## No full-text available

To read the full-text of this research,

you can request a copy directly from the authors.

The effects of compressibility on the statistics and coherent structures of a temporally developing mixing layer are studied using numerical simulations at convective Mach numbers ranging from $M_c=0.2$ to $1.8$ and at Taylor Reynolds numbers up to 290. As the convective Mach number increases, the streamwise dissipation becomes more effective to suppress the turbulent kinetic energy. At $M_c=1.8$ , the streamwise dissipation increases much faster than the other two components in the transition region, even larger than pressure–strain redistribution, correlating with the streamwise elongated vortical structures at a higher level of compressibility. We confirm the existence of the large-scale high- and low-speed structures in the mixing layers, which accompany the spanwise Kelvin–Helmholtz rollers at low convective Mach number and dominate the mixing layer at higher convective Mach number. Conditional statistics demonstrate that the large-scale low-speed structures are lifted upwards by a pair of counter-rotating quasi-streamwise rollers flanking the structures. The small-scale vortical structures have an apparent preference for clustering into the top of the low-speed regions, which is directly associated with high-shearing motions on top of the low-speed structures. The high-speed structures statistically exhibit central symmetry with the low-speed structures. The statistics and dynamics of large-scale high- and low-speed structures in the compressible mixing layers resemble those in the outer region of the turbulent boundary layers, which reveals the universality of the large-scale structures in free shear and wall-bounded turbulence. A conceptual model is introduced for the large-scale high- and low-speed structures in turbulent mixing layers.

To read the full-text of this research,

you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.

Implicit large eddy simulation is performed to investigate large-scale characteristics of a temporally evolving, stably stratified turbulent shear layer arising from the Kelvin–Helmholtz instability. The shear layer at late time has two energy-containing length scales: the scale of the shear layer thickness, which characterizes large-scale motions (LSM) of the shear layer; and the larger streamwise scale of elongated large-scale structures (ELSS), which increases with time. The ELSS forms in the middle of the shear layer when the Richardson number is sufficiently large. The contribution of the ELSS to velocity and density variances becomes relatively important with time although the LSM dominate the momentum and density transport. The ELSS have a highly anisotropic Reynolds stress, to a degree similar to the near-wall region of turbulent boundary layers, while the Reynolds stress of the LSM is as anisotropic as in the outer region. Peaks in the spectral energy density associated with the ELSS emerge because of the slow decay of turbulence at very large scales. A forward interscale energy transfer from large to small scales occurs even at a small buoyancy Reynolds number. However, an inverse transfer also occurs for the energy of spanwise velocity. Negative production of streamwise velocity and density spectra, i.e. counter-gradient transport of momentum and density, is found at small scales. These behaviours are consistent with channel flows, indicating similar flow dynamics in the stratified shear layer and wall-bounded shear flows. The structure function exhibits a logarithmic law at large scales, implying a $k^{-1}$ scaling of energy spectra.

The present article investigates the effects of a BZT (Bethe-Zel'dovich-Thompson) dense gas (FC-70) on the development of turbulent compressible mixing layers at three different convective Mach numbers Mc = 0,1; 1,1 and 2,2. This study extends previous analysis conducted at Mc = 1,1 (Vadrot et al. 2020). Several 3D direct numerical simulation (DNS) of compressible mixing layers are performed with FC-70 using the fifth order Martin-Hou thermodynamic equation of state (EoS) and air using the perfect gas (PG) EoS. After having carefully defined self-similar periods using the temporal evolution of the integrated streamwise production term, the evolutions of the mixing layer growth rate as a function of the convective Mach number are compared between perfect gas and dense gas flows. Results show major differences for the momentum thickness growth rate at Mc = 2:2. The well-known compressibility-related decrease of the momentum thickness growth rate is reduced in the dense gas. Fluctuating thermodynamics quantities are strongly modified. In particular, temperature variations are suppressed leading to an almost isothermal evolution. The small scales dynamics is also influenced by dense gas effects, which calls for a specific sub-grid scale modelling when computing dense gas flows using large eddy simulation (LES). Additional dense gas DNS are performed at three others initial thermodynamic operating points. DNS performed outside and inside the BZT inversion region do not show major differences. BZT effects themselves therefore only have a small impact on the mixing layer growth.

We report a direct numerical simulation (DNS) study of the mean velocity and temperature profiles in turbulent Rayleigh-Bénard convection (RBC) at low Prandtl numbers (Pr). The numerical study is conducted in a vertical thin disk with Pr varied in the range 0.17 ≤ Pr ≤ 4.4 and the Rayleigh number (Ra) varied in the range 5 × 10 8 ≤ Ra ≤ 1 × 10 10. By varying Pr from 4.4 to 0.17, we find a sharp change of flow patterns for the large-scale circulation (LSC) from a rigid-body rotation to a near-wall turbulent jet. We numerically examine the mean velocity equation in the bulk region and find that the mean horizontal velocity profile u(z) can be determined by a balance equation between the mean convection and turbulent diffusion with a constant turbulent viscosity ν t. This balance equation admits a self-similarity jet solution, which fits the DNS data well. In the boundary-layer region, we find that both the mean temperature profile T(z) and u(z) can be determined by a balance equation between the molecular diffusion and turbulent diffusion. Within the viscous boundary layer, both u(z) and T(z) can be solved analytically and the analytical results agree well with the DNS data. Our careful characterisation of the mean velocity † Email address for correspondence: penger@ust.hk

The scale-space energy density function 𝐸(𝑥,𝑟) is defined as the derivative of the two-point velocity correlation 𝑄𝑖𝑖(𝑥,𝑟) as 𝐸(𝑥,𝑟𝛼)=−(∂𝑄𝑖𝑖(𝑥,𝑟)/∂𝑟𝛼)/2, where 𝑥 is the spatial coordinate of interest and 𝑟 is the separation vector. The function 𝐸 describes the turbulent kinetic energy density of scale |𝑟| at a location 𝑥 and can be considered as the generalization of the spectral energy density function concept to inhomogeneous flows. In this work, we derive the scale-space energy density function transport equation for compressible flows to develop a better understanding of scale-to-scale energy transfer and the degree of non-locality of the energy interactions. Specifically, the effects of variable-density and dilatation on an energy cascade are identified. It is expected that these findings will yield deeper insight into compressibility effects on canonical energy cascades, which will lead to improved models (at all levels of closure) for mass flux, density variance, pressure-dilatation, pressure–strain correlation and dilatational dissipation processes. Direct numerical simulation (DNS) data of mixing layers at different Mach numbers are used to characterize the scale-space behaviour of different turbulence processes. The scaling of the energy density function that leads to self-similar evolution at the two Mach numbers is identified. The scale-space (non-local) behaviour of the production and pressure dilatation at the centre-plane is investigated. It is established that production is influenced by long-distance (order of vorticity thickness) interactions, whereas the pressure dilatation effects are more localized (fraction of momentum thickness) in scale space. The analysis of DNS data demonstrates the utility of the energy density function and its transport equation to account for the relevance of various physical mechanisms at different scales.

The presence of large-scale coherent structures in various wall bounded turbulent flows, often called superstructures in turbulent boundary layers (TBLs), has been of great interest in recent years. These meandering high- and low-momentum structures can extend up to several boundary layer thicknesses in the streamwise direction and contain a relatively large portion of the layer's turbulent kinetic energy. Therefore, studying these features is important for understanding the overall dynamics of turbulent boundary layers and for the development of flow control strategies or near-wall flow modifications. However, compared to the extensive number of incompressible investigations much less is known about the structural characteristics for compressible turbulent boundary layer flows. Therefore, in this investigation turbulent boundary layers developing on a flat plate with zero pressure gradient (ZPG) over a range of Reynolds numbers and Mach numbers are considered in order to examine the effect of compressibility on superstructures. More specifically, measurements are performed on a flat plate model in the Trisonic Wind Tunnel Munich (TWM) for the Mach number range 0.3 $\leq$ Ma $\leq$ 3.0 and a friction Reynolds number range of 4700 $\leq$ Re$_{\tau}$ $\leq$ 29 700 or 11 730 $\leq$ Re$_{\delta_2}$ = $\rho_e u_e \theta^*/\mu_{\mbox{\scriptsize{w}}}$ $\leq$ 74 800. Velocity fields are recorded using planar particle image velocimetry methods (PIV and stereo-PIV) in three perpendicular planes. Using multi-point correlation and spectral analysis methods it was found that the most energetic frequencies have slightly longer streamwise wavelengths for the supersonic case when compared to the subsonic case. Furthermore, a distinct increase in the spanwise spacing of the superstructures was found for the supersonic cases when compared to the subsonic and transonic turbulent boundary layers.

Analysis of turbulence characteristics in a temporal dense gas compressible mixing layer using direct numerical simulation - Volume 893 - Aurélien Vadrot, Alexis Giauque, Christophe Corre

This study investigates the effects of a BZT (Bethe-Zel'dovich-Thompson) dense gas (FC-70) on the development of a turbulent compressible mixing layer at a convective Mach number M c = 1.1. 3D direct numerical simulations (DNS) are performed both with FC-70 and air. The initial thermodynamic state for FC-70 lies inside the inversion region where the fundamental derivative of gas dynamics (Γ) becomes negative. The complex Martin-Hou thermodynamic equation of state (EoS) is used to reproduce thermodynamic peculiarities of the BZT dense gas. The unstable growth phase in the mixing layer development shows an increase of xy−turbulent stress tensors in dense gas (DG) compared to perfect gas (PG). The following self-similar period has been carefully defined from the time evolution of the integrated streamwise production and transport terms. During the self-similar stage, DG and PG mixing layers at M c = 1.1 display close values of the momentum thickness growth rate, which seems similarly affected by the well-known compressibility-related reduction for PG. The same mechanisms are at stake, related to the reduction of pressure-strain terms. TKE spectra show a slower decrease of TKE at small scales for DG compared with PG. The filtered kinetic energy equation balance developed by Aluie (2013) is applied for the first time to a compressible mixing layer. The equation is reshaped to better account for TKE transport across the mixing layer. A new formulation of terms reveals Σ l , the pressure strengths power. A detailed comparison of the contributions to the filtered TKE equation is provided for both PG and DG mixing layers.

Bypass transition in boundary layers subject to strong pressure gradient and curvature effects - Volume 888 - Yaomin Zhao, Richard D. Sandberg

Turbulent structures in stably stratified shear layers are studied with direct numerical simulation. Flow visualization confirms the existence of hairpin vortices and highly elongated structures with positive and negative velocity fluctuations, whose streamwise lengths divided by the layer thickness are $O(10^{0})$ and $O(10^{1})$ , respectively. The flow at the wavelength related to these structures makes a large contribution to turbulent kinetic energy. These structures become prominent in late time, but with small buoyancy Reynolds numbers indicating suppression of turbulent mixing. Active turbulent mixing associated with the hairpin vortices, however, does occur. The structures and the vertical profile of the integral shear parameter show connections between stable stratified shear layers and wall-bounded shear flows.

Direct numerical simulations of high-speed mixing layers are used to characterize the effects of compressibility on the basis of local streamline topology and vortical structure. Temporal simulations of the mixing layers are performed using a finite volume gas-kinetic scheme for convective Mach numbers ranging from $M_{c}=0.2$ to $M_{c}=1.2$ . The focus of the study is on the transient development and the main objectives are to (i) investigate and characterize the turbulence suppression mechanism conditioned upon local streamline topology; and (ii) examine changes in the vortex vector field – distribution, magnitude and orientation – as a function of Mach number. We first reaffirm that kinetic energy suppression with increasing Mach number is due to a decrease in pressure–strain redistribution. Then, we examine the suppression mechanism conditioned upon topology and vortex structure. Conditional statistics indicate that (i) at a given Mach number, shear-dominated topologies generally exhibit more effective pressure–strain redistribution than vortical topologies; and (ii) for a given topology, the level of pressure–strain correlation mostly decreases with increasing Mach number. At each topology, with increasing Mach number, there is a corresponding decrease in turbulent shear stress and production leading to reduced kinetic energy. Further, as $M_{c}$ increases, the proportion of vortex-dominated regions in the flow increases, leading to further reduction in the turbulent kinetic energy of the flow. Then, the orientation of vortical structures and direction of fluid rotation are examined using the vortex vector approach of Tian et al. ( J. Fluid Mech. , vol. 849, 2018, pp. 312–339). At higher $M_{c}$ , the vortex vectors tend to be more aligned in the streamwise direction in contrast to low $M_{c}$ wherein larger angles with streamwise direction are preferred. The connection between vortex orientation and kinetic energy production is also investigated. The findings lead to improved insight into turbulence suppression dynamics in high Mach number turbulent flows.

The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

Direct numerical simulation of the spatially developing mixing layer issuing from two turbulent streams past a splitter plate is carried out under mild compressibility conditions. The study mainly focuses on the early evolution of the mixing region, where transition occurs from a wake-like to a canonical mixing-layer-like behaviour, corresponding to the filling-up of the initial momentum deficit. The mixing layer is found to initially grow faster than linearly, and then at a sub-linear rate further downstream. The Reynolds stress components are in close agreement with reference experiments and follow a continued slow decay till the end of the computational domain. These observations are suggestive of the occurrence of incomplete similarity in the developing turbulent mixing layer. Coherent eddies are found to form in the close proximity of the splitter plate trailing edge, that are mainly organized in bands, initially skewed and then parallel to the spanwise direction. Dynamic mode decomposition is used to educe the dynamically relevant features, and it is found to be capable of singling out the coherent eddies responsible for mixing layer development.

Compressibility exerts a stabilizing influence on a variety of high-speed shear flows such as turbulent mixing layers, transitioning boundary layers and homogeneously sheared turbulence. An important stabilizing feature that is common amongst all shear flows is the velocity-pressure interaction dynamics. In this study, velocity-pressure interactions of individual perturbation or fluctuation modes are investigated using direct numerical simulations and linear analysis in high-Mach-number homogeneous shear flow. For a given perturbation wave mode, the action of pressure is shown to depend on two important factors: the orientation of the perturbation wavevector with respect to the shear plane and the Mach number. It is shown that the streamwise perturbation wave mode rapidly develops a high level of kinetic energy but is self-limiting owing to the action of pressure. On the other hand, the energy of spanwise perturbation wave modes grows unaffected by pressure or Mach number. Oblique modes combine spanwise and streamwise characteristics and are shown to be chiefly responsible for stabilizing effects seen in shear flows. Three regimes of obliqueness of different linear stability characteristics are identified. The critical role of perturbation obliqueness on stabilization is established.

The kinetic energy exchange between the mean and fluctuating fields is analyzed using large-eddy simulation of a temporally developing compressible mixing layer. A solution database is generated by varying the convective Mach number over the interval of 0.1 ≤ Mc ≤ 0.73 with an initial Reynolds number of Re = 100. Both mean and turbulent kinetic energy equations are considered, and the effect of compressibility on the production, pressure dilatation, and dissipation terms are considered. It is shown that the production term linearly decreases with the increase of Mc within the interval of 0.3 ≤ Mc ≤ 0.73, which in turn leads to a linear reduction of the mixing layer growth rate. The pressure dilatation term in the mean kinetic energy equation is on
average positive and transfers internal energy into mean kinetic energy by dilatation, whereas its counterpart in the turbulent kinetic energy equation is on average negative, and transfers turbulent kinetic energy into internal energy by compression. Although the turbulent viscous dissipation term is reduced by increasing the convective Mach number, it remains the primary kinetic energy dissipation mechanism at all convective
Mach numbers. At the subgrid-scale level, it is found that the magnitude of the dynamic Smagorinsky model coefficient, Cs, monotonically decreases with the increase of Mc and results in the reduction of all turbulent stress tensor components. Furthermore, increasing the convective Mach number results in a monotonic reduction of subgrid-scale dissipation of the turbulent kinetic energy, whereas the subgrid-scale dissipation of the mean kinetic energy stays almost unaffected. The sum of subgrid-scale pressure dilatation and pressure transport terms, which is modelled with a gradient transport model, is also suppressed by the increase of compressibility and the convective Mach number.

Direct Numerical Simulation (DNS) data for channel flow at 1025 are used to analyse the interaction between large outer scales in the log-law region - referred to as super-streaks - and the small-scale, streaky, streamwise-velocity fluctuations in the viscosity-affected near-wall layer. The study is inspired by extensive experimental investigations by Mathis, Marusic, and Hutchins, culminating in a predictive model that describes, in a supposedly universal manner, the "footprinting" and "modulating" effects of the outer structures on the small-scale near-wall motions. The approach used herein is based on the examination of joint PDFs for the small-scale fluctuations, conditioned on regions of large-scale footprints. The large and small scales are separated by means of the Huang-Hilbert empirical-mode decomposition, the validity of which is demonstrated by way of pre-multiplied energy spectra, correlation maps, and energy profiles for both scales. Observations derived from the PDFs then form the basis of assessing the validity of the assumptions underlying the model. Although the present observations support some elements of the model, the results imply that modulation by negative and positive large-scale fluctuations differ greatly - an asymmetric response that is not compatible with the model. The study is thus extended to examining the validity of an alternative proposal, which is based on the assumption that a universal description of the small-scale response to the large-scale motions has to rely on the velocity fluctuations being scaled with the large-scales-modified local friction velocity, rather than with the mean value. This proposal is partially supported by the present analysis. Finally, an alternative, new phenomenological model is proposed and examined. (C) 2014 AIP Publishing LLC.

Two-point statistics are presented for a new direct simulation of the zero-pressure- gradient turbulent boundary layer in the range Reθ = 2780–6680, and compared with channels in the same range of Reynolds numbers, δ+ ≈ 1000–2000. Three- dimensional spatial correlations are investigated in very long domains to educe the average structure of the velocity and pressure fluctuations. The streamwise velocity component is found to be coherent over longer distances in channels than in bound- ary layers, especially in the direction of the flow. For weakly correlated structures, the maximum streamwise length is O(7δ) for boundary layers and O(18δ) for chan- nels, attained at the logarithmic and outer regions, respectively. The corresponding lengths for the spanwise and wall-normal velocities and for the pressure are shorter, O(δ-2δ). The correlations are shown to be inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. All these features change little between the two types of flows. Most the above features are also approximately independent of the Reynolds number, except for the pressure, and for the streamwise velocity structures in the channel. Further insight into the flow is provided by correlations conditioned on the intensity of the perturbations at the reference point, or on their sign. The statistics of the new simulation are available in our website.

We investigate the scaling of the energy-containing eddies in the outer part of turbulent wall layers. Their spanwise integral length scales are extracted from a direct numerical simulation (DNS) database, which includes compressible turbulent boundary layers and incompressible turbulent Couette–Poiseuille flows. The results indicate similar behaviour for all classes of flows, with a general increasing trend in the eddy size with the wall distance. A family of scaling relationships are proposed based on simple dimensional arguments, of which the classical mixing length approximation constitutes one example. As in previous studies, we find that the mixing length is in good agreement with the size distribution of the eddies carrying wall-normal velocity, which are active in establishing the mean velocity distribution. However, we find that the eddies associated with wall-parallel motions obey a different scaling, which is controlled by the local mean shear and by an effective eddy diffusivity , where is the compressible counterpart of the friction velocity, and is the thickness of the wall layer. The validity of the proposed scalings is checked against DNS data, and the potential implications for the understanding of wall turbulence are discussed.

The present paper addresses some topical issues in modelling compressible turbulent shear flows. The work is based on direct numerical simulation (DNS) of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the mean momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional Reynolds and Favre averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation (which ignores any true turbulent compressibility effects) is so successful in correlating compressible boundary-layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.

Well resolved large-eddy simulation data are used to study the physical modulation effects of miniature vortex generators (MVGs) in a moderate Reynolds number zero pressure gradient turbulent boundary layer. Large-scale counter-rotating primary vortex pairs (PVPs) imposed by the MVG contribute to the formation of streamwise streaks by transporting high momentum fluids from the outer regions of the boundary layer towards the wall, giving rise to high-speed regions centred at the PVP. Consequently, low-speed regions are formed along the outer flank of the PVP, resulting in a pronounced alternating high- and low-speed flow pattern. The PVP also relates to regions with skin friction modification, where a local skin friction reduction of up to 15 % is obtained at the low-speed region, but the opposite situation is observed over the high-speed region. The MVG-induced flow feature is further investigated by spectral analysis of the triple decomposition velocity fluctuation. Pre-multiplied energy spectra of the streamwise MVG-induced velocity fluctuation reveal that the large-scale induced modes scale with the spanwise wavelength and the length of the MVG, but the energy peak is eventually repositioned to the size of the near-wall streaks in the streamwise direction. Analysis of the triple decomposition of the kinetic energy transport equations revealed the significance of the mean flow gradient in generating kinetic energy which sustains the secondary motion. There is also an energy transfer between the turbulent and MVG-induced kinetic energy independent of the mean flow.

The effect of wall temperature on the transfer of kinetic energy in a hypersonic turbulent boundary layer for different Mach numbers and wall temperature ratios is studied by direct numerical simulation. A cold wall temperature can enhance the compressibility effect in the near-wall region through increasing the temperature gradient and wall heat flux. It is shown that the cold wall temperature enhances the local reverse transfer of kinetic energy from small scales to large scales, and suppresses the local direct transfer of kinetic energy from large scales to small scales. The average filtered spatial convection and average filtered viscous dissipation are dominant in the near-wall region, while the average subgrid-scale flux of kinetic energy achieves its peak value in the buffer layer. It is found that the wall can suppress the inter-scale transfer of kinetic energy, especially for the situation of a cold wall. A strong local reverse transfer of fluctuating kinetic energy is identified in the buffer layer in the inertial range. Helmholtz decomposition is applied to analyse the compressibility effect on the subgrid-scale flux of kinetic energy. A strong transfer of the solenoidal component of fluctuating kinetic energy is identified in the buffer layer, while a significant transfer of the dilatational component of fluctuating kinetic energy is observed in the near-wall region. It is also shown that compression motions have a major contribution to the direct transfer of fluctuating kinetic energy, while expansion motions play a marked role in the reverse transfer of fluctuating kinetic energy.

Kinetic energy transfer in compressible homogeneous anisotropic turbulence is studied by numerical simulations of forced anisotropic turbulence (FAT) in a periodic box and homogeneous shear turbulence (HST) at different turbulent Mach numbers Mt and different Taylor Reynolds numbers Reλ. In both FAT and HST, the subgrid-scale (SGS) kinetic energy flux is dominated by the streamwise component at large scales, and tends to be isotropic at small scales. As the turbulent Mach number increases, the compressibility slightly enhances the anisotropy of SGS kinetic energy flux and viscous dissipation. The redistribution of kinetic energy from the streamwise direction to two transverse directions by pressure-strain mainly occurs at large length scales. The kinetic energy transferred from the streamwise component through the pressure-strain is shared unequally by the other two components in HST, which is different from the situation of FAT. In FAT, as the Taylor Reynolds number increases, the total SGS kinetic energy flux and its positive and negative components tend to a Reynolds number asymptotic state at small scales for Reλ≥105. In HST, the positive vertical SGS flux of kinetic energy is significantly enhanced by compression motions, causing the vertical SGS flux component to be larger than the streamwise component at small scales. The interscale energy transfer of the solenoidal mode and dilatational mode is studied by employing Helmholtz decomposition. The dilatational kinetic energy of FAT is nearly isotropic, but that of HST is significantly anisotropic. In HST, the dilatational mode obtains energy not only from the solenoidal mode through nonlinear advection, but also from mean shear by the dilatational production. As the turbulent Mach number increases, the nonlinear advection of HST increases first and then decreases. The dilatational production of HST increases monotonically with the turbulent Mach number, providing the main source of kinetic energy to the dilatational mode at high turbulent Mach number Mt≥0.46.

The compressibility effect in isothermal hypersonic boundary layer is studied with direct numerical simulation (DNS) using Helmholtz decomposition. The dilatational components of the diagonal Reynolds stress are enhanced by the cold wall condition in the near-wall region. The outward (Q1) and ejection (Q2) events are mainly located in the expansion region, while the inward (Q3) and sweep (Q4) events are primarily situated in the compression region near the wall. It is found that the cold wall condition can enhance the inward (Q3) event mainly in the compression region and enhance the ejection (Q2) event mainly in the expansion region near the wall. In particular, the cold wall can significantly enhance the positive streamwise solenoidal fluctuating velocity and negative wall-normal dilatational fluctuating velocity events. Moreover, the cold wall condition enhances the positive correlation of streamwise velocity fluctuation and fluctuating temperature, and suppresses the negative correlation of wall-normal velocity fluctuation and fluctuating temperature in the near-wall region, while it slightly weakens the negative correlation of streamwise velocity fluctuation and fluctuating temperature and the positive correlation of wall-normal velocity fluctuation and fluctuating temperature far from the wall. It is also found that the dilatational components of correlations are dominated in the near-wall region, while the solenoidal components govern the correlations far from the wall. Most of the interactions among mean and fluctuating fields of kinetic and internal energy are governed by the solenoidal components, except for the terms associated with the pressure, which are governed by the dilatational components.

In this work, three-component planar velocity measurements are analyzed to identify the effects of compressibility on mixing layer turbulence, with a focus on the evolution of large-scale structures, dominant spatial eigenmodes, and entrainment length scales. Velocity measurements obtained via stereoscopic particle image velocimetry for five different dual-stream air planar mixing layers with convective Mach numbers of Mc=0.19, 0.38, 0.55, 0.69, and 0.88 are analyzed. Results of two-point correlations reveal that length scales of the streamwise velocity fluctuations increase in both the streamwise and transverse directions, whereas the length scales of the transverse velocity fluctuations decrease in the transverse direction. To further investigate these trends, the spatial organization, shape, and dynamics of large-scale turbulent structures are examined via two-dimensional spatial velocity correlations, proper orthogonal decomposition, and linear stochastic estimation. These quantitative techniques support qualitative findings in the literature that report coherent, round roller structures in incompressible mixing layers becoming flattened and elongated longitudinally with increased compressibility. This evolution is likely due to a dominant pulsing motion present for the higher Mc cases and can be linked to compressibility effects on the entrainment mechanisms. Length scales of entrainment are determined using autocorrelations of normal flow velocity components along instantaneously identified turbulent/non-turbulent interfaces and are found to decrease with increasing Mc. This result can heuristically be interpreted as small-scale nibbling being dominant for higher Mc, whereas larger-scale engulfment contributes more in nearly incompressible mixing layers.

The local flow topology based on the invariants of the velocity gradient tensor in stationary compressible homogeneous shear turbulence (HST) is studied by numerical simulations. In the compressible homogeneous shear turbulence, local compressibility decreases the flow volume fraction occupied by the focal, eddy, and shear flow structures both in compression regions and in strong expansion regions. The joint probability density function (pdf) of the second and third invariants of the deviatoric velocity gradient tensor exhibits a similar teardrop shape as for the homogeneous isotropic turbulence (HIT), and the tail of the joint pdf alongside the right branch of the null-discriminant curve is elongated as the turbulent Mach number increases. When conditioned on dilatation, the statistical preference for points in the fourth quadrants of the joint pdf is enhanced significantly by the compression motion. It is found that the shape of the joint pdf shows a good similarity between HST and HIT in strong compression regions, which is dependent on the root mean square dilatation, rather than the turbulent Mach number. In strong expansion regions, the shape of the joint pdf in HST has a long tail in the third quadrant, which is related to sheetlike expansion structures and does not exist in HIT. After the Helmholtz decomposition, the properties of local flow topology associated with the solenoidal component of the velocity field are found to be very similar to those in incompressible turbulence and are insensitive to the change in local dilatation and turbulent Mach number.

Compressible wall-bounded turbulence is generally assumed to be devoid of genuine compressibility effects, meaning that the effect of finite fluid dilatation is regarded as “small,” at least in the absence of disturbing pressure gradients. In the present paper we attempt to answer the basic question of how small these effects are, by interrogating a DNS database of compressible channel flow and by using Helmholtz decomposition to infer the relative magnitude and correlations between the solenoidal and the dilatational parts of turbulence velocity fields. Not surprisingly, we find dilatational velocity fluctuations to be much smaller than solenoidal ones, but perhaps unexpectedly, we find that finite correlation between the two components accounts for a nonnegligible fraction (about 10%) of the turbulent shear stress near walls, and for up to 4% of the wall skin friction. Quadrant analysis of the dilatational velocity fluctuations shows that the largest contribution to the turbulent shear stress results from significant correlation between positive streamwise solenoidal velocity fluctuations (i.e., high-speed streaks), and positive vertical dilatational velocity fluctuations, which tend to mitigate the intensity of wall-ward sweep events.

Aspects of turbulent shear-layer mixing are investigated over a range of shear-layer Reynolds numbers, $Re_{\unicode[STIX]{x1D6FF}}=\unicode[STIX]{x0394}U\unicode[STIX]{x1D6FF}/\unicode[STIX]{x1D708}$ , based on the shear-layer free-stream velocity difference, $\unicode[STIX]{x0394}U$ , and mixing-zone thickness, $\unicode[STIX]{x1D6FF}$ , to probe the role of initial conditions in mixing stages and the evolution of the scalar-field probability density function (p.d.f.) and variance. Scalar transport is calculated for unity Schmidt numbers, approximating gas-phase diffusion. The study is based on direct-numerical simulation (DNS) and large-eddy simulation (LES), comparing different subgrid-scale (SGS) models for incompressible, uniform-density, temporally evolving forced shear-layer flows. Moderate-Reynolds-number DNS results help assess and validate LES SGS models in terms of scalar-spectrum and mixing estimates, as well as other metrics, to $Re_{\unicode[STIX]{x1D6FF}}\lesssim 3.3\times 10^{4}$ . High-Reynolds-number LES investigations to $Re_{\unicode[STIX]{x1D6FF}}\lesssim 5\times 10^{5}$ help identify flow parameters and conditions that influence the evolution of scalar variance and p.d.f., e.g. marching versus non-marching. Initial conditions that generate shear flows with different mixing behaviour elucidate flow characteristics in each flow regime and identify elements that induce p.d.f. transition and scalar-variance behaviour. P.d.f. transition is found to be largely insensitive to local flow parameters, such as $Re_{\unicode[STIX]{x1D6FF}}$ , or a previously proposed vortex-pairing parameter based on downstream distance, or other equivalent criteria. The present study also allows a quantitative comparison of LES SGS models in moderate- and high- $Re_{\unicode[STIX]{x1D6FF}}$ forced shear-layer flows.

Cascades of temperature and entropy fluctuations are studied by numerical simulations of stationary three-dimensional compressible turbulence with a heat source. The fluctuation spectra of velocity, compressible velocity component, density and pressure exhibit the $-5/3$ scaling in an inertial range. The strong acoustic equilibrium relation between spectra of the compressible velocity component and pressure is observed. The $-5/3$ scaling behaviour is also identified for the fluctuation spectra of temperature and entropy, with the Obukhov–Corrsin constants close to that of a passive scalar spectrum. It is shown by Kovasznay decomposition that the dynamics of the temperature field is dominated by the entropic mode. The average subgrid-scale (SGS) fluxes of temperature and entropy normalized by the total dissipation rates are close to 1 in the inertial range. The cascade of temperature is dominated by the compressible mode of the velocity field, indicating that the theory of a passive scalar in incompressible turbulence is not suitable to describe the inter-scale transfer of temperature in compressible turbulence. In contrast, the cascade of entropy is dominated by the solenoidal mode of the velocity field. The different behaviours of cascades of temperature and entropy are partly explained by the geometrical properties of SGS fluxes. Moreover, the different effects of local compressibility on the SGS fluxes of temperature and entropy are investigated by conditional averaging with respect to the filtered dilatation, demonstrating that the effect of compressibility on the cascade of temperature is much stronger than on the cascade of entropy.

This paper quantifies the instantaneous form of large-scale turbulent structures in canonical smooth-wall boundary layers, demonstrating that they adhere to a form that is consistent with the self-sustaining streak instability model suggested by Flores & Jiménez ( Phys. Fluids , vol. 22, 2010, 071704) and Hwang & Cossu ( Phys. Fluids , vol. 23, 2011, 061702). Our motivation for this study stems from previous observations of large-scale streaks that have been spatially locked in position within spanwise-heterogeneous boundary layers. Here, using similar tools, we demonstrate that the randomly occurring large-scale structures in canonical layers show similar behaviour. Statistically, we show that the signature of large-scale coherent structures exhibits increasing meandering behaviour with distance from the wall. At the upper edge of the boundary layer, where these structures are severely misaligned from the main-flow direction, the induced velocities associated with the strongly yawed vortex packets/clusters yield a significant spanwise-velocity component leading to an apparent oblique coherence of spanwise-velocity fluctuations. This pronounced meandering behaviour also gives rise to a dominant streamwise periodicity at a wavelength of approximately $6\unicode[STIX]{x1D6FF}$ . We further statistically show that the quasi-streamwise roll-modes formed adjacent to these very large wavy motions are often one-sided (spanwise asymmetric), in stark contrast to the counter-rotating form suggested by conventional conditionally averaged representations. To summarise, we sketch a representative picture of the typical large-scale structures based on the evidence gathered in this study.

The effect of compressibility on the small scale properties of stationary homogeneous shear turbulence (HST) is studied in a rectangular domain of size 4π × 2π × 2π by numerical simulations at four turbulent Mach numbers of Mt = 0.14, 0.2, 0.4, and 0.6. Compared to the compressible homogeneous isotropic turbulence (HIT), the small scale properties of HST are more sensitive to Mach number change and the velocity derivatives show a clear deviation from isotropy. At M t = 0.14, the preferred eigenvalue ratio of the strain rate tensor is very close to −4:1:3 reported in incompressible turbulence. As M t increases, the conditional probability density functions of the normalized eigenvalues become more dependent on the dilatation, and its ratio tends to −1:0:0 in the strong compression regions at M t = 0.6, indicating the sheet-like structures of localized shock waves. The alignments between vorticity and eigenvectors are similar to the observations in HIT. After the Helmholtz decomposition, it is found that the compressible vortex stretching term is the primary cause for the enhancement of enstrophy production at high turbulent Mach numbers.

We investigate the behaviour of large-scale coherent structures in a spanwise-heterogeneous turbulent boundary layer, using particle image velocimetry on multiple orthogonal planes. The statistical three-dimensionality is imposed by a herringbone riblet surface, although the key results presented here will be common to many cases of wall turbulence with embedded secondary flows in the form of mean streamwise vortices. Instantaneous velocity fields in the logarithmic layer reveal elongated low-momentum streaks located over the upwash-flow region, where their spanwise spacing is forced by the $2\unicode[STIX]{x1D6FF}$ periodicity of the herringbone pattern. These streaks largely resemble the turbulence structures that occur naturally (and randomly located) in spanwise-homogeneous smooth-/rough-wall boundary layers, although here they are directly formed by the roughness pattern. In the far outer region, the large spanwise spacing permits the streaks to aggressively meander. The mean secondary flows are the time-averaged artefact of the unsteady and spanwise asymmetric large-scale roll modes that accompany these meandering streaks. Interestingly, this meandering, or instability, gives rise to a pronounced streamwise periodicity (i.e. an alternating coherent pattern) in the spatial statistics, at wavelengths of approximately 4.5 $\unicode[STIX]{x1D6FF}$ . Overall, the observed behaviours largely resemble the streak-instability model that has been proposed for the buffer region, only here at a much larger scale and at a forced spanwise spacing. This observation further confirms recent observations that such features may occur at an entire hierarchy of scales throughout the turbulent boundary layer.

The effects of Mach number on the spectra and statistics of stationary compressible homogeneous shear turbulence (HST) are studied using numerical simulations in a rectangular domain (Lx = 4π, Ly = Lz = 2π) at turbulent Mach numbers from 0.05 to 0.66 and Taylor Reynolds numbers from 40 to 100. Long-term simulation results show that a statistically stationary state is obtained and the flow meets the strong acoustic equilibrium assumption at Mt ≈ 0.4. The analysis of spectral properties indicates that velocity and pressure tend toward a Mach number scaling of Mt2 suggested by acoustic dynamics at Mt ≳ 0.3. As for one-point statistics, it is found that a Mt4 scaling predicted by pseudo-sound theory holds for normalized compressible kinetic energy, Kc/Ks, at the small turbulent Mach number Mt ≲ 0.1. Kc/Ks approaches a Mt2 scaling at relatively higher turbulent Mach numbers, which is consistent with the spectral results. The normalized compressible dissipation rate, ϵc/ϵs, is nearly independent of Taylor Reynolds number and exhibits the same Mt4 scaling at small turbulent Mach numbers. The root mean square values of pressure, density, and temperature of compressible HST show good agreement with the Mt2 scaling, with the coefficient approximately doubled as compared with the compressible isotropic turbulence.

This article discusses the description of wall-bounded turbulence as a deterministic high-dimensional dynamical system of interacting coherent structures, defined as eddies with enough internal dynamics to behave relatively autonomously from any remaining incoherent part of the flow. The guiding principle is that randomness is not a property, but a methodological choice of what to ignore in the flow, and that a complete understanding of turbulence, including the possibility of control, requires that it be kept to a minimum. After briefly reviewing the underlying low-order statistics of flows at moderate Reynolds numbers, the article examines what two-point statistics imply for the decomposition of the flow into individual eddies. Intense eddies are examined next, including their temporal evolution, and shown to satisfy many of the properties required for coherence. In particular, it is shown that coherent structures larger than the Corrsin scale are a natural consequence of the shear. In wall-bounded turbulence, they can be classified into coherent dispersive waves and transient bursts. The former are found in the viscous layer near the wall, and as very large structures spanning the entire boundary layer. Although they are shear-driven, these waves have enough internal structure to maintain a uniform advection velocity. Conversely, bursts exist at all scales, are characteristic of the logarithmic layer, and interact almost linearly with the shear. While the waves require a wall to determine their length scale, the bursts are essentially independent from it. The article concludes with a brief review of our present theoretical understanding of turbulent structures, and with a list of open problems and future perspectives.
‘ Chance is the name we give to what we choose to ignore (Voltaire) ’

Kinetic energy transfer in compressible isotropic turbulence is studied using numerical simulations with solenoidal forcing at turbulent Mach numbers ranging from 0.4 to 1.0 and at a Taylor Reynolds number of approximately 250. The pressure dilatation plays an important role in the local conversion between kinetic energy and internal energy, but its net contribution to the average kinetic energy transfer is negligibly small, due to the cancellation between compression and expansion work. The right tail of probability density function (PDF) of the subgrid-scale (SGS) flux of kinetic energy is found to be longer at higher turbulent Mach numbers. With an increase of the turbulent Mach number, compression motions enhance the positive SGS flux, and expansion motions enhance the negative SGS flux. Average of SGS flux conditioned on the filtered velocity divergence is studied by numerical analysis and a heuristic model. The conditional average of SGS flux is shown to be proportional to the square of filtered velocity divergence in strong compression regions for turbulent Mach numbers from 0.6 to 1.0. Moreover, the antiparallel alignment between the large-scale strain and the SGS stress is observed in strong compression regions. The inter-scale transfer of solenoidal and compressible components of kinetic energy is investigated by Helmholtz decomposition. The SGS flux of solenoidal kinetic energy is insensitive to the change of turbulent Mach number, while the SGS flux of compressible kinetic energy increases drastically as the turbulent Mach number becomes larger. The compressible mode persistently absorbs energy from the solenoidal mode through nonlinear advection. The kinetic energy of the compressible mode is transferred from large scales to small scales through the compressible SGS flux, and is dissipated by viscosity at small scales.

Jets with Mach numbers $M\gtrsim 1.5$ are well known to emit an intense, fricative, so-called crackle sound, having steep compressions interspersed with weaker expansions that together yield a positive pressure skewness $S_{k}>0$ . Its shock-like features are obvious hallmarks of nonlinearity, although a full explanation of the skewness is lacking, and wave steepening alone is understood to be insufficient to describe its genesis. Direct numerical simulations of high-speed free-shear flows for Mach numbers $M=0.9$ , $1.5$ , $2.5$ and $3.5$ in the Reynolds number range $60\leqslant Re_{\unicode[STIX]{x1D6FF}_{m}}\leqslant 4200$ are used to examine the mechanisms leading to such pressure signals, especially the pressure skewness. For $M=2.5$ and $3.5$ , the pressure immediately adjacent the turbulence already has the large $S_{k}\gtrsim 0.4$ associated with jet crackle. It also has a surprisingly complex three-dimensional structure, with locally high pressures at compression-wave intersections. This structure is transient, and it simplifies as radiating waves subsequently merge through nonlinear mechanisms to form the relatively distinct and approximately two-dimensional Mach-like waves deduced from laboratory visualizations. A transport equation for $S_{k}$ is analysed to quantify factors affecting its development. The viscous dissipation that decreases $S_{k}$ is balanced by a particular nonlinear flux, which is (of course) absent in linear acoustic propagation and confirmed to be independent of the simulated Reynolds numbers. Together these effects maintain an approximately constant $S_{k}$ in the near acoustic field.

Shocklet statistics in compressible isotropic turbulence are studied by using numerical simulations with solenoidal forcing, at the turbulent Mach number Mt ranging from 0.5 up to 1.0 and at the Taylor Reynolds number Reλ ranging from 110 to 250. A power-law region of the probability density function (PDF) of the shocklet strength Mn−1 (Mn is the normal shock Mach number) is observed. The magnitude of the power-law exponent is found to decrease with the increase of Mt. We show that the most probable shocklet strength is proportional to Mt3, and the shocklet thickness corresponding to the most probable shock Mach number is proportional to Mt−2 in our numerical simulations. The PDFs of the jumps of the velocity and thermodynamic variables across a shocklet exhibit a similar power-law scaling. The statistics of the jumps of the velocity and thermodynamic variables are further investigated by conditioned average. Nonlinear models for the conditional average of the jumps of the velocity and thermodynamic variables are developed and verified.

The production of turbulent kinetic energy (TKE) and flow structures in compressible homogeneous turbulent shear flow (HTSF) are investigated by using direct numerical simulation. A theoretical analysis suggests that the vertical turbulent transport process should be responsible for the production of TKE in HTSF. It is manifested based on a conditional average method that the pure TKE production becomes increasingly larger in strain regions than in vortex regions of the flow. The velocity-derivative correlation in the shear plane is employed to identify the streaky structures in HTSF, which also tend to occur predominantly in strain regions of turbulence. Localized analyses of conditional averages reveal that the streaky structures in compressible HTSF are closely related to the negative productions of TKE. A comparative study implies that flow compressibility has a considerable effect on the spatial distributions and patterns of the strain- and vortex-dominated fields, which in turn cause the discrepancies in distribution of the TKE production and streaky structures between incompressible and compressible HTSFs.

Direct numerical simulations (DNS) of temporally evolving shear layers have been performed to study the entrainment of irrotational flow into the turbulent region across the turbulent/non-turbulent interface (TNTI). Four cases with convective Mach number from 0.2 to 1.8 are used. Entrainment is studied via two mechanisms; nibbling, considered as vorticity diffusion across the TNTI, and engulfment, the drawing of the pockets of the outside irrotational fluid into the turbulent region. The mass flow rate due to nibbling is calculated as the product of the entrained mass flux with the surface area of the TNTI. It is found that increasing the convective Mach number results in a decrease of the average entrained mass flux and the surface area of the TNTI. For the incompressible shear layer the local entrained mass flux is shown to be highly correlated with the viscous terms. However, as the convective Mach number increases, the mass fluxes due to the baroclinic and the dilatation terms play a more important role in the local entrainment process. It is observed that the entrained mass flux is dependent on the local dilatation and geometrical shape of the TNTI. For a compressible shear layer, most of the entrainment of the irrotational flow into the turbulent region due to nibbling is associated with the compressed regions on the TNTI. As the convective Mach number increases, the percentage of the compressed regions on the TNTI decreases, resulting in a reduction of the average entrained mass flux. It is also shown that the local shape of the interface, looking from the turbulent region, is dominated by concave shaped surfaces with radii of curvature of the order of the Taylor length scale. The average entrained mass flux is found to be larger on highly curved concave shaped surfaces regardless of the level of dilatation. The mass fluxes due to vortex stretching, baroclinic torque and the shear stress/density gradient terms are weak functions of the local curvatures on the TNTI, whereas the mass fluxes due to dilatation and viscous diffusion plus the viscous dissipation terms have a stronger dependency on the local curvatures. As the convective Mach number increases, the probability of finding highly curved concave shaped surfaces on the TNTI decreases, whereas the probability of finding flatter concave and convex shaped surfaces increases. This results in a decrease of the average entrained mass flux across the TNTI. Similar to the previous works on jets, the results show that the contribution of the engulfment to the total entrainment is small for both incompressible and compressible mixing layers. It is also shown that increasing the convective Mach number decreases the velocities associated with the entrainment, i.e. induced velocity, boundary entrainment velocity and local entrainment velocity.

The compressibility effects on the structural evolution of the transitional high-speed planar wake are studied. The relative Mach number (
$Ma_{r}$
) of the laminar base flow modifies two fundamental features of planar wake transition: (i) the characteristic length scale defined by the most unstable linear mode; and (ii) the domain of influence of the structures within the staggered two-dimensional vortex array. Linear stability results reveal a reduced growth (approximately 30 % reduction up to
$Ma_{r}=2.0$
) and a quasilinear increase of the wavelength of the most unstable, two-dimensional instability mode (approximately 20 % longer over the same
$Ma_{r}$
range) with increasing
$Ma$
. The primary wavelength defines the length scale imposed on the emerging transitional structures; naturally, a longer wavelength results in rollers with a greater streamwise separation and hence also larger circulation. A reduction of the growth rate and an increase of the principal wavelength results in a greater ellipticity of the emerging rollers. Compressibility effects also modify the domain of influence of the transitional structures through an increased cross-wake and inhibited streamwise communication as characteristic paths between rollers are deflected due to local
$Ma$
gradients. The reduced streamwise domain of influence impedes roller pairing and, for a sufficiently large relative
$Ma$
, pairing is completely suppressed. Thus, we observe an increased two-dimensionality with increasing Mach number: directly contrasting the increasing three-dimensional effects in high-speed mixing layers. Temporally evolving direct numerical simulations conducted at
$Ma=0.8$
and 2.0, for Reynolds numbers up to 3000, support the physical insight gained from linear stability and vortex dynamics studies.

Quadrant analysis is a simple, but quite useful, turbulence data-processing technique that has been widely used, principally in the investigation of turbulent shear flows. This article traces the origins of the technique and reviews how it has been applied during the more than 40 years since it was conceived. Applications are highlighted that have expanded the technique beyond its original formulation.

The local flow topology is studied using the invariants of the velocity gradient tensor in compressible turbulent mixing layer via direct numerical simulation (DNS) data. The topological and dissipating behaviours of the flow are analysed in two different regions: in proximity of the turbulent/non-turbulent interface (TNTI), and inside the turbulent region. It is found that the distribution of various flow topologies in regions close to the TNTI differs from inside the turbulent region, and in these regions the most probable topologies are non-focal. In order to better understand the behaviour of different flow topologies, the probability distributions of vorticity norm, dissipation and rate of stretching are analysed in incompressible, compressed and expanded regions. It is found that the structures undergoing compression-expansion in axial-radial directions have the highest contraction rate in locally compressed regions, and in locally expanded regions the structures undergoing expansion-compression in axial-radial directions have the highest stretching rate. The occurrence probability of different flow topologies conditioned by the dilatation level is presented and it is shown that the structures in the locally compressed regions tend to have stable topologies while in locally expanded regions the unstable topologies are prevalent.

§1. We shall denote by u α ( P ) = u α ( x 1 , x 2 , x 3 , t ), α = 1, 2, 3, the components of velocity at the moment t at the point with rectangular cartesian coordinates x 1 , x 2 , x 3 . In considering the turbulence it is natural to assume the components of the velocity u α ( P ) at every point P = ( x 1 , x 2 , x 3 , t ) of the considered domain G of the four-dimensional space ( x 1 , x 2 , x 3 , t ) are random variables in the sense of the theory of probabilities (cf. for this approach to the problem Millionshtchikov (1939) Denoting by Ᾱ the mathematical expectation of the random variable A we suppose that ῡ ² α and (d u α /d x β ) ² ― are finite and bounded in every bounded subdomain of the domain G .

Preface; Nomenclature; Part I. Fundamentals: 1. Introduction; 2. The
equations of fluid motion; 3. Statistical description of turbulence; 4.
Mean flow equations; 5. Free shear flows; 6. The scales of turbulent
motion; 7. Wall flows; Part II. Modelling and Simulation: 8. Modelling
and simulation; 9. Direct numerical simulation; 10. Turbulent viscosity
models; 11. Reynolds-stress and related models; 12. PDF models; 13.
Large-eddy simulation; Part III. Appendices; Bibliography.

An appraisal is made of several subgrid scale (SGS) viscous/scalar dissipation closures via a priori analysis of direct numerical simulation data in a temporally evolving compressible mixing layer. The effects of the filter width, the compressibility level and the Schmidt number are studied for several models. Based on the scaling of SGS kinetic energy, a new formulation for SGS viscous dissipation is proposed. This yields the best overall prediction of the SGS viscous dissipation within the inertial subrange. An SGS scalar dissipation model based on the proportionality of the turbulent time scale with the scalar mixing time scale also performs the best for the filter widths in the inertial subrange. Two dynamic methods are implemented for the determination of the model coefficients. The one based on the global equilibrium of dissipation and production is shown to be more satisfactory than the conventional dynamic model.

An eighth‐order filter method for a wide range of compressible flow speeds (H. C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22–26, 2009, Trondheim, Norway) is employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (M c ) and Reynolds numbers. The high‐order filter method is designed for accurate and efficient simulations of shock‐free compressible turbulence, turbulence with shocklets, and turbulence with strong shocks with minimum tuning of scheme parameters. The value of the M c considered is for the TML range from the quasi‐incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self‐similarity property, compressibility effects, and the presence of large‐scale structures with shocklets for high M c ) are considered for the LES study. The LES results that used the same scheme parameters for all studied cases agree well with experimental results and published direct numerical simulations (DNS). Published 2012. This article is a US Government work and is in the public domain in the USA.

The occurrence of shocks in the confined three‐dimensional turbulent mixing layer at convective Mach number 1.2 is established by means of direct numerical simulations. The shocks are generated by the turbulent motions in the flow. Consequently, they can have different shapes and orientations, while they persist for a relatively short time. Furthermore, they are created by different types of turbulent vortices. The shocks do not strongly contribute to the turbulent dissipation. Even at the time when the largest shocks occur, the fraction of the turbulent dissipation due to the shocks is less than 10%.

The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids 6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.