VOC‐basiertes Profiling von Zitrusprodukten mittels GC‐MS‐IMS & maschinellem Lernen

To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
Thirty-one samples of essential oils used both in perfumery and aromatherapy were purchased to business-to-consumers suppliers and submitted to standard gas chromatography-based analysis of their chemical composition. Their compliance with ISO AFNOR standards was checked and revealed, although ISO AFNOR ranges are relatively loose, that more than 45% of the samples analyzed failed to pass the test and more than 19% were diluted with solvents such as propylene and dipropylene glycol, triethyl citrate, or vegetal oil. Cases of non-compliance could be due to substitution or dilution with a cheaper essential oil, such as sweet orange oil, blending with selected compounds (linalool and linalyl acetate, maybe of synthetic origin), or issues of aging, harvest, or manufacturing that should be either deliberate or accidental. In some cases, natural variability could be invoked. These products are made available to the market without control and liability by resellers and could expose the public to safety issues, in addition to commercial prejudice, in sharp contrast with the ever-increasing regulations applying to the sector and the high demand of consumers for safe, controlled and traceable products in fragrances and cosmetic products.
In recent years, food frauds and adulterations have increased significantly. This practice is motivated by fast economical gains and has an enormous impact on public health, representing an important issue in food science. In this context, this review has been designed to be a useful guide of potential biomarkers of food authenticity and safety. In terms of food authenticity, we focused our attention on biomarkers reported to specify different botanical or geographical origins, genetic diversity or production systems, while at the food safety level, molecular evidences of food adulteration or spoilage will be highlighted. This report is the first to combine results from recent studies in a format that allows a ready overview of metabolites (< 1200 Da) and potentially molecular routes to monitor food authentication and safety. This review has therefore the potential to unveil important aspects in food adulteration and safety, contributing to improve the current regulatory frameworks.
Ion mobility spectrometry (IMS) has recently caught the attention of researchers from different fields including food safety. In general, IMS has been considered as analytical detection tool for the analysis of residues and contaminants in foodstuffs due to its high sensitivity, quick response and portability. However, IMS also provides an extra separation dimension when it is coupled to traditional liquid chromatography or gas chromatography-mass spectrometry methods. Due to the enhancement of the resolving power, target analytes can be easier isolated from chemical background as well as isobaric and isomeric compounds are separated. In addition, collision cross section databases for residues and contaminants have been recently reported. It supposes the first attempt for considering this IMS-related parameter as an additional dimension for chemical structure elucidation in food safety control. This review presents an overview of the current state of IMS in the field and discusses its main perspectives in the area.
Unlabelled: Food ingredient fraud and economically motivated adulteration are emerging risks, but a comprehensive compilation of information about known problematic ingredients and detection methods does not currently exist. The objectives of this research were to collect such information from publicly available articles in scholarly journals and general media, organize into a database, and review and analyze the data to identify trends. The results summarized are a database that will be published in the US Pharmacopeial Convention's Food Chemicals Codex, 8th edition, and includes 1305 records, including 1000 records with analytical methods collected from 677 references. Olive oil, milk, honey, and saffron were the most common targets for adulteration reported in scholarly journals, and potentially harmful issues identified include spices diluted with lead chromate and lead tetraoxide, substitution of Chinese star anise with toxic Japanese star anise, and melamine adulteration of high protein content foods. High-performance liquid chromatography and infrared spectroscopy were the most common analytical detection procedures, and chemometrics data analysis was used in a large number of reports. Future expansion of this database will include additional publically available articles published before 1980 and in other languages, as well as data outside the public domain. The authors recommend in-depth analyses of individual incidents. Practical application: This report describes the development and application of a database of food ingredient fraud issues from publicly available references. The database provides baseline information and data useful to governments, agencies, and individual companies assessing the risks of specific products produced in specific regions as well as products distributed and sold in other regions. In addition, the report describes current analytical technologies for detecting food fraud and identifies trends and developments.