ArticlePDF Available

Abstract

Initially, the flat slab system was widely used in buildings at low risk of wind and earthquakes. However, nowadays, by using high-strength concrete and steel, the flat slab building system has been widely applied to high-rise buildings. The structural model that uses the flat slab system is a structural model without beams, and there is a thickening at the head of the column called drop panels. As a result, all the load on the floor slab will be distributed directly to the column. In this paper, the building structure with and without drop panels is modeled using ETABS Nonlinear v.9.7.4 software. This paper aims to determine how significant the contribution of drop panels, in this case, is the natural period of vibration of the structure. The analysis of building structures with drop panels and without Drop panels using ETABS Nonlinear v.9.7.4 software has been obtained. The analysis results show that the drop panel contributes 8.87%, in this case, the natural period of vibration of the structure.
JCEBT, 6 (2) September 2022 ISSN 2549-6379 (Print) ISSN 2549-6387 (Online)
JCEBT
(Journal of Civil Engineering, Building and Transportation)
Available online http://ojs.uma.ac.id/index.php/jcebt
KONTRIBUSI DROP PANEL PADA STRUKTUR GEDUNG TIPE
FLAT SLAB
Samsul A Rahman Sidik Hasibuan1)*, Yuan Anisa2), Fadhillah Asmi3), Ahmad
Ridwan4) & Rudi Salam5)
Universitas Medan Area
Koresponden*, Email: samsulrahman@staff.uma.ac.id
Abstrak
Pada mulanya, sistem flat slab banyak digunakan pada bangunan yang beresiko rendah terhadap angin
dan gempa. Namun di masa sekarang ini, dengan menggunakan beton dan baja mutu tinggi, sistem
bangunan flat slab sudah banyak diterapkan pada bangunan tinggi. Model struktur yang mengunakan
sistem flat slab merupakan model struktur tanpa balok, ada penebalan pada kepala kolom yang disebut
drop panel, akibatnya semua beban pada pelat lantai akan didistribusikan langsung ke kolom. Dalam
tulisan ini struktur gedung dengan drop panel dan tanpa drop panel dimodelkan menggunakan software
ETABS Nonlinear v.9.7.4. Tulisan ini bertujuan untuk mengetahui seberapa besar kontribusi drop panel
dalam hal ini periode getar alami struktur. Hasil analisis struktur gedung dengan drop panel dan tanpa
drop panel menggunakan software ETABS Nonlinear v.9.7.4 telah diperoleh. Hasil analisis menunjukan
bahwa drop panel memiliki kontribusi sebesar 8,87% dalam hal ini periode getar alami struktur.
Kata Kunci: drop panel, flat slab, etabs nonlinear v 9.7.4
Abstract
Initially, the flat slab system was widely used in buildings at low risk of wind and earthquakes. However,
nowadays, by using high-strength concrete and steel, the flat slab building system has been widely applied
to high-rise buildings. The structural model that uses the flat slab system is a structural model without
beams, and there is a thickening at the head of the column called drop panels. As a result, all the load on
the floor slab will be distributed directly to the column. In this paper, the building structure with and
without drop panels is modeled using ETABS Nonlinear v.9.7.4 software. This paper aims to determine how
significant the contribution of drop panels, in this case, is the natural period of vibration of the structure.
The analysis of building structures with drop panels and without Drop panels using ETABS Nonlinear
v.9.7.4 software has been obtained. The analysis results show that the drop panel contributes 8.87%, in this
case, the natural period of vibration of the structure.
Keywords: drop panel, flat slab, etabs nonlinear v 9.7.4
How to Cite: Hasibuan, S.A.R.S. Anisa, Y. Asmi, F. Ridwan, A. & Salam, R. (2022). Kontribusi Drop Panel Pada
Struktur Gedung Tipe Flat Slab. JCEBT (Journal of Civil Engineering, Building and Transportation). 6 (2): 97-103
PENDAHULUAN
Pada mulanya sistem flat slab banyak
digunakan pada bangunan yang beresiko
rendah terhadap angin dan gempa. Namun
di masa sekarang ini, dengan
menggunakan beton dan baja mutu tinggi,
sistem bangunan flat slab sudah banyak
diterapkan pada bangunan tinggi (Ahmed
98
et al., 2020; Al-Zahra et al., 2021; Derogar,
2014; Enochsson & Dufvenberg, 2001; S.
Hasibuan, 2020; Hasibuan et al., 2021;
Hasibuan, 2020; Hasibuan, 2020; Hasibuan
& Kurniati, 2020). Pada perencanaan
bangunan tinggi yang tidak menggunakan
balok, geseran merupakan pertimbangan
kritis terutama pada bagian pertemuan
antara pelat dan kolom. Apabila bagian
pertemuan pada struktur tersebut tidak
kuat, maka kolom-kolom penyangga pada
pelat akan memberikan tekanan pons yang
hendak menembus pelat ke atas yang
dapat mengakibatkan timbulnya tegangan
geser cukup besar pada area sekitar kolom
yang dapat menimbulkan keruntuhan
pons. Keruntuhan pons ditandai dengan
timbulnya retak-retak pada pelat atau
bahkan tertembus oleh kolom. Antisipasi
yang dapat dilakukan untuk mengurangi
keruntuhan pons ini adalah dengan
memberikan perkuatan geser yang cukup
pada daerah pertemuan antara pelat dan
kolom yaitu dengan pemasangan drop
panel. Model struktur yang mengunakan
flat slab merupakan model struktur tanpa
balok. Ada penebalan pada kepala kolom
yang disebut drop panel, akibatnya semua
beban pada pelat lantai akan
didistribusikan langsung ke kolom
Pengunaan sistem drop panel ini akan
memudahkan pelaksanaan pekerjaan di
lapangan terutama pekerjaan bekisting
atau formwork, pelat mayoritas datar dan
tidak ada gangguan balok. Tipe formwork
yang terapkan biasanya sytem table form,
dengan sistem ini siklus pengerjaan akan
lebih mudah diprediksi. Drop panel dalam
sistem flat slab ditampilkan pada Gambar
1.
Gambar 1. Sistem flat slab dengan drop panel
Menurut (SNI 2847, 2019) untuk pelat
nonprategang tanpa balok interior yang
membentang di antara tumpuan pada semua
sisinya yang memiliki rasio bentang panjang
terhadap bentang pendek maksimum 2,
ketebalan pelat keseluruhan tidak boleh
kurang dari batasan pada Tabel 1.
Tabel 1. Ketebalan minimum pelat dua arah nonprategang tanpa balok interior
󰌖y,
(Mpa)[2]
Tanpa penebalan[3]
Dengan penebalan[3]
Panel eksterior
Panel eksterior
Panel interior
Tanpa balok
tepi
Dengan
balok tepi[4]
Tanpa
balok
tepi
Dengan balok
tepi[4]
280



 40

420





520






[2] Untuk fy dengan nilai diantara yang diberikan dalam Tabel, ketebalan minimum harus dihitung dengan
interpolasi linear.
[3] Drop panel sesuai dengan b.1) dan b.2)
[4] Pelat dengan balok di antara kolom sepanjang tepi eksterior. Panel eksterior harus dianggap tanpa balok pinggir
.
Sebuah drop panel pada pelat
nonprategang yang digunakan untuk
mengurangi ketebalan perlu minimum
sesuai Tabel 1 harus memenuhi a) dan b):
1. Drop panel harus menjorok di bawah
pelat paling sedikit seperempat tebal
pelat bersebelahan.
2. Drop panel harus diteruskan di setiap
arah dari garis pusat tumpuan dengan
sebuah kepala kolom, yang digunakan
untuk memperbesar penampang kritis
geser pada joint pelat-kolom, harus
menjorok di bawah pelat dan
diteruskan secara horizontal dari
muka kolom sejarak sekurang-
kurangnya sama dengan ketebalan
kepala kolom.
Dalam tulisan ini struktur gedung dengan
drop panel dan tanpa drop panel
dimodelkan menggunakan software ETABS
Nonlinear v.9.7.4 (Hasibuan, 2020).
Tulisan ini bertujuan untuk mengetahui
seberapa besar kontribusi drop panel
dalam hal ini periode getar alami struktur.
METODE
Dalam tulisan ini struktur gedung 4 tingkat
dengan drop panel dan tanpa drop panel
dimodelkan menggunakan software ETABS
Nonlinear v.9.7.4. Denah rencana struktur
dengan drop panel dan tanpa drop panel
ditampilkan pada Gambar 2. Kemudian
untuk data-data struktur gedung yang
digunakan dalam pemodelan adalah
sebagai berikut:
1. Kolom yang dipakai yaitu kolom
persegi;
2. Tinggi kolom antar tingkat : 4 m;
3. Asumsi dimensi kolom digunakan :
500 x 500 mm;
4. Asumsi jumlah tulangan dan diameter
digunakan : 8 batang, D 22 mm.
5. Panjang dan lebar antar kolom : 4 m;
6. Jumlah tingkat : 4;
100
7. default software;
8. default software;
9. Tebal pelat berdasarkan tabel 1
didapat : 135 mm;
10. Tebal drop panel digunakan : 170 mm;
11. Ukuran drop panel : 600 x 600 mm.
Langkah-langkah pemodelan dan analisis
dengan software ETABS Nonlinear v.9.7.4
dipaparkan dalam bentuk diagram alir
pada Gambar 3.
Gambar 2. Sistem flat slab dengan drop panel dan tanpa drop panel
Gambar 3. Langkah-langkah pemodelan dan analisis dengan software ETABS Nonlinear v.9.7.4
Start
Define
New Model
Edit Grid Only
Materials
Properties
Frame Sections
Wall/Slab/Deck
Sections
Draw
Draw Lines:
Coloumn
Draw Areas: Slabs, Drop
Panel
Analyze
Run Analysis
Display
Show Mode
Shape
End
HASIL DAN PEMBAHASAN
Hasil
Hasil pemodelan struktur gedung dengan
drop panel dan tanpa drop panel yang telah
dilakukan menggunakan software ETABS
Nonlinear v.9.7.4 ditampilkan pada
Gambar 4. Selanjutnya, di run analysis,
pilih show mode shape untuk mendapatkan
output ragam getar atau periode getar
alami struktur dari struktur gedung
gedung dengan drop panel dan tanpa drop
panel seperti pada Gambar 5 dan Gambar
6.
Gambar 4. Hasil pemodelan struktur gedung dengan drop panel dan tanpa drop panel
Gambar 5. Hasil periode getar alami untuk mode 1 dan 2 struktur gedung dengan drop panel
Gambar 6. Hasil periode getar alami untuk mode 1 dan 2 struktur gedung tanpa drop panel
Pembahasan
Hasil dari periode getar alami struktur
gedung dengan drop panel untuk mode 1
sebesar 0,7493 detik dan mode 2 sebesar
0,7493 detik. Sedangkan, periode getar
alami struktur gedung tanpa drop panel
untuk mode 1 sebesar 0,8380 detik dan
mode 2 sebesar 0,8380 detik. Perbedaan
nilai periode getar alami struktur tidak
terlalu signifikan, namun hal ini tetap
menjadi pertimbangan dalam mendesain
struktur gedung dengan drop panel dan
102
tanpa drop panel. Syarat batasan periode
getar alami telah diatur dalam SNI 1726-
2019 untuk setiap wilayah gempa. Apabila
akan dibangun diwilayah tujuan maka
periode getar alami struktur tidak boleh
melebihi batasan yang ditentukan dalam
peraturan. Umumnya nilai maksimum
periode getar alami struktur yang
diisyaratkan sebesar 1,0 detik.
KESIMPULAN
Hasil analisis struktur gedung dengan Drop
panel dan tanpa Drop panel menggunakan
software ETABS Nonlinear v.9.7.4 telah
diperoleh. Hasil analisis menunjukan
bahwa Drop panel memiliki kontribusi
sebesar 8,87% dalam hal ini periode getar
alami struktur.
DAFTAR PUSTAKA
 , S. (2020). Seismic
Performance Evaluation For Flat slabs Under
Different Types Of Soil Condition By Response
Spectrum Method. Recent Trends In Civil
Engineering & Technology, 10(2), 2329.
Al-Zahra, B. I. A., Alwash, M., Baiee, A., & Shubbar, A. A.
(2021). Limitations On Aci Code Minimum
Thickness Requirements For Flat slab. Civil
Engineering Journal (Iran), 7(11), 19181932.
Https://Doi.Org/10.28991/Cej-2021-03091769
Derogar, S. (2014). Punching Shear Resistance Of
Reinforced Concrete Flatslabs. By Proquest
Dissertations Publishing (Proquest
Dissertations And Theses Global).

Thesis Concrete Slabs Designed. October.
Hasibuan, S. (2020). Analisis Kinerja Seismik Rumah
Pasangan Batu Bata. Snitt- Politeknik Negeri
Balikpapan, 151156.
Hasibuan, S. A. R. S., Kurniati, D., & Sari, M. P. (2021).
Desain Dan Analisis Flat slab Dengan Software
Matlab. Teknika, 16(2), 88.
Https://Doi.Org/10.26623/Teknika.V16i2.2357
Hasibuan, S. (2020). Analisis Flat slab Dengan Software
Opensees. Konfrensi Nasional Teknik Sipil Ke
14, 616622.
Hasibuan, Samsul. (2020). Solusi Analisis Stuktur Plane
Truss Dengan Opensees. 2427.
Hasibuan, Samsul, & Kurniati, D. (2020). Redesain
Awana Condotel Menggunakan Metode Flat slab
Berdasarkan Sni 2847-2013. Teknik, 41(1), 92
99.
Https://Doi.Org/10.14710/Teknik.V41i1.2374
2
Kandpal, H. (2015). Comparative Seismic Analysis Of
Multi Storey Building With Flat slab And
Conventional Grid Slab. International Journal Of
Science And Research (Ijsr), 6(5), 21512153.
Https://Doi.Org/10.18535/Rajar/V3i12.08
Mabrouk, R. T. S., & Hegab, A. A. (2017). Analysis Of The
Punching Behavior Of Rc Flat slabs With
Horizontal And Vertical Shear Reinforcement.
Matec Web Of Conferences, 120, 110.
Https://Doi.Org/10.1051/Matecconf/2017120
01006
More, R. S., Sawant, V. S., & Suryawanshi, Y. R. (2013).
Analytical Study Of Different Types Of Flat slab
Subjected To Dynamic Loading. International
Journal Of Science And Research, 4(7), 2319
7064.
Najmi, A. S. (2020). No More Drop panels In The Design
For Punching Shear In Flat Plates. Journal Of
Civil Engineering Research & Technology, 2(1),
17.
Https://Doi.Org/10.47363/Jcert/2020(2)103
Paultre, P., & Moisan, C. (2002). Distribution Of
Moments In Reinforced Concrete Slabs With
Continuous Drop panels. Canadian Journal Of
Civil Engineering, 29(1), 119124.
Https://Doi.Org/10.1139/L01-076
Rath, S. R., Sethy, S. K., & Dubey, M. K. (2019). Review
Paper On Post-Tensioned Flat slab With Drop
panels And Its Comparison With Conventional
Slab. International Journal Of Research In
Advent Technology, 7(4), 463465.
Https://Doi.Org/10.32622/Ijrat.742019163
Rizk, E., & Marzouk, H. (2017). Technical Paper A New
Formula To Calculate Crack Spacing. January
2010.
Robertson, I. N. (1997). Analysis Of Flat slab Structures
Subjected To Combined Lateral And Gravity
Loads. Aci Structural Journal, 94(6), 723729.
Https://Doi.Org/10.14359/9732
Sa, S., Sayin, E., Meslek, T. B., & Kelimeler, A. (2012).
    
Binalarda Perde Oraninin Göreli Kat
Ötelemelerine Etkisi Effect Of Shear Wall Ratio
To Interstorey Drift In Reinforced Concrete ( R /
C ) Buildings With Flat slab With Continuous
Drop panel. 209220.
Saadoon, A. S., Abbas, A. M., & Hussain, H. K. (2019). A
Review On Flat slab Punching Shear
Reinforcement. Journal Of University Of Babylon
For Engineering Sciences, 27(3), 4458.
Sanjay, P. N., Umesh, S. S., & K, M. P. (2014). Behaviour
Of Flat slab Rcc Structure Under Earthquake
Loading. International Journal Of Engineering &
Science Research, 3(5), 13861395.
Sni 2847:2019. (2019). Sni 03-2847:2019 Persyaratan
Beton Struktural Untuk Bangunan Gedung Dan
Penjelasan Sebagai Revisi Dari Standar Nasional
󰨠
Srinivasulu, P., & Dattatreya Kumar, A. (2015). Behavior
Of Rcc Flat slab Structure Under Earthquake
Loading. International Journal Of Engineering &
Science Research, 5(7), 821829.
... In this paper, building structures with and without drop panels are modeled using ETABS software (Nishanth et al., 2020;Chandravanshi, 2022;Anjaneyulu & Prakash, 2016;Hasibuan et al., 2022). The addition of drop panels is expected to enhance local stiffness around columns and thereby improve the dynamic performance of the building structure. ...
Article
Full-text available
Investigation on the influence of drop panels on the natural period of vibration of flat slab building structures has been conducted in this study. Drop panels are structural elements projected beneath slabs around columns to enhance stiffness and structural capacity. Numerical modeling was performed for flat slab building structures with and without drop panels using ETABS software. Modal analysis was employed to determine the natural vibration periods of the structures in their initial modes. The results indicate that the use of drop panels significantly reduces the natural vibration period of the structure. In structures with drop panels, the natural vibration period values for mode 1 and mode 2 were 0.7493 seconds, whereas in structures without drop panels, the natural vibration period values for mode 1 and mode 2 were 0.8380 seconds. The difference of 0.0887 seconds indicates an overall increase in structural stiffness with the presence of drop panels. A lower natural vibration period implies increased resistance of the structure to lateral forces such as seismic. The effectiveness of drop panels in reducing natural vibration periods depends on factors such as drop panel dimensions, structural materials, and applied structural loads. This study contributes to understanding the influence of drop panels on the dynamic behavior of flat slab building structures and provides guidance in designing optimal structures for lateral force resistance.
Article
Full-text available
p>Flat slab adalah pelat beton bertulang yang didukung oleh kolom ditambah drop panel atau mungkin kolom ditambah kepala kolom atau tanpa kepala kolom dan drop panel. Metode desain dan analisis flat slab yang akan digunakan adalah metode desain langsung dimana metode tersebut adalah menentukan tebal minimum pelat yang tinjau berdasarkan mutu baja yang akan digunakan pada analisis ini. Distribusi momen pada analisis dengan metode desain langsung menghasilkan momen total yang kemudian akan didistribusi ke masing-masing panel untuk lajur kolom dan lajur tengah. Kegagalan geser (punching shear) terjadi pada area penampang kritis di sekitar kepala kolom dan drop panel sehingga kekuatan geser akan dihitung berdasarkan nilai kekuatan geser yang terjadi dan akan di kontrol dengan kekuatan geser dari mutu beton yang digunakan. Dalam tulisan ini desain dan analisis akan dilakukan secara numerik berdasarkan SNI 2847:2019 dengan menggunakan software Matlab. Selanjutnya hasil analisis yang telah diperoleh dari software Matlab menunjukan bahwa panel internal yang didesain aman dari kegagalan punching shear.</p
Article
Full-text available
Reinforced concrete two-way flat slabs are considered one of the most used systems in the construction of commercial buildings due to the ease of construction and suitability for electrical and mechanical paths. Long-term deflection is an essential parameter in controlling the behavior of this slab system, especially with long spans. Therefore, this study is devoted to investigating the validation of the ACI 318-19 Code long-term deflection limitations of a wide range of span lengths of two-way flat slabs with and without drop panels. The first part of the study includes nonlinear finite element analysis of 63 flat slabs without drops and 63 flat slabs with drops using the SAFE commercial software. The investigated parameters consist of the span length (4, 5, 6, 7, 8, 9, and 10m), compressive strength of concrete (21, 35, and 49 MPa), the magnitude of live load (1.5, 3, and 4.5 kN/m2), and the drop thickness (0.25tslab, 0.5tslab, and 0.75tslab). In addition, the maximum crack width at the top and bottom are determined and compared with the limitations of the ACI 224R-08. The second part of this research proposes modifications to the minimum slab thickness that satisfy the permissible deflection. It was found, for flat slabs without drops, the increase in concrete compressive strength from 21MPa to 49MPa decreases the average long-term deflection by (56, 53, 50, 44, 39, 33 and 31%) for spans (4, 5, 6, 7, 8, 9, and 10 m) respectively. In flat slab with drop panel, it was found that varying drop panel thickness t2 from 0.25 to 0.75 decreases the average long-term deflection by (45, 41, 39, 35, 31, 28 and 25%) for span lengths (4, 5, 6, 7, 8, 9 and 10 m) respectively. Limitations of the minimum thickness of flat slab were proposed to vary from Ln/30 to Ln/19.9 for a flat slab without a drop panel and from Ln/33 to Ln/21.2 for a flat slab with drop panel. These limitations demonstrated high consistency with the results of Scanlon and Lee's unified equation for determining the minimum thickness of slab with and without drop panels. Doi: 10.28991/cej-2021-03091769 Full Text: PDF
Article
Full-text available
Punching shear failure at column-slab connection occurs in a brittle manner, which involves the formation of a truncated cone or a truncated pyramid. A set-up of swimmer bars system takes the shape of truncated steel pyramids to counteract the potential truncated pyramids of cracks. Each counteract truncated steel pyramid is formed by swimmer bars will generate four inclined planes intercepting approximately perpendicularly the four inclined planes of the failure truncated pyramid. A reference to a testing program of four square slabs with a concentric column will be used; these were constructed with overall dimensions of 2000 mm by 2000 mm, 150 mm thickness and 140 by 140 mm column in the middle. The results obtained from testing has proved that the efficiency of using swimmer bars system in slab-column connections has increased their punching shear capacity to more than 250% and has decreased their deflection by increasing the stiffness of the slab in the vicinity of the concentrated loads, moreover, the nature of the punching shear failure becomes ductile instead of brittle and obviates sudden failure. The need for drop panels to resist the punching shearing forces becomes unnecessary. The ultimate strength of punching shear is limited by the compression shear failure, which was never measured for the case of punching shear. The gain in ductility can reach levels matching those in flexural behavior.
Article
Full-text available
Truss atau rangka batang ada dua macam yaitu plane truss dan space truss. Plane truss adalah saat elemen dan joint berada dalam suatu bidang dua dimensi, sedangkan space truss adalah saat elemen dan joint yang membentuk tiga dimensi. Makalah ini menyajikan analisis struktur plane truss baja profil IWF dengan bantuan software OpenSees command language. Software OpenSees merupakan kerangka kerja berorientasi objek untuk analisis elemen hingga. Metode penyelesaian pada analisis plane truss atau rangka batang menggunakan solusi algoritma yang merupakan perintah command language yang telah disediakan oleh software OpenSees. Selanjutnya apabila analisis plane truss selesai diprogramkan, maka untuk analisis plane truss pada kasus lain yang mirip tentu akan lebih mudah.
Article
Full-text available
Indonesia adalah salah satu negara yang letaknya dekat dengan pertemuan lempeng besar bumi, hal ini menyebabkan gempa sering terasa dan berimbas pada bangunan. Mayoritas bangunan yang rusak akibat gempa adalah rumah, sedangkan gedung-gedung tinggi relatif mampu bertahan karena kemampuan gedung sudah diperhitungkan dengan matang. Laporan-laporan studi lapangan mengenai keruntuhan bangunan gedung ataupun perumahan ketika terjadi gempa bumi besar di Indonesia masih didominasi pada bangunan yang tidak dihitung dimana hanya menggunakan struktur dinding pasangan bata merah dan struktur dinding bata terkekang. Pada makalah ini rumah pasangan batu bata akan di modelkan dan dianalisis menggunakan bantuan software ETABS v9.7.4 dengan asumsi rumah pasangan batu bata tersebut berada di wilayah zona Gempa 4 dengan percepatan puncak di batuan dasar sebesar 0,20 (g) dan rumah tersebut dibangun di daerah tanah lunak. Selanjutnya hasil analisis memperlihatkan kinerja pada rumah pasangan batu bata akibat Gempa yang terjadi. Overall rumah pasangan batu bata termasuk kedalam level kinerja (Life Safety).
Article
Full-text available
The study investigates the seismic performance of various types of flat slabs under different soil conditions by response sepctrum method. The studied flat slab buildings are G+6 stroies special moment resisting frame-flat slab with peripheral beam(Model 1), flat plate slab(Model 2) and flat slab with drop panel (Model 3), whicharemodeled by ETABS v. 2016. The response spectrum analyses are performed according to BNBC 2017, considering seismic zone Dhaka (Seismic zone 2) under different types of soils, such as, rock (SA), very dense (SB), dense (SC) and loose cohensionless (SD) soils. Comparing several seismic paramters, flat slab with drop panel performs better than flat plate slab and flab slab with peripheral beam building under dynamic loading. Moreover, flat plate slab building is more flexible than other building types and become more vulnerable to earthquake.Flat slab with drop panel shows more rigidity and performs betterthan other types of buildings in SA, SB, SC and SD soils under response spectrum analysis.However, all of the above flat slab buildingsare within the allowable story drift limitsas per BNBC2017. Keywords: Flat plate slab, flat slab with peripheral beam, flat slab with drop panel, site class, response spectrum analysis, BNBC 2017.
Article
Full-text available
Flat slab system is a concrete plate propped on columns without the existence of beams. During the former century, flat slabs have been used widely in different building types. In general, flat slabs are made from brittle materials and also have a finite depth; thus, flat slabs may undergo to fail due to punching shear or high deflections. Therefore, these criteria should be considered in the design of flat slabs and ignoring both of them had led to several crumbling down to many constructions in the past. To enhance the flat slab performance against failure due to punching and deflections, additional reinforcement should be supplied in the column region. In this paper, a review is presented to study the mechanism of punching shear in flat slabs and describe different types that used for reinforcement against punching shear.
Article
Full-text available
According to nowadays construction procedures of high rise buildings Post tension slabs and Flat slabs are both important cases of structure. PT slabs are able to carry almost all amount of dead load due to its tensioned tendons, which helps to carry out live load acting on slab and makes it's safer than conventional slabs. On the other hand Flat slabs with drop panels are having advantages like reduced building height, ease of formwork and faster construction procedure. Combination of Post-tensioned slab and Flat slab will be much more effective than usual slabs. These types of slabs also have advantages over conventional as per recent projects like high rise structures and long span frames as those are safe as per designing and give an aesthetic view for commercial or residential projects.
Article
Full-text available
The effective width and equivalent frame analysis methods are applied to a flat plate test specimen. The theoretical moment distribution and lateral drift show poor agreement with the test specimen results. A modified two-beam analytical model is proposed. This model allows for more appropriate modeling of the slab cracking in negative and positive bending regions. The modified model is able to reproduce both the slab moment distribution and lateral drift observed in the test specimen. Effective width factors, α, and slab cracking factors, β, are suggested for use in modeling of flat plates for lateral and gravity load analysis.