantly alleviated FBS and tended to recover BW loss. It also significantly decreased HbA1c values in dams of DP + BS compared to DP group. Normalized fetal indices such as LS, NW and CR under betaine supplementation were associated with a significant increase in GSH content and GSH-Px activity, as well as decreased MDA concentrations in erythrocytes of dams in the DP + BS versus the DP group, indicating improved redox balance in the dams.Conclusion We indicated for the first time that betaine supplementation improved the maternal glucose metabolism and redox balance associated with normalized fetal growth. Nevertheless, further studies are required to investigate the mechanisms through which betaine protects fetal growth in diabetic pregnancy.
Article
Full-text available
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Metabolic dysfunction is a fundamental core mechanism underlying CVDs. Previous studies generally focused on the roles of long-chain fatty acids (LCFAs) in CVDs. However, a growing body of study has implied that short-chain fatty acids (SCFAs: namely propionate, malonate, butyrate, 2-hydroxyisobutyrate (2-HIBA), β-hydroxybutyrate, crotonate, succinate, and glutarate) and their cognate acylations (propionylation, malonylation, butyrylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, crotonylation, succinylation, and glutarylation) participate in CVDs. Here, we attempt to provide an overview landscape of the metabolic pattern of SCFAs in CVDs. Especially, we would focus on the SCFAs and newly identified acylations and their roles in CVDs, including atherosclerosis, hypertension, and heart failure.
Article
Full-text available
Ketone bodies (KBs), comprising β-hydroxybutyrate, acetoacetate and acetone, are a set of fuel molecules serving as an alternative energy source to glucose. KBs are mainly produced by the liver from fatty acids during periods of fasting, and prolonged or intense physical activity. In diabetes, mainly type-1, ketoacidosis is the pathological response to glucose malabsorption. Endogenous production of ketone bodies is promoted by consumption of a ketogenic diet (KD), a diet virtually devoid of carbohydrates. Despite its recently widespread use, the systemic impact of KD is only partially understood, and ranges from physiologically beneficial outcomes in particular circumstances to potentially harmful effects. Here, we firstly review ketone body metabolism and molecular signaling, to then link the understanding of ketone bodies’ biochemistry to controversies regarding their putative or proven medical benefits. We overview the physiological consequences of ketone bodies’ consumption, focusing on (i) KB-induced histone post-translational modifications, particularly β-hydroxybutyrylation and acetylation, which appears to be the core epigenetic mechanisms of activity of β-hydroxybutyrate to modulate inflammation; (ii) inflammatory responses to a KD; (iii) proven benefits of the KD in the context of neuronal disease and cancer; and (iv) consequences of the KD’s application on cardiovascular health and on physical performance.
Article
Full-text available
Mouse mothers transfer metabolic mode Obesity and metabolic diseases tend to go together, and humans who become obese are also prone to type 2 diabetes and cardiovascular problems. Starting with the observation that offspring of germ-free mice tended to become obese on high-fat diets, Kimura et al. investigated how the presence of the microbiota might be protective in mice (see the Perspective by Ferguson). Short-chain fatty acids (SCFAs) from the microbiota are known to suppress insulin signaling and reduce fat deposition in adipocytes. Further experiments showed that SCFAs in the bloodstream were able to pass from a non–germ-free mother's gut microbiota across the placenta and into the developing embryos. The authors found that in the embryos, the SCFA propionate mediates not only insulin levels through GPR43 signaling but also sympathetic nervous system development through GPR41 signaling. A high-fiber diet promoted propionate production from the maternal microbiota, and maternal antibiotic treatment resulted in obese-prone offspring. Science , this issue p. eaaw8429 ; see also p. 978
Article
Full-text available
Abstract N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-methyladenosine is highly associated with numerous cellular processes, which plays important roles in the development of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progression of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, osteoporosis and immune-related metabolic diseases.
Article
Full-text available
Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Article
Full-text available
Pregnancy induces a number of immunological, hormonal, and metabolic changes that are necessary for the mother to adapt her body to this new physiological situation. The microbiome of the mother, the placenta and the fetus influence the fetus growth and undoubtedly plays a major role in the adequate development of the newborn infant. Hence, the microbiome modulates the inflammatory mechanisms related to physiological and pathological processes that are involved in the perinatal progress through different mechanisms. The present review summarizes the actual knowledge related to physiological changes in the microbiota occurring in the mother, the fetus, and the child, both during neonatal period and beyond. In addition, we approach some specific pathological situations during the perinatal periods, as well as the influence of the type of delivery and feeding.
Article
Full-text available
An obesogenic diet adversely affects the endogenous mammalian circadian clock, altering daily activity and metabolism, and resulting in obesity. We investigated whether an obese pregnancy can alter the molecular clock in the offspring hypothalamus, resulting in changes to their activity and feeding rhythms. Female mice were fed a control (C, 7% kcal fat) or high fat diet (HF, 45% kcal fat) before mating and throughout pregnancy. Male offspring were fed the C or HF diet postweaning, resulting in four offspring groups: C/C, C/HF, HF/C, and HF/HF. Daily activity and food intake were monitored, and at 15 weeks of age were killed at six time-points over 24 h. The clock genes Clock, Bmal1, Per2, and Cry2 in the suprachiasmatic nucleus (SCN) and appetite genes Npy and Pomc in the arcuate nucleus (ARC) were measured. Daily activity and feeding cycles in the HF/C, C/HF, and HF/HF offspring were altered, with increased feeding bouts and activity during the day and increased food intake but reduced activity at night. Gene expression patterns and levels of Clock, Bmal1, Per2, and Cry2 in the SCN and Npy and Pomc in the ARC were altered in HF diet-exposed offspring. The altered expression of hypothalamic molecular clock components and appetite genes, together with changes in activity and feeding rhythms, could be contributing to offspring obesity.
Article
Full-text available
Clear evidence indicates that cytokines, for instance, adipokines, hepatokines, inflammatory cytokines, myokines, and osteokines, contribute substantially to the development of abnormal glucose and lipid metabolism. Some cytokines play a positive role in metabolism action, while others have a negative metabolic role linking to the induction of metabolic dysfunction. The mechanisms involved are not fully understood, but are associated with lipid accumulation in organs and tissues, especially in the adipose and liver tissue, changes in energy metabolism, and inflammatory signals derived from various cell types, including immune cells. In this review, we describe the roles of certain cytokines in the regulation of metabolism and inter-organ signaling in regard to the pathophysiological aspects. Given the disease-related changes in circulating levels of relevant cytokines, these factors may serve as biomarkers for the early detection of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that can induce improvements in glucose and lipid metabolism and immune response may emerge as novel targets of broader and more efficacious treatments and prevention of metabolic disease.
Article
Full-text available
The Warburg effect, which originally described increased production of lactate in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, polarization of macrophages and activation of T cells. This phenomenon is intimately linked to several diseases including neoplasia, sepsis and autoimmune diseases1,2. Lactate, which is converted from pyruvate in tumour cells, is widely known as an energy source and metabolic by-product. However, its non-metabolic functions in physiology and disease remain unknown. Here we show that lactate-derived lactylation of histone lysine residues serves as an epigenetic modification that directly stimulates gene transcription from chromatin. We identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce the production of lactate by glycolysis, and this acts as a precursor that stimulates histone lactylation. Using M1 macrophages that have been exposed to bacteria as a model system, we show that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic genes that are involved in wound healing, including Arg1. Collectively, our results suggest that an endogenous ‘lactate clock’ in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis. Histone lactylation thus represents an opportunity to improve our understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.
Article
Full-text available
The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.
Article
Full-text available
Early environmental exposure is recognized as a key factor for long-term health based on the Developmental Origins of Health and Disease hypothesis. It considers that early-life nutrition is now being recognized as a major contributor that may permanently program change of organ structure and function toward the development of diseases, in which epigenetic mechanisms are involved. Recent researches indicate early-life environmental factors modulate the microbiome development and the microbiome might be mediate diet-epigenetic interaction. This review aims to define which nutrients involve microbiome development during the critical window of susceptibility to disease, and how microbiome modulation regulates epigenetic changes and influences human health and future prevention strategies.
Article
Full-text available
Background: DNA methylation (DNAm) is a critical regulator of both development and cellular identity and shows unique patterns in neurons. To better characterize maturational changes in DNAm patterns in these cells, we profile the DNAm landscape at single-base resolution across the first two decades of human neocortical development in NeuN+ neurons using whole-genome bisulfite sequencing and compare them to non-neurons (primarily glia) and prenatal homogenate cortex. Results: We show that DNAm changes more dramatically during the first 5 years of postnatal life than during the entire remaining period. We further refine global patterns of increasingly divergent neuronal CpG and CpH methylation (mCpG and mCpH) into six developmental trajectories and find that in contrast to genome-wide patterns, neighboring mCpG and mCpH levels within these regions are highly correlated. We integrate paired RNA-seq data and identify putative regulation of hundreds of transcripts and their splicing events exclusively by mCpH levels, independently from mCpG levels, across this period. We finally explore the relationship between DNAm patterns and development of brain-related phenotypes and find enriched heritability for many phenotypes within identified DNAm features. Conclusions: By profiling DNAm changes in NeuN-sorted neurons over the span of human cortical development, we identify novel, dynamic regions of DNAm that would be masked in homogenate DNAm data; expand on the relationship between CpG methylation, CpH methylation, and gene expression; and find enrichment particularly for neuropsychiatric diseases in genomic regions with cell type-specific, developmentally dynamic DNAm patterns.
Article
Full-text available
Vitamins are micronutrients that have physiological effects on various biological responses, including host immunity. Therefore, vitamin deficiency leads to increased risk of developing infectious, allergic, and inflammatory diseases. Since B vitamins are synthesized by plants, yeasts, and bacteria, but not by mammals, mammals must acquire B vitamins from dietary or microbial sources, such as the intestinal microbiota. Similarly, some intestinal bacteria are unable to synthesize B vitamins and must acquire them from the host diet or from other intestinal bacteria for their growth and survival. This suggests that the composition and function of the intestinal microbiota may affect host B vitamin usage and, by extension, host immunity. Here, we review the immunological functions of B vitamins and their metabolism by intestinal bacteria with respect to the control of host immunity.
Article
Full-text available
DNA methylation (5-methylcytosine, 5mC) is a major form of DNA modification in the mammalian genome that plays critical roles in chromatin structure and gene expression. In general, DNA methylation is stably maintained in somatic tissues. However, DNA methylation patterns and levels show dynamic changes during development. Specifically, the genome undergoes two waves of global demethylation and remethylation for the purpose of producing the next generation. The first wave occurs in the germline, initiated with the erasure of global methylation in primordial germ cells (PGCs) and completed with the establishment of sex-specific methylation patterns during later stages of germ cell development. The second wave occurs after fertilization, including the erasure of most methylation marks inherited from the gametes and the subsequent establishment of the embryonic methylation pattern. The two waves of DNA methylation reprogramming involve both distinct and shared mechanisms. In this review article, we provide an overview of the key reprogramming events, focusing on the important players in these processes, including DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family of 5mC dioxygenases.
Article
Full-text available
Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1–3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4–6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.
Article
Full-text available
Protein ADP-ribosylation is essential for the regulation of several cellular pathways, enabling dynamic responses to diverse pathophysiological conditions. It is modulated through a dynamic interplay between ADP-ribose readers, writers and erasers. While ADP-ribose synthesis has been studied and reviewed extensively, ADP-ribose processing by erasing enzymes has received comparably less attention. However, major progress in the mass spectrometric identification of ADP-ribosylated residues and the biochemical characterization of ADP-ribose erasers has substantially expanded our knowledge of ADP-ribosylation dynamics. Herein, we describe recent insights into the biology of ADP-ribose erasers and discuss the intricately orchestrated cellular processes to switch off ADP-ribose-dependent mechanisms.
Article
Full-text available
Short-chain fatty acids (SCFAs) have immunomodulatory effects, but the underlying mechanisms are not well understood. Here we show that pentanoate, a physiologically abundant SCFA, is a potent regulator of immunometabolism. Pentanoate induces IL-10 production in lymphocytes by reprogramming their metabolic activity towards elevated glucose oxidation. Mechanistically, this reprogramming is mediated by supplying additional pentanoate-originated acetyl-CoA for histone acetyltransferases, and by pentanoate-triggered enhancement of mTOR activity. In experimental mouse models of colitis and multiple sclerosis, pentanoate-induced regulatory B cells mediate protection from autoimmune pathology. Additionally, pentanoate shows a potent histone deacetylase-inhibitory activity in CD4⁺ T cells, thereby reducing their IL-17A production. In germ-free mice mono-colonized with segmented filamentous bacteria (SFB), pentanoate inhibits the generation of small-intestinal Th17 cells and ameliorates SFB-promoted inflammation in the central nervous system. Taken together, by enhancing IL-10 production and suppressing Th17 cells, the SCFA pentanoate might be of therapeutic relevance for inflammatory and autoimmune diseases.
Article
Full-text available
Background Folic acid (FA) supplementation is known to prevent neural tube defects (NTDs). We examined whether this preventive effect differs by the sex of the infant. Methods Data were gathered from a large population-based cohort study in China that evaluated the effects of FA supplementation on NTDs. All births at 20 complete gestational weeks, including live births, stillbirths, and pregnancy terminations, and all NTDs, regardless of gestational age, were recorded. In a northern China province, a total of 30,801 singleton live births to women whose use of FA supplements during the first trimester was known at the time were included in the study. The birth prevalence of NTDs was classified by sex, subtype, and maternal FA supplementation. Male to female rate ratios [RR] and their 95% confidence intervals [CI] were calculated. Results A total of 106 NTDs cases were recorded. The overall prevalence of NTDs was 2.5‰ among males and 4.4‰ among females; NTDs were less prevalent among males than among females (RR, 0.58; 95% CI, 0.54–0.63). There was a higher prevalence of anencephaly (RR, 0.34; 95% CI, 0.27–0.43) and spina bifida (RR, 0.73; 95% CI, 0.63–0.84) among females. However, FA supplementation led to significantly greater decreases in the rates of anencephaly (4.8‰) and total NTDs (7.6‰) in females than in males (1.6‰ and 2.8‰, respectively). Conclusions FA supplementation successfully reduces the prevalence of NTDs in both male and female infants, although we found a significantly greater decrease in anencephaly and total NTDs in females than in males. How the protective effects of FA supplementation affect the sexes differently needs to be studied further.
Article
Full-text available
Recent research suggests that epigenetics, especially DNA methylation, plays a mechanistic role in aging. Epigenetic clocks, which measure changes in a few hundred specific CpG sites, can accurately predict chronological age in a variety of species, including humans. These clocks are currently the best biomarkers for predicting mortality in humans. Additionally, several studies have characterized the effects of aging across the methylome in a wide variety of tissues from humans and mice. A small fraction (~2%) of the CpG sites show age-related changes, either hypermethylation or hypomethylation with aging. Evaluation of non-CpG site methylation has only been examined in a few studies, with about ~0.5% of these sites showing a change with age. Therefore, while only a small fraction of cytosines in the genome show changes in DNA methylation with age, this represents 2 to 3 million cytosines in the genome. Importantly, the only study to compare the effect of aging on DNA methylation in male and female mice and humans found that >95% of the age-related changes in DNA methylation in the hippocampus were sexually divergent, i.e., the methylation did not differ between males and females at young age but age-related changes occurred in one sex but not the other. The age-related changes in DNA methylation tend to be enriched and under-represented in specific genomic contexts, with some commonalities between tissues and species that require further investigation. The strongest evidence that the age-related changes in DNA methylation play a role in aging comes from studies of anti-aging interventions (e.g., caloric restriction, dwarfism, and rapamycin treatment) in mice. These anti-aging interventions deaccelerate the epigenetic clocks and reverse/prevent 20 to 40% of the age-related changes in DNA methylation. It will be important in the future to demonstrate that at least some of the age-related changes in DNA methylation directly lead to alterations in the transcriptome of cells/tissues that could potentially contribute to aging.
Article
Full-text available
The dramatic increase in global prevalence of metabolic disease is inexplicable when considering only environmental or only genetic factors, leading to the need to explore the possible roles of epigenetic factors. A great deal of progress has been made in this interdisciplinary field in recent years, with many studies investigating various aspects of the metabolic syndrome and its associated epigenetic changes. Rodent models of metabolic diseases have been particularly illuminating due to the ability to leverage tools such as genetic and environmental modifications. The current review summarizes recent breakthroughs regarding epigenetic markers in studies of obesity, type II diabetes, and cardiovascular disease, the three major disorders associated with metabolic syndrome. We also discuss open questions and future directions for integrating genomic, epigenomic, and phenotypic big bio-data towards understanding metabolic syndrome etiology.
Article
Full-text available
Neural tube defects (NTDs) are serious congenital malformations. Excessive maternal homocysteine (Hcy) increases the risk of NTDs, while its mechanism remains elusive. Here we report the role of histone homocysteinylation in neural tube closure (NTC). A total of 39 histone homocysteinylation sites are identified in samples from human embryonic brain tissue using mass spectrometry. Elevated levels of histone KHcy and H3K79Hcy are detected at increased cellular Hcy levels in human fetal brains. Using ChIP-seq and RNA-seq assays, we demonstrate that an increase in H3K79Hcy level down-regulates the expression of selected NTC-related genes including Cecr2, Smarca4, and Dnmt3b. In human NTDs brain tissues, decrease in expression of CECR2, SMARCA4, and DNMT3B is also detected along with high levels of Hcy and H3K79Hcy. Our results suggest that higher levels of Hcy contribute to the onset of NTDs through up-regulation of histone H3K79Hcy, leading to abnormal expressions of selected NTC-related genes.
Article
Full-text available
Background: Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course. Methods: We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays. Results: We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review. Conclusions: Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health.
Article
Full-text available
The current review highlights the evidence supporting the use of ketogenic diet therapies in the management of adult epilepsy, adult malignant glioma and Alzheimer’s disease. An overview of the scientific literature, both preclinical and clinical, in each area is presented and management strategies for addressing adverse effects and compliance are discussed.
Article
Full-text available
Studies in pregnant women indicate the maternal microbiome changes during pregnancy so as to benefit the mother and fetus. In contrast, disruption of the maternal microbiota around birth can compromise normal bacterial colonisation of the infant’s gastrointestinal tract. This may then inhibit development of the gut so as to increase susceptibility to inflammation and reduce barrier function. The impact of modulating fructose intake on the maternal microbiome through pregnancy is unknown, therefore we examined the effect of fructose supplementation on the maternal microbiome together with the immediate and next generation effects in the offspring. Wistar rat dams were divided into control and fructose fed groups that received 10% fructose in their drinking water from 8 weeks of age and throughout pregnancy (10–13 weeks). Maternal fecal and blood samples were collected pre-mating (9 weeks) and during early (gestational day 4–7) and late pregnancy (gestational day 19–21). We show supplementation of the maternal diet with fructose appears to significantly modulate the maternal microbiome, with a significant reduction in Lactobacillus and Bacteroides. In offspring maintained on this diet up to pregnancy and term there was a reduction in gene expression of markers of gut barrier function that could adversely affect its function. An exacerbated insulin response to pregnancy, reduced birth weight, but increased fat mass was also observed in these offspring. In conclusion dietary supplementation with fructose modulates the maternal microbiome in ways that could adversely affect fetal growth and later gut development.
Article
Full-text available
Background: Emerging evidence suggests that maternal folate status can impact cognitive development in childhood. Folate-dependent DNA methylation may provide a biological mechanism to link folate status during pregnancy with cognition in the offspring. Objective: The objective was to investigate the effect of continued folic acid (FA) supplementation beyond the first trimester of pregnancy on DNAmethylation in cord blood of epigenetically controlled genes related to brain development and function. Design: Using available cord blood samples (n = 86) from the Folic Acid Supplementation in the Second and Third Trimesters (FASSTT) trial in pregnancy, we applied pyrosequencing techniques to analyze cord blood DNA at 9 candidate loci known to be regulated by methylation, including some previously implicated in observational studies: the widely dispersed retrotransposon long interspersed nuclear element-1 (LINE-1) and 8 single-copy loci (RBM46, PEG3, IGF2, GRB10, BDNF, GRIN3B, OPCML, and APC2). Results: The newborns of mothers who received ongoing FA (400 μg/d) through the second and third trimesters, compared with placebo, had significantly lower overall DNA methylation levels at LINE-1 (56.3% ± 1.7% compared with 57.2% ± 2.1%; P = 0.024), IGF2 (48.9% ± 4.4% compared with 51.2% ± 5.1%; P = 0.021), and BDNF (2.7% ± 0.7% compared with 3.1% ± 0.8%; P = 0.003). The effect of FA treatment on DNA methylation was significant only in female offspring for IGF2 (P = 0.028) and only in males for BDNF (P = 0.012). For GRB10 and GRIN3B, we detected no effect on overall methylation; however, individual cytosine-phosphateguanine sites showed significant DNA methylation changes in response to FA. Conclusions: Continued supplementation with FA through trimesters 2 and 3 of pregnancy results in significant changes in DNA methylation in cord blood of genes related to brain development. The findings offer a potential biological mechanism linking maternal folate status with neurodevelopment of the offspring, but this requires further investigation using a genome-wide approach.
Article
Full-text available
Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function.
Article
Full-text available
Butyrate, a four-carbon short-chain fatty acid, is produced through microbial fermentation of dietary fibers in the lower intestinal tract. Endogenous butyrate production, delivery, and absorption by colonocytes have been well documented. Butyrate exerts its functions by acting as a histone deacetylase (HDAC) inhibitor or signaling through several G protein–coupled receptors (GPCRs). Recently, butyrate has received particular attention for its beneficial effects on intestinal homeostasis and energy metabolism. With anti-inflammatory properties, butyrate enhances intestinal barrier function and mucosal immunity. However, the role of butyrate in obesity remains controversial. Growing evidence has highlighted the impact of butyrate on the gut-brain axis. In this review, we summarize the present knowledge on the properties of butyrate, especially its potential effects and mechanisms involved in intestinal health and obesity.
Article
Aging is associated with declines in cognitive performance, which are mediated in part by neuroinflammation, characterized by astrocyte activation and higher levels of pro-inflammatory cytokines; however, the upstream drivers are unknown. We investigated the potential role of the gut microbiome–derived metabolite trimethylamine N-oxide (TMAO) in modulating neuroinflammation and cognitive function with aging. Study 1: In middle-aged and older humans (65 ± 7 years), plasma TMAO levels were inversely related to performance on NIH Toolbox Cognition Battery tests of memory and fluid cognition (both r2 = 0.07, p < 0.05). Study 2: In mice, TMAO concentrations in plasma and the brain increased in parallel with aging (r2 = 0.60), suggesting TMAO crosses the blood-brain barrier. The greater TMAO concentrations in old mice (27 months) were associated with higher brain pro-inflammatory cytokines and markers of astrocyte activation vs. young adult mice (6 months). Study 3: To determine if TMAO independently induces an “aging-like” decline in cognitive function, young mice (6 months) were supplemented with TMAO in chow for 6 months. Compared with controls, TMAO-supplemented mice performed worse on the novel object recognition test, indicating impaired memory and learning, and had increased neuroinflammation and markers of astrocyte activation. Study 4: Human astrocytes cultured with TMAO vs. control media exhibited changes in cellular morphology and protein markers consistent with astrocyte activation, indicating TMAO directly acts on these cells. Our results provide translational insight into a novel pathway that modulates neuroinflammation and cognitive function with aging, and suggest that TMAO might be a promising target for prevention of neuroinflammation and cognitive decline with aging.
Article
Objective: To investigate the relationship between serum uric acid/creatinine(SUA/Cr) ratio and metabolic syndrome(MS) and its components in population, whose thyroid function were normal. Methods: From October 2018 to January 2019, 800 volunteers were recruited in this study from four districts of Shenzhen City. The questionnaires, physical examinations and biochemical tests were conducted completely. All objects who met the standard of MS(International Diabetes Federation) and normal thyroid function were selected. According to the quartiles of SUA/Cr, the objects were divided into four groups. The linear trend χ~2 test was used to analyze the influence of SUA/Cr on the prevalence of MS. Spearman rank correlation analysis was used to analyze the influence of SUA/Cr on the prevalence of the number of MS components. Binary Logistic regression analysis of SUA/Cr and MS and its components correlation were also performed. A restricted cubic spline model was used to analyze the dose-response relationship between SUA/Cr and MS morbidity. Results: After screening by inclusion and exclusion criteria, total 543 euthyroid participants were included in this study, and the prevalence of MS was 22. 28% among these euthyroid participants. SUA/Cr positively correlated with the number of MS components(P<0. 01). Compared with the lowest quartile of SUA/Cr, objects in the highest, third and second quartiles, the adjusted OR(95%CI) in the incidence of MS were 5. 83(2. 60-13. 09), 3. 69(1. 62-8. 39) and 3. 28(1. 43-7. 53), respectively. The adjusted OR(95%CI) in the incidence of abdominal obesity for the highest, third and second quartiles were 2. 08(1. 20-3. 58), 1. 82(1. 07-3. 11) and 1. 97(1. 16-3. 33)(P<0. 05). The correlation intensity between SUA/Cr value and MS showed a linear dose-response relationship in euthyroid population(P<0. 01). Conclusion: In euthyroid population, the SUA/Cr level is positively associated with the risk of MS.
Article
The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health. Please see http://www.annualreviews.org/page/journal/pubdates for expected final online publication date for the Annual Review of Nutrition, Volume 40. 2020
Article
Maternal fructose consumption affects the metabolic functions of offspring later in life. However, the molecular mechanism remains poorly understood. Differences of microRNA expression profile and DNA methylation status are a candidate mechanism to explain the developmental programming that contributes to the development of a metabolic disorder. This study examined the transgenerational effect of maternal fructose consumption from the perspective of epigenetic modification. To do this, we collected serum and liver tissues from male offspring rats that were exposed to maternal distilled water or 20% fructose water during gestation and lactation. A decreased serum high-density lipoprotein cholesterol (HDL-C) level was observed in the offspring of fructose-fed dams at postnatal day (PD) 160. Given research indicating a role of liver X receptor alpha (LXRA) in cholesterol metabolism, we analyzed Lxra expression. Real-time PCR analysis demonstrated that offspring that were delivered from fructose-fed dams exhibited decreased Lxra gene expression in their liver tissue. There is a well-established association between Lxra expression and the level of DNA methylation and miR-206 expression. Pyrosequencing assays revealed no differences in the level of DNA methylation in the Lxra promoter region, whereas miR-206 expression was increased in the liver at PD 60 and 160. Our data indicate that early-life exposure to maternal fructose results in changing of miR-206 expression level in the liver that suppress the expression of Lxra. This phenomenon may be associated with the decreased serum HDL-C level in offspring.
Article
DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.
Article
Vitamin D is an essential nutrient that is metabolized in the body to generate an active metabolite (1,25(OH)2D) with hormone-like activity and highly diverse roles in cellular function. Vitamin D deficiency (VDD) is a prevalent but easily preventable nutritional disturbance. Emerging evidence demonstrates the importance of sufficient vitamin D concentrations during fetal life with deficiencies leading to long-term effects into adulthood. Here, we provide a detailed review and perspective of evidence for the role of maternal VDD in offspring long term health, particularly as it relates to Developmental Origins of Health and Disease (DOHaD). We focus on roles in neurobehavioral and cardiometabolic disorders in humans and highlight recent findings from zebrafish and rodent models that probe potential mechanisms linking early life VDD to later life health outcomes. Moreover, we explore evidence implicating epigenetic mechanisms as a mediator of this link. Gaps in our current understanding of how maternal VDD might result in deleterious offspring outcomes later in life are also addressed.
Article
Fructose consumption from added sugars correlates with the epidemic rise in obesity, metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. We have investigated whether maternal fructose intake produces subsequent changes in cholesterol metabolism of progeny. Carbohydrates were supplied to pregnant rats in drinking water (10% w/v solution) throughout gestation. Adult male and female descendants from fructose-fed, control or glucose-fed mothers were studied. Male offspring from fructose-fed mothers had elevated plasma HDL-cholesterol levels, whereas female progeny from fructose-fed mothers presented lower levels of non-HDL cholesterol vs. the other two groups. Liver X-receptor (LXR), an important regulator of cholesterol metabolism, and its target genes such as scavenger receptor B1, ATP-binding cassette (ABC)G5 and cholesterol 7-alpha hydroxylase showed decreased gene expression in males from fructose-fed mothers and the opposite in the female progeny. Moreover, the expression of a number of LXRα target genes related to lipogenesis paralleled to that for LXRα expression. In accordance with this, LXRα gene promoter methylation was increased in males from fructose-fed mothers and decreased in the corresponding group of females. Surprisingly, plasma folic acid levels, an important methyl-group donor, were augmented in males from fructose-fed mothers and diminished in female offspring. Maternal fructose intake produces a fetal programming that influences, in a gender-dependent manner, the transcription factor LXRα epigenetically, and both hepatic mRNA gene expression and plasma parameters of cholesterol metabolism in adult progeny. Changes in the LXRα promoter methylation might be related to the availability of the methyl donor folate.
Article
Introduction: Mothers and infants are at high risk for inadequate vitamin D status. Mechanisms by which vitamin D may affect maternal and infant DNA methylation are poorly understood. Objective: This study quantified the effects of vitamin D3 supplementation on DNA methylation in pregnant and lactating women and their breastfed infants. Materials and methods: In this randomized controlled pilot study, pregnant women received vitamin D3 400 international units (IU) (n = 6; control) or 3,800 IU (n = 7; intervention) daily from late second trimester through 4-6 weeks postpartum. Epigenome-wide DNA methylation was quantified in leukocytes collected from mothers at birth and mother-infant dyads at 4-6 weeks postpartum. Results: At birth, intervention group mothers showed DNA methylation gain and loss at 76 and 89 cytosine-guanine (CpG) dinucleotides, respectively, compared to controls. Postpartum, methylation gain was noted at 200 and loss at 102 CpGs. Associated gene clusters showed strongest biologic relevance for cell migration/motility and cellular membrane function at birth and cadherin signaling and immune function at postpartum. Breastfed 4-6-week-old infants of intervention mothers showed DNA methylation gain and loss in 217 and 213 CpGs, respectively, compared to controls. Genes showing differential methylation mapped most strongly to collagen metabolic processes and regulation of apoptosis. Conclusions: Maternal vitamin D supplementation during pregnancy and lactation alters DNA methylation in mothers and breastfed infants. Additional work is needed to fully elucidate the short- and long-term biologic effects of vitamin D supplementation at varying doses, which could hold important implications for establishing clinical recommendations for prenatal and offspring health promotion.
Article
Recent increases in fructose consumption have raised concerns about the potential adverse intergenerational effects of excess fructose intake. In the present study, we investigated whether excess maternal fructose intake affects hippocampal function in offspring. Female Sprague-Dawley rats were divided into 3 experimental groups: one group received distilled water, one group received 20% fructose water, and one group received 20% glucose water in addition to standard chow during gestation and lactation. Hippocampal function of offspring was evaluated by using novel object recognition and fear conditioning tests. Impaired cognitive performance was observed in the offspring of fructose-fed dams at postnatal d 60, potentially a result of decreased hippocampal neurogenesis. Real-time PCR analysis demonstrated that offspring from fructose-fed dams exhibited decreased brain-derived neurotrophic factor ( BDNF) gene expression, whereas pyrosequencing assays revealed increased DNA methylation at the BDNF promoter. The potential association between BDNF transcription and levels of DNA methylation was confirmed on the basis of luciferase activity. Furthermore, longitudinal analysis revealed that increased methylation of the BDNF promoter region was maintained at least until rats reached maturity. These results indicate that epigenetic changes associated with BDNF may underlie hippocampal dysfunction that is induced by early-life exposure to excess maternal fructose consumption.-Yamazaki, M., Yamada, H., Munetsuna, E., Ishikawa, H., Mizuno, G., Mukuda, T., Mouri, A., Nabeshima, T., Saito, K., Suzuki, K., Hashimoto, S., Ohashi, K. Excess maternal fructose consumption impairs hippocampal function in offspring via epigenetic modification of BDNF promoter.
Article
Choline is an essential nutrient and methyl donor required for epigenetic regulation. Here, we assessed the impact of gut microbial choline metabolism on bacterial fitness and host biology by engineering a microbial community that lacks a single choline-utilizing enzyme. Our results indicate that choline-utilizing bacteria compete with the host for this nutrient, significantly impacting plasma and hepatic levels of methyl-donor metabolites and recapitulating biochemical signatures of choline deficiency. Mice harboring high levels of choline-consuming bacteria showed increased susceptibility to metabolic disease in the context of a high-fat diet. Furthermore, bacterially induced reduction of methyl-donor availability influenced global DNA methylation patterns in both adult mice and their offspring and engendered behavioral alterations. Our results reveal an underappreciated effect of bacterial choline metabolism on host metabolism, epigenetics, and behavior. This work suggests that interpersonal differences in microbial metabolism should be considered when determining optimal nutrient intake requirements.