Maintaining a proper working environment for electronic chips is challenging for airships, as the ambient parameters at high altitude are largely different from those on the ground, which can influence the performance of cooling. This work aims to optimize the finned sink to minimize the weight with the consideration of the impact of solar radiation. By using a validated 3D model, it was found that the ignorance of the solar radiation can lead to a temperature deviation of 4.1 °C for electronic chips at 20 km when the solar radiation intensity was 1400 W/m² and the wind speed was 10 m/s. Meanwhile, compared to the solar radiation intensity and the emissivity, the direction of solar radiation showed more impacts. In addition, even though the solar radiation doesn't influence the optimal fin height, fin number, and fin thickness, it would clearly affect the optimal heat transfer area ratio. As a result, it can clearly change the optimized weight, which was 5.7% higher if the solar radiation was not considered.