Available via license: CC BY 4.0
Content may be subject to copyright.
Biosensors2022,12,688.https://doi.org/10.3390/bios12090688www.mdpi.com/journal/biosensors
Article
FunctionalCharacterizationandPhenotypingofProtoplastson
aMicrofluidics‐BasedFlowCytometry
XingdaDai
1,†
,ShuaihuaZhang
2,†
,SiyuanLiu
2
,HangQi
2
,XuexinDuan
2
,ZiyuHan
2,
*andJiehuaWang
1,
*
1
SchoolofEnvironmentalScienceandEngineering,TianjinUniversity,WeijinRd.92,Tianjin300072,China
2
StateKeyLaboratoryofPrecisionMeasuringTechnologyandInstruments,CollegeofPrecisionInstruments
andOptoelectronicsEngineering,TianjinUniversity,WeijinRd.92,Tianjin300072,China
*Correspondence:ziyu_han@tju.edu.cn(Z.H.);jiehuawang@tju.edu.cn(J.W.)
†Theseauthorscontributedequallytothispaper.
Abstract:Abetterunderstandingofthephenotypicheterogeneityofprotoplastsrequiresacom‐
prehensiveanalysisofthemorphologicalandmetaboliccharacteristicsofmanyindividualcells.In
thisstudy,wedevelopedamicrofluidicflowcytometrywithfluorescencesensorforfunctional
characterizationandphenotypingofprotoplaststoallowanunbiasedassessmentoftheinfluence
ofenvironmentalfactorsatthesinglecelllevel.First,basedonthemeasurementofintracellular
homeostasisofreactiveoxygenspecies(ROS)withaDCFH‐DAdye,theeffectsofvariousexternal
stressfactorssuchasH
2
O
2
,temperature,ultraviolet(UV)light,andcadmiumionsonintracellular
ROSaccumulationinArabidopsismesophyllprotoplastswerequantitativelyinvestigated.Second,
afasterandstrongeroxidativeburstwasobservedinPetuniaprotoplastsisolatedfromwhitepet‐
alsthaninthoseisolatedfrompurplepetals,demonstratingthephotoprotectiveroleofanthocya‐
nins.Third,usingmutantswithdifferentendogenousauxin,wedemonstratedthebeneficialeffect
ofauxinduringtheprocessofprimarycellwallregeneration.Moreover,UV‐Birradiationhasa
similaracceleratingeffectbyincreasingtheintracellularauxinlevel,asshownbydoublefluores‐
cencechannels.Insummary,ourworkhasrevealedpreviouslyunderappreciatedphenotypic
variabilitywithinaprotoplastpopulationanddemonstratedtheadvantagesofamicrofluidicflow
cytometryforassessingtheinvivodynamicsofplantmetabolicandphysiologicalindicesatthe
single‐celllevel.
Keywords:microfluidicflowcytometry;protoplasts;fluorescentreporter;UVlights;
anthocyanidin;primarycellwall
1.Introduction
Complexbiologicalprocessesrelyonthedynamicbehaviorofsinglecellsandcell–
cellinteractions.Conventionalbulktissueanalysisobscuresdifferencesincelldiversity
inmostbiological/biomedicalsamples,whereassingle‐cellanalysisallowsaqualitative
and/orquantitativecharacterizationofeachcellinacellpopulation.Itnotonlyreveals
biologicalvariabilitybetweencellpopulations,butalsopavesthewaytonewinsights
intovariouscellularprocessessuchascell‐fatedecisions,physiologicalheterogeneity,or
genotype–phenotypelinkages[1,2].
Withrespecttosingle‐cellphenotyping,flowcytometryhasdemonstrateditsability
forhigh‐throughputquantitativeanalysisandisolationoftargetedbiologicalsamples.
However,conventionalflowcytometryisbulky,complex,andrequireshighlyskilled
personnel.Withthedevelopmentofmicrofluidictechnology,microfluidicflowcytome‐
try(MFCM)hasbeencombinedwithflowcytometrytoachievepowerfulsinglecellfo‐
cusing,detection,andsorting,whichhasbeenproveninvariousbiologicalapplications
[3],includingsingle‐cellRT‐PCR[4],stemcellscreening[5],proteinanalysis[6],etc.
WhileMFCMhasproventobeapowerfultoolforsingle‐cellmanipulationandanalysis
Citation:Dai,X.;Zhang,S.;Liu,S.;
Qi,H.;Duan,X.;Han,Z.;Wang,J.
FunctionalCharacterizationand
PhenotypingofProtoplastsona
Microfluidics‐BasedFlow
Cytometry.Biosensors2022,12,688.
https://doi.org/10.3390/bios12090688
Received:28July2022
Accepted:24August2022
Published:26August2022
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti‐
tutionalaffiliations.
Copyright:©2022bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://creativecommons.org/license
s/by/4.0/).
Biosensors2022,12,6882of14
inmedicaldiagnosticsandanimalcellstudies,similarworkonplant‐cellpropertiesis
stillfarbehind.
Inthisstudy,wedevelopedamicrofluidicflowcytometrythatprovidesasimple,
direct,andcost‐effectivesolutionfortheanalysisofprotoplastsamples.Protoplastsare
plantcellsinwhichthecellwallhasbeenenzymaticallyormechanicallyremoved[7],
andtheyareaveryefficientexperimentalmodelforbiotechnologicalapplicationssuchas
somatichybridizationandgenetictransformation.Protoplastsoffermanycytological
advantagesthatmulticellulartissuesandcellassembliesinsuspensionculturedonot
andarethereforeaninvaluableexperimentalsystemforstudyingcellularprocessessuch
assignaltransduction[8],cellwallregeneration[9],theroleofstressandhormones[10],
andtransientgeneexpression[11].However,aftercellwalldigestion,theresultingpro‐
toplastsareosmosis‐sensitive,fragilestructuresthatrequireextremecaretomaintain
theirintegrity.Inaddition,protoplastsaregenerallylargerindiameterthanmammalian
cellsanddonotadherelikeanimalcells,soanalysisofprotoplastpopulationsusingflow
cytometryrequiressignificantchangesininstrumentconfiguration,andisextremely
difficulttomanagetoachievestableflow[12].
Toinvestigatetheperformanceofthedevelopedsystem,wefirstexaminedAra‐
bidopsismesophyllprotoplastsfortheirintracellularaccumulationofreactiveoxygen
species(ROS)inresponsetoavarietyofexternalstimuli.Inplantcells,ROSusuallyrefer
tosuperoxideradicals(O2•−),hydrogenperoxide(H2O2),andhydroxylradicals(•OH),
andasinanimalcells,wheninexcesstheyaregenerallybelievedtohavedeleteriousef‐
fectsoncellmetabolism,leadingtocelldysfunctionanddeath[13,14].Inplants,ROScan
betriggeredbyanumberofabioticandbioticstresses[14,15],suchasbrightlight,cold,
anddesiccation[16–18],andplantshavedevelopedavarietyofantioxidantstrategiesto
scavengeROSbasedonenzymaticreactionsandthedirectradicalscavengingproperty
ofnon‐enzymaticantioxidantssuchasascorbateandglutathione[18,19].Ontheother
hand,ROSalsofunctionasasignalingmoleculemediatingtheinductionand/orresponse
tostress[20–23].Forexample,H2O2regulatesstomatalmovementandplant–pathogen
interactions[14,24],andbothO2andH2O2cantriggerarangeofdefenseresponses
[23,25].Therefore,theeffectsofROSvarywithconcentration,withhighconcentrations
leadingtohypersensitivecelldeath[26],whilelowconcentrationspromotecellcycle
progressionandsecondarycellwalldifferentiation[27].Inthiswork,weuseddichloro‐
dihydrofluoresceindiacetate(DCFH‐DA)fluorescencebiosensorstodeterminethein‐
tracellularROSdynamicsinplantcells.Inadditiontotheresponsesofmesophyllproto‐
plaststovariousenvironmentalstresses,wealsocomparedtheROSresponsesof
non‐photosyntheticprotoplastsisolatedfromPetuniapetaltissuetoultraviolet‐A(UV‐A)
andUV‐Birradiationandvalidatedthelong‐standingquestionofthephotoprotective
effectsofanthocyanins.Asanotherexampleofthefunctionalphenotypingofsingleplant
cells,weexaminedtheregulatoryfunctionofauxin,animportantphytohormone,inthe
processofprimarycellwallregenerationusingwild‐typeandgeneticallydeficientpro‐
toplasts.Wealsodemonstratedthecorrelationbetweenthepromotionofprimarycell
wallregenerationbyUVirradiationandtheregulationofintracellularauxinbydu‐
al‐channelfluorescencedetection.Ourdatapresentedhereareanexampleoftheuseof
microfluidicflowcytometryinsingle‐cellplantresearchandextendourunderstanding
oftwoplant‐specificprocessesatthecellularlevel.Thissystemallowedamoreaccurate
andefficientassessmentofcellstatus,andanunbiasedinterpretationoftheaveragebe‐
haviorofsingleplantcells.Moreimportantly,theresultsobtaineddemonstratethatdue
totheobviousphysiologicalheterogeneitywithinaplantcellpopulation,amanualrep‐
resentativefluorescencephotographofasinglecellcanleadtobiasandanon‐objective
orambiguousinterpretationoftheexperimentalresults.Understandingcellularfunction
inthispost‐genomiceraisagreatopportunityandchallenge.Wehopethatasmicroflu‐
idictechnologiesbecomemoreadvancedandreadilyavailable,newmicrofluidicsystems
willalsoundergosignificantdevelopmentandinnovationinplantcytology.
Biosensors2022,12,6883of14
2.Methods
2.1.DeviceFabricationandOpticalDetectionSetup
Themicrofluidicdevicewasfabricatedinpoly(dimethyl‐siloxane)(PDMS)using
softlithography[28],whichhadachannelheightof60μm,achannelwidthof40μm,
andholesthatwerepunchedforchannelinletsandoutlets.Thefluorescentsignalsof
singleplantcellsweremeasuredusingamicrofluidicflowcytometry.Themeasurement
wassetuponaninvertedmicroscope(IX73,Olympus)using50mW/360nmand50
mW/488nmlasersasexcitationlightsourcescoupledintoabeambyadichroicfilter
(MD416,Thorlabs).Theintensityofthetwolaserswasadjustedusingthevariableme‐
tallicneutraldensityfilters(NDC‐50C‐2M‐A,Thorlabs).Atransmissionlightsource(850
nm)wasmountedontopofthemicrofluidicdeviceforathecamera’sreal‐timeimaging.
Thefluorescenceemissionlightandtransmissionlightweresplitbytwodichroic,
long‐passfilters(DMLP490RandDMLP567R,Thorlabs)andcollectedthroughaside
portofthemicroscopeusingtwoPMTs(H10722‐210,HAMAMATSU)forthesimulta‐
neousacquisitionoftwodifferentcolors,andonehigh‐speedcamera(UX50,Photron).
LabVIEW2016softwareonaPCwithaFPGAdataacquisitioncard(PCIe‐7842R,Na‐
tionalInstruments)wasappliedtorecordthereal‐timeoutputvoltageofthetwoPMTs
whichrevealedthefluorescentintensitiesofsinglecells.Thepeakvalueswerethenex‐
tractedbyaMATLABdataprocessingprogramandnormalizedbysaturationvoltage
(5V)astherelativefluorescenceunits(RFU)fordataanalysis.
2.2.ProtoplastIsolationandDisposal
TheArabidopsisColumbia‐0(Col‐0)ecotype,theauxinexcessmutantsur2,theauxin
deficientmutanttaa1,theDRF‐GFPtransgenicstrainthatrespondstoauxinsignalswith
spontaneousgreenfluorescent,andthewhiteandpurpleflowersofPetuniawereusedin
thisstudy.Theplantsweregrowninagreenhouseat22°Cunderfluorescentwhitelight
witha16‐hlight/8‐hdarkcycle.ThemethodforisolationofArabidopsisleafprotoplasts
wasobtainedwithaslightmodificationofthemethodofYooetal.[11].Inbrief,healthy
andfullyexpandedArabidopsisleaveswerewashed,thelowerepidermiswastornoff
andthentransferredtotheenzymesolution(1.5%cellulaseR10,0.4%macerozymeR10,
0.4Mmannitol,20mMKCl,and10mMMESatpH5.8).Beforeuse,thisenzymesolution
waswarmedat55℃for10min,thencooleddowntoroomtemperatureandcombined
withCaCl2to10mMandBSAto0.1%,andincubatedindarknessat26℃foratleast3h.
Afterenzymaticdigestion,anequalvolumeofW5solution(154mMNaCl,125mM
CaCl2,5mMKCl,and2mMMESatpH5.8)wasusedtostoptheenzymaticdigestion.
Themixturewasthenfilteredthrougha75‐μmnylonmeshintoa50‐mLround‐bottom
tube.Aftercentrifugationat100×gfor6min,theprotoplastswereresuspendedbygentle
swirlinginaculturemedium(0.32%B‐5medium,0.25Mmannitol,and4mMMESatpH
5.8).Afterrepeatedcentrifugationwiththeculturemedium,theprotoplastswereresus‐
pendedintheculturemedium,andtheconcentrationwasdeterminedtobeapproxi‐
mately106cells/mLbyhemocytometer.TheprotoplastextractionfromPetuniawas
modifiedaccordingtothemethodofKangetal.[29].Freshflowersweregentlyrinsed,
cutintothinstripsandtransferredtoanenzymaticdigestionsolution(4.5%cellulaseR10,
1.2%macerozymeR10,0.6Mmannitol,10mMCaCl2,and20mMMESatpH5.8),andthe
processafterenzymaticdigestionwassimilartothatofArabidopsis,exceptthatthe
culturemediumwasreplacedwithabuffer(0.6Mmannitol,10mMCaCl2,and20mM
MESatpH5.8).
Theprotoplastsweretransferredtocultureplateswith24wellsandplacedattem‐
peratures(4,20,and37°C),underUVirradiation(UVA,UVB),atdifferentconcentra‐
tionsofH2O2(0,50,100,200,400,600,and800μM),Cd2+(40μM),andIAA(5.7μM)ac‐
cordingtotheexperimentaldesign.
2.3.FluorescenceIntensityObservation
Biosensors2022,12,6884of14
TheROSofprotoplastsweremeasuredwiththefluorescentprobeDCFH‐DA
(S0033M,BeyotimeBiotechnology),andtheprotoplast‐regeneratedprimarycellwalls
werestainedwiththefluorescentbrighteneragentCalcofluorwhite[30].Thedifferent
biologicalresponsesofprotoplastswerequalitativelycharacterizedbyfluorescenceim‐
agestakenwithacamera(DS‐Fi1c,Nikon)mountedonamicroscope(Eclipse50i,Nikon)
influorescencemode(excitation:400nm,emission:450nm;excitation:488nm,and
emission:525nm).
2.4.ROSLocalizationandFlavonoidDetectioninPlantTissues
PlanttissueswerecompletelyimmersedinaDABstainingsolution(1mg/mL,pH
3.8)orNBTstainingsolution(NBTpowderwasdissolvedin50mMsodiumphosphate
solutionandpreparedtoaconcentrationof2mg/mL,pH7.5)andreactedfor12hat
roomtemperatureinthedarktolocateH2O2orO2•−.Theplanttissueswerethenim‐
mersedinanhydrousethanolandheatedinaboiling‐waterbathuntiltheoriginalcolor
wasremovedsothatthestainwasclearlyvisible[31,32].Thedeterminationoftotalfla‐
vonoidsandanthocyaninswasbasedonthemethodofLinetal.andHosuetal.[33,34].
AllunlabeledchemicalswerefromSigma‐Aldrich,withtheexceptionofCellulaseR10
andMacerozymeR10,whicharepurchasedfromYakultPharmaceuticalInd.Co.,Ltd.
(Tokyo,Japan).
3.ResultsandDiscussion
3.1.SystemSetupandMonitoringofIntracellularRedoxStatusofMesophyllProtoplast
Todate,cytosolicROSconcentrationsofprotoplastsmeasuredwithfluorescent
probeshaveoftenbeendeterminedempiricallyonrepresentativecells,whichcarriesthe
riskthattheydonotreflecttheaveragevalue,anddonotallowreliableconclusionstobe
drawn[23,35].Toaddressthisproblemandrevealheterogeneitybetweencellpopula‐
tions,wedevelopedamicrofluidicflowcytometrywithanintegratedfluorescencede‐
tector(Figure1A,B)thatallowscellanalysisatatheoreticalrateof1000cellspersecond.
Inthissystem,theprotoplastsuspensionwasinjectedintothemicrofluidicdeviceata
constantflowrateundercontrolledpressure(FluigentMFCS‐EZ,pressureranges0–1bar
and0–345mbar).Becausesinglecellsmoverapidlythroughamicrofabricatedcon‐
strictionchannelwhosewidthcorrespondstothecellsize(Figure1C),thereal‐time
outputfluorescencesignalsfromthedual‐channelPMTswererecordedsimultaneously
usingaLabVIEWprogramviaadataacquisitioncard(DAQ)(Figure1D).Theacquisition
frequencyoftheDAQwassetat100kHztomaintainsamplingaccuracyandoptimize
storageefficiency.Theprotoplastsuspensionwasrunataflowrateofapproximately1
μL/stomaintainabalancebetweenrelativelyhighflowratesandlowsheath‐fluid
pressure.Toevaluatethefeasibilityofthissystem,wefirsttesteditonisolatedAra‐
bidopsismesophyllprotoplastsandexposedthemtovariousconcentrationsofH2O2for
3,6and9hbeforeadding2,7‐ dichlorodihydrofluoresceindiacetate(DCFH‐DA),a
cell‐permeable,nonfluorescentprobe.Duringthesubsequent5minincubationinthe
dark,thecell‐permeableDCFH‐DAprobepenetratestheprotoplastandpreferentially
distributesinthecytoplasm[23,35],leadingtorapidproductionoftheoxidizedfluores‐
cenceproductsinthepresenceofthecellularROScorrespondingtothesynchronous
peakinthegreenchannel(514.5nm).AsshowninFigure2,underthepresentexperi‐
mentalconditions,exogenouslyappliedH2O2ledtoaprogressiveincreaseinROSac‐
cumulationwithinprotoplastsinatime‐anddose‐dependentmanner.Concentrationsof
lessthan600μMH2O2showedgoodlinearagreementintermsoftheintensityofthein‐
tracellularROSsignal;however,atahigherconcentrationof800μM,therewasnofur‐
therincreaseinintracellularfluorescenceintensity,suggestingthatcellsmayturnon
specificquenchingmechanismstodetoxifyandremovethereactiveintermediates(Fig‐
ure2).Thisresultwasessentiallyinagreementwithapreviousreportthatwhenanon‐
ionsurfacewastreatedwithH2O2,saturationofthefluorescenceresponsewasobserved
Biosensors2022,12,6885of14
at1mM[36].Moreimportantly,ourdatashowthatwiththereliableandrapidacquisi‐
tionofthefluorescenceintensityofeachcellinthepopulation,thecompletedatasetfor
theentirepopulationcancharacterizethepropertiesofthecellpopulationwithhigher
accuracy,andcircumventthepotentialbiasandtimewasteofconventionalmicroscopy
inselectingrepresentativecells.
Figure1.Microfluidicflowcytometry.(A)Schematicdiagramofthedevelopedplatform;(B)
Photographofthedevelopedplatform;(C)Time‐lapseimagesofasingleplantcellpassingthrough
thechannel;(D)Real‐timeresponseofdual‐channelfluorescencedetectionofasingleplantcell.
Biosensors2022,12,6886of14
Figure2.ExogenousH2O2‐mediatedchangesinROScontentofArabidopsisprotoplasts.(A)Fluo‐
rescenceimagesofprotoplastswithascaleof25μm;(B–D)fluorescenceintensitygradientsin‐
ducedbyH2O2concentrationinprotoplastsafter3,6,and9h,respectively;(E)effectofH2O2
treatmenttimeonthefluorescenceintensityofprotoplasts.
3.2.CytosolicRedoxStatusofMesophyllProtoplastuponEnvironmentalStresses
ROSplayanessentialroleinthephysiologicalanddevelopmentalprocessesofplant
growth,aswellasinthedefense‐signalcascadeagainstabioticandbioticstressfactors.
Usingthedevelopedsystem,weinvestigatedtheintracellularROSresponsesofmeso‐
phyllprotoplaststoenvironmentalstressessuchashighandlowtemperatures,UVlight,
andheavy‐metalexposure.First,whenprotoplastsweretreatedatlowtemperature(4
°C)andhightemperature(37°C)for15–150min,theintracellularROSsignalincreasedto
asignificantlyhigherlevel(3.5–5foldsaftera150‐minexposure)thanthatinthecontrol
group(20°C),andtheoxidativepressureinducedbyhightemperaturewassignificantly
higherthanthatinducedbylowtemperature(Figure3A,B).Second,Cdionsatacon‐
centrationof40μMinducedanaccumulationofROSovera9hperiod,withsucha
changeincytosolicredoxstatusoccurringmainlyinthefirst6h(Figure3C,D).Third,
after9hofUV‐AorUV‐Birradiation,theincreaseinROSintwopopulationsofmeso‐
Biosensors2022,12,6887of14
phyllprotoplastsincreasedlinearlywithtimeandshowedalmostparalleltrends,with
theUV‐AresponsebeingstrongerthantheUV‐Bresponse(Figure3E,F).Acomparison
ofthethreetreatmentsshowedthateachstresshasitsownuniqueinductionkineticsin
theaccumulationofreactiveoxygenspeciesinsingleplantcells.Inaddition,treatment
withascorbate(AsA),afree‐radicalscavenger,effectivelysuppressedtheproductionof
ROSinducedbytheabovethreetreatments,suggestingthefluorescencesignaldetected
bythesystemwasindeedfromtheoxidationofprotoplasts(FigureS1,Supplementary
Materials).Insummary,theseresultsconfirmthatoursystemcanbeusedfortherelative
quantificationofbiochemicalandphysiologicalpropertiesinprotoplastsina
high‐throughputmannerandforcomparisonbetweencellpopulationsbyselectingap‐
propriateprobes.
Figure3.RedoxstatusofArabidopsisprotoplastsunderenvironmentalstress.(A)Fluorescence
imagesofprotoplastsatdifferenttemperatureswithascaleof25μm;(B)fluorescenceintensityof
protoplastsatdifferenttemperaturestresses;(C)fluorescenceimagesofprotoplastsunderCd2+
treatmentwithascaleof25μm;(D)fluorescenceintensityofprotoplastsunderCd2+;(E)fluores‐
Biosensors2022,12,6888of14
cenceimagesofprotoplastsunderUVtreatmentwithascaleof25μm;(F)fluorescenceintensityof
protoplastsunderUV.
3.3.ROSAccumulationinPetalCellsIsAssociatedwithAnthocyaninLevelunderUV‐B
Irradiation
UVlightisthoughttocauseoxidativedamageinlivingorganisms[37].Incultured
mammaliancells,UVlighthasbeenshowntostimulateH2O2productionbyphotore‐
ductioninperoxisomesandmitochondria[38].Inplants,strongUVirradiationalsoleads
totheoverproductionofROSinchloroplastsandmitochondria,whichinturnhaspro‐
foundeffectsonotherorganellessuchasperoxisomes,cytosolandvacuoles[39].To
protectthemselvesfromUVstress,plantsbiosynthesizeavarietyofspecializedmetabo‐
litesinspecificintracellularcompartments.However,thefunctionalcharacterizationof
thesenaturalproductsisoftenhamperedbytheirlowabundanceandlimitedavailability
inplanttissues[40],sosingle‐cellanalysisbasedonmicrofluidicscanbeaneffectiveal‐
ternativetool.Inthisstudy,weareinterestedinthepossibleroleofanthocyaninsaspart
ofthecomplexantioxidantdefensesystemthattheplantemploystominimizeoxidative
damagecausedbyUVradiation.Tothisend,wefirstmeasuredthetotalflavonoidand
anthocyanincontentinthewhiteandpurplepetalsofPetunia(Petuniahybrida),respec‐
tively.Thedatashowedthatthepurplepetalshada20‐foldhigherconcentrationofan‐
thocyaninsthanthewhitepetals,butasimilarnumberoftotalflavonoids(Figure4A).
Flavonoidsareclassifiedintochalcones,flavanones,flavonols,flavones,isoflavones,
3‐deoxyflavonoids,and(pro)anthocyanidins[41],andusuallyaccumulateinvacuolesor
thecellwall[42].DuetotheirabsorptionintheUVrange,flavonoidsarethoughttoactas
sunscreens.Inaddition,flavonoidsalsoactasROSscavengersduetothepresenceof
phenolichydroxylgroupsintheirstructure[41].Inthiswork,Petuniaflowersofdifferent
colorswerefirstirradiatedwithUVlightandthenstainedwitheitherdiaminobenzidine
(DAB)forH2O2accumulation[43],ornitrobluetetrazolium(NBT)forsuperoxideradical
(O2•–)accumulation[44].Inbothassays,significantdifferencesinstainingintensitywere
observedbetweenthepurpleandwhiteflowers(Figure4C),suggestingthatthepurple
flowertissueaccumulatesmuchlessROSthantheirwhitecounterparts.Wethenisolated
protoplastsfromthetwotypesofpetalsandagainusedDCFH‐DAdyetomeasuretheir
respectiveintracellularconcentrationsofROSafterUV‐AandUV‐Birradiation(Figure
4D,E).Consistentwiththetissue‐levelresults,boththewhiteandpurpleprotoplasts
showedatime‐dependentincreaseinROScomparedwiththerespectiveuntreatedcon‐
trolcells,butmuchlowerconcentrationsofROSweredetectedinthepurpleprotoplasts
comparedwiththewhiteprotoplastsisolatedfrompetals,consistentwiththephotopro‐
tectiveH2O2scavengingeffectofanthocyanins(Figure4D,E).Thepreincubationofpro‐
toplastswithAsAinthedarkpriortoUVtreatmentdramaticallyreducedtheoxidative
burst,suggestingthatAsAenterscellsandreducesUV‐inducedROSaccumulation
(FigureS1).Thephotoprotectiveeffectofanthocyaninsisthoughttobeduetotheir
UV‐shieldingfunction[42]andtheirabilitytoactaseffectivescavengersofROS[45].
Althoughfurtherstudiesareneededtoelucidatethemechanismofvacuole‐localized
anthocyaninsinscavengingROSinthecytoplasm,ourdataclearlydemonstratethekey
roleofanthocyaninsinthedynamicregulationofintracellularredoxstatusunderUV
lightoverexposureatthecellularlevel.Thisheterogeneityofcellularresponsesalso
providescluesforthereal‐timephenotypicinsituidentificationandclassificationof
subpopulationsofcellsunderspecificstimuli.
Biosensors2022,12,6889of14
Figure4.ResponseofPetuniaprotoplaststoUVirradiation.(A)Totalflavonoidandanthocyanin
contentindifferentcoloredpetals;(B)imagesofpetalsattissueandcelllevels;(C)DABandNBT
Biosensors2022,12,68810of14
stainingofdifferentcoloredpetalsunderUVirradiation;(D)fluorescenceimagesofprotoplasts
ROSwithascaleof25μm;(E)fluorescenceintensityofdifferentcoloredprotoplastsonUV.
3.4.AuxinintheRegulationofPrimaryCellWallRegenerationProcessofProtoplasts
Inhigherplants,theprimarycellwall(PCW)isahighlyorganizedstructurecon‐
sistingofcrystallinecellulosemicrofibrilsembeddedinahydratedmatrixofpectinand
hemicellulose[9].Theprimarycellwallwasstrippedduringprotoplastproductionand
willregenerateoverthenext24to48h[46].Next,weinvestigatedthephysiologicalrole
ofauxinundernormalorUV‐Bconditionsintheprocessofprimarycellwallregenera‐
tion.Auxinisanessentialplanthormonethatplaysacrucialroleinmanyphysiological
anddevelopmentalprocessesatthecellular,tissue,andorganlevels[47–49].Tofurther
investigatetheinfluenceofendogenousauxinonplantcellwallregeneration,wefirst
comparedtheprocessofprimarycellwallregenerationinprotoplastsofsur2andtaa1
mutants,whichhadhigherandlowerauxinlevels[50,51],respectively,withthatof
wild‐typemesophyllcells.Cellwalldigestionandregenerationwereconfirmedby
CalcofluorWhite(CFW)thatspecificallystainscelluloseinthecellwall[30].Asshownin
Figure5,theprocessofcellwallregenerationwasenhancedanddelayed,respectively,in
thesetwomutants(Figure5A,B),suggestingthatauxinisrequiredforPCWregeneration
ofprotoplasts.Asanendogenousauxin,theintracellularconcentrationofindole‐3‐acetic
acid(IAA)dependsonitsinfluxandeffluxmediatedbyseparatemembrane‐transport
processes,andithasbeenreportedthat,undernormalconditions,100pgofIAAispre‐
sentinonemgofArabidopsisrootprotoplastandverylittleIAAescapesfromisolated
protoplasts[52].Tomonitorintracellularauxinlevels,weisolatedmesophyllprotoplasts
fromtheArabidopsisDR5:GFPmarkerline,inwhichtheIAA‐responsivepromoterDR5
drivesfluorescentprotein(GFP)expression,allowingindirectquantificationofIAA
withinthecell[53].AsshowninFigure5C,externallyappliedIAAeffectivelyincreased
bluefluorescenceemittedfromthePCWcomparedwithuntreatedprotoplasts,which
wasaccompaniedbyastrongergreenfluorescencesignalfromtheauxinsignalreporter
DR5,indicatingthatexternalauxinmoleculesenteredthecellthroughtheplasmamem‐
brane(Figure5C).ConsideringthatUVradiationcausesoxidativedamagetoplantpro‐
toplasts,itisreasonabletoassumethatcellsprotectthemselvesagainstthisdamageby
acceleratingtheformationoftheprotectivePCW.Totestthishypothesis,weirradiated
DR5:GFPprotoplastswithUV‐Blightandfoundthatsuchtreatmentindeedaccelerated
theregenerationofPCWformation,whichwasunderlinedbyaconcomitantincreasein
auxinconcentrationwithinthecells(Figure5C),confirmingtheregulatoryinvolvement
ofauxininthisprocess.Therefore,dual‐colorfluorescencecanbeusedtosimultaneously
analyzedifferentphysiologicalprocessesbymonitoringtwosignalsoriginatingfromthe
samecell.AsshowninFigure5D,sixdifferentcellclusterscanbeidentifiedafterthecells
weregroupedbasedontheirdual‐channeldetectionsignals.Amongthem,theaddition
ofexogenousauxinresultedinahigherconcentrationofauxinwithinthecellthanUV‐B
exposure,andthepromotingeffectofUV‐Bonprimarycellwallsynthesisoccurred
mainlyinthefirst12h,andatatimepointof24h,therewaslittledifference,probably
duetothecompletionofthePCWinbothgroups.Basedontheresultsofalargenumber
ofcells,suchasmallanddynamicdifferencewasmorereliableandmeaningfulthan
evaluationbymicroscopicobservation(Figure5D).
Biosensors2022,12,68811of14
Figure5.InvolvementofauxininPCWregenerationprogress.(A)PCWfluorescenceimagesof
protoplastsofdifferentArabidopsisgenotypesatthreetimepointswithascalebarof25μm;(B)
FluorescenceintensityofprotoplastsofdifferentArabidopsisgenotypes;(C)IAAdistributionand
PCWfluorescenceimagesofDRF‐GFPundertheinfluenceofUVBirradiationandexogenousIAA;
(D)Two‐channeldetectionofIAAautofluorescenceandPCWfluorescencefromDRF‐GFPproto‐
plasts.
4.Summary
Inthiswork,wehavedevelopedamicrofluidicmethodfortherapid,efficient,and
directmeasurementoftargetedcellularresponsesinprotoplaststhatprovidesanauto‐
mated,easy‐to‐usetoolforcytochemicalresearchonsingleplantcells.Wevalidatedthe
applicabilityofthismethodforsingle‐cellmeasurementsofROSinthepresenceofava‐
rietyofenvironmentalstimuli,allowingadeeperunderstandingofredoxdynamicsin
vivoduringoxidativestress.Wethenappliedthistooltotheanalysisoftwodifferent
plant‐specificphysiologicalprocesses,andprovidedevidenceforthephotoprotective
roleofanthocyaninlocalizedinthevacuoleandfortheformationoftheprimarycellwall
promotedbyauxinatthecellularlevel.Theplatformwedevelopedissimple,fast,and
hasahigh‐throughputcapacity.Inthefuture,quantitative,ratherthanqualitative,
measurementsofinternalbiophysicalandbiochemicalparametersofplantcellsneedto
befurtherdeveloped.Byintegratingelectrical,optical,andmagneticsensingtechniques
withmicrofluidictechnology,micro‐flowcytometersarecertaintoprovidefurtherin‐
sightintolong‐standingandpressingquestionsinplantscience.
SupplementaryMaterials:Thefollowingsupportinginformationcanbedownloadedat:
https://www.mdpi.com/article/10.3390/bios12090688/s1,FigureS1:FluorescenceimagesofAra‐
bidopsisprotoplastswithandwithoutASAunderdifferentexternalstresstreatments(withascale
barof25um).
Biosensors2022,12,68812of14
AuthorContributions:Conceptualization,J.W.andZ.H.;methodology,X.D.(XingdaDaiand)and
S.Z.;validation,X.D.(XingdaDaiand)andS.Z.;formalanalysis,X.D.(XingdaDaiand)andS.Z.;
software,S.L.;resources,H.Q.;investigation,X.D.(XingdaDaiand)andS.Z.;datacuration,J.W.
andZ.H.;writing–originaldraft,J.W.;writing–reviewandediting,J.W.,Z.H.andX.D.(Xuexin
Duan);visualization,X.D.(XingdaDaiand)andZ.H.;supervision,J.W.andX.D.(XuexinDuan);
projectadministration,Z.H.;fundingacquisition,J.W.andX.D.(XuexinDuan).Allauthorshave
readandagreedtothepublishedversionofthemanuscript.
Funding:ThisworkwassupportedbyNationalNaturalScienceFoundationofChina(32170413).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Kallberg,J.;Xiao,W.;VanAssche,D.;Baret,J.‐C.;Taly,V.Frontiersinsinglecellanalysis:Multimodaltechnologiesandtheir
clinicalperspectives.LabChip2022,22,2403–2422.https://doi.org/10.1039/d2lc00220e.
2. Banik,S.;Uchil,A.;Kalsang,T.;Chakrabarty,S.;Ali,M.A.;Srisungsitthisunti,P.;Mahato,K.K.;Surdo,S.;Mazumder,N.The
revolutionofPDMSmicrofluidicsincellularbiology.Crit.Rev.Biotechnol.2022,1–19.
https://doi.org/10.1080/07388551.2022.2034733.
3. Zhang,Y.;Zhao,Y.;Cole,T.;Zheng,J.;Bayin,Q.;Guo,J.;Tang,S.‐Y.Microfluidicflowcytometryforblood‐basedbiomarker
analysis.Analyst2022,147,2895–2917.https://doi.org/10.1039/d2an00283c.
4. Sanchez‐Freire,V.;Ebert,A.D.;Kalisky,T.;Quake,S.R.;Wu,J.C.Microfluidicsingle‐cellreal‐timePCRforcomparativeanal‐
ysisofgeneexpressionpatterns.Nat.Protoc.2012,7,829–838.https://doi.org/10.1038/nprot.2012.021.
5. Liu,L.;Cheung,T.H.;Charville,G.W.;Rando,T.A.Isolationofskeletalmusclestemcellsbyfluorescence‐activatedcellsorting.
Nat.Protoc.2015,10,1612–1624.https://doi.org/10.1038/nprot.2015.110.
6. Liu,L.;Fan,B.;Yang,H.;Chen,D.;Zhang,S.;Wang,J.;Chen,J.Anovelmicrofluidicflow‐cytometryforcountingnumbersof
single‐cellβ‐actins.Nanotechnol.Precis.Eng.2020,3,156–161.https://doi.org/10.1016/j.npe.2020.06.001.
7. Cocking,E.C.Amethodfortheisolationofplantprotoplastsandvacuoles.Nature1960,187,962–963.
8. Sheen,J.SignaltransductioninmaizeandArabidopsismesophyllprotoplasts.PlantPhysiol.2001,127,1466–1475.
9. Leucci,M.R.;DiSansebastiano,G.P.;Gigante,M.;Dalessandro,G.;Piro,G.Secretionmarkerproteinsandcell‐wallpolysac‐
charidesmovethroughdifferentsecretorypathways.Planta2007,225,1001–1017.https://doi.org/10.1007/s00425‐006‐0407‐9.
10. Pasternak,T.P.;Prinsen,E.;Ayaydin,F.;Miskolczi,P.;Potters,G.;Asard,H.;VanOnckelen,H.A.;Dudits,D.;Feher,A.The
Roleofauxin,pH,andstressintheactivationofembryogeniccelldivisioninleafprotoplast‐derivedcellsofalfalfa.Plant
Physiol.2002,129,1807–1819.https://doi.org/10.1104/pp.000810.
11. Yoo,S.D.;Cho,Y.H.;Sheen,J.Arabidopsismesophyllprotoplasts:Aversatilecellsystemfortransientgeneexpressionanaly‐
sis.Nat.Protoc.2007,2,1565–1572.https://doi.org/10.1038/nprot.2007.199.
12. Antoniadi,I.;Skalicky,V.;Sun,G.;Ma,W.;Galbraith,D.W.;Novak,O.;Ljung,K.Fluorescenceactivatedcellsorting‐Aselec‐
tivetoolforplantcellisolationandanalysis.Cytom.PartA2021.https://doi.org/10.1002/cyto.a.24461.
13. Noctor,G.;Reichheld,J.P.;Foyer,C.H.ROS‐relatedredoxregulationandsignalinginplants.Semin.CellDev.Biol.2018,80,3–
12.https://doi.org/10.1016/j.semcdb.2017.07.013.
14. Apel,K.;Hirt,H.Reactiveoxygenspecies:Metabolism,oxidativestress,andsignaltransduction.Annu.Rev.PlantBiol.2004,55,
373–399.https://doi.org/10.1146/annurev.arplant.55.031903.141701.
15. Mittler,R.;Vanderauwera,S.;Gollery,M.;VanBreusegem,F.Reactiveoxygengenenetworkofplants.TrendsPlantSci.2004,9,
490–498.https://doi.org/10.1016/j.tplants.2004.08.009.
16. Yang,S.;Yu,Q.;Zhang,Y.;Jia,Y.;Wan,S.;Kong,X.;Ding,Z.ROS:TheFine‐TunerofPlantStemCellFate.TrendsPlantSci.
2018,23,850–853.https://doi.org/10.1016/j.tplants.2018.07.010.
17. delRio,L.A.;Pastori,G.M.;Palma,J.M.;Sandalio,L.M.;Sevilla,F.;Corpas,F.J.;Jimenez,A.;Lopez‐Huertas,E.;Hernandez,J.A.
Theactivatedoxygenroleofperoxisomesinsenescence.PlantPhysiol.1998,116,1195–1200.
https://doi.org/10.1104/pp.116.4.1195.
18. Niyogi,K.K.PHOTOPROTECTIONREVISITED:GeneticandMolecularApproaches.Annu.Rev.PlantPhysiol.PlantMol.Biol.
1999,50,333–359.https://doi.org/10.1146/annurev.arplant.50.1.333.
19. Soares,C.;Carvalho,M.E.A.;Azevedo,R.A.;Fidalgo,F.Plantsfacingoxidativechallenges—Alittlehelpfromtheantioxidant
networks.Environ.Exp.Bot.2019,161,4–25.
20. Allan,A.C.;Fluhr,R.TwoDistinctSourcesofElicitedReactiveOxygenSpeciesinTobaccoEpidermalCells.PlantCell1997,9,
1559–1572.https://doi.org/10.1105/tpc.9.9.1559.
21. Karpinski,S.;Reynolds,H.;Karpinska,B.;Wingsle,G.;Creissen,G.;Mullineaux,P.Systemicsignalingandacclimationin
responsetoexcessexcitationenergyinArabidopsis.Science1999,284,654–657.https://doi.org/10.1126/science.284.5414.654.
22. Mittler,R.ROSAreGood.TrendsPlantSci.2017,22,11–19.https://doi.org/10.1016/j.tplants.2016.08.002.
Biosensors2022,12,68813of14
23. Smirnoff,N.;Arnaud,D.Hydrogenperoxidemetabolismandfunctionsinplants.NewPhytol.2019,221,1197–1214.
https://doi.org/10.1111/nph.15488.
24. Rhee,S.G.Cellsignaling.H2O2,anecessaryevilforcellsignaling.Science2006,312,1882–1883.
https://doi.org/10.1126/science.1130481.
25. Cerny,M.;Habanova,H.;Berka,M.;Luklova,M.;Brzobohaty,B.HydrogenPeroxide:ItsRoleinPlantBiologyandCrosstalk
withSignallingNetworks.Int.J.Mol.Sci.2018,19,2812.https://doi.org/10.3390/ijms19092812.
26. Jabs,T.;Dietrich,R.A.;Dangl,J.L.InitiationofrunawaycelldeathinanArabidopsismutantbyextracellularsuperoxide.Sci‐
ence1996,273,1853–1856.https://doi.org/10.1126/science.273.5283.1853.
27. Potikha,T.S.;Collins,C.C.;Johnson,D.I.;Delmer,D.P.;Levine,A.Theinvolvementofhydrogenperoxideinthedifferentiation
ofsecondarywallsincottonfibers.PlantPhysiol.1999,119,849–858.https://doi.org/10.1104/pp.119.3.849.
28. Xia,Y.;Whitesides,G.M.SoftLithography.Angew.Chem.Int.Ed.Engl.1998,37,550–575.
https://doi.org/10.1002/(SICI)1521‐3773(19980316)37:5<550::AID‐ANIE550>3.0.CO;2‐G.
29. Kang,H.;Naing,A.H.;Park,S.K.;Chung,M.Y.;Kim,C.K.Protoplastisolationandtransientgeneexpressionindifferentpe‐
tuniacultivars.Protoplasma2022,1–10.https://doi.org/10.1007/s00709‐022‐01776‐9.
30. Nagata,T.;Takebe,I.Cellwallregenerationandcelldivisioninisolatedtobaccomesophyllprotoplasts.Planta1970,92,301–
308.
31. Wu,T.‐M.;Huang,J.‐Z.;Oung,H.‐M.;Hsu,Y.‐T.;Tsai,Y.‐C.;Hong,C.‐Y.H2O2‐basedmethodforrapiddetectionof
transgene‐freericeplantsfromsegregatingCRISPR/Cas9genome‐editedprogenies.Int.J.Mol.Sci.2019,20,3885.
32. GrelletBournonville,C.F.;Díaz‐Ricci,J.C.QuantitativedeterminationofsuperoxideinplantleavesusingamodifiedNBT
stainingmethod.Phytochem.Anal.2011,22,268–271.
33. Lin,J.‐Y.;Tang,C.‐Y.Determinationoftotalphenolicandflavonoidcontentsinselectedfruitsandvegetables,aswellastheir
stimulatoryeffectsonmousesplenocyteproliferation.FoodChem.2007,101,140–147.
34. Hosu,A.;Cristea,V.‐M.;Cimpoiu,C.Analysisoftotalphenolic,flavonoids,anthocyaninsandtanninscontentinRomanian
redwines:Predictionofantioxidantactivitiesandclassificationofwinesusingartificialneuralnetworks.FoodChem.2014,150,
113–118.
35. Exposito‐Rodriguez,M.;Laissue,P.P.;Yvon‐Durocher,G.;Smirnoff,N.;Mullineaux,P.M.Photosynthesis‐dependentH2O2
transferfromchloroplaststonucleiprovidesahigh‐lightsignallingmechanism.Nat.Commun.2017,8,49.
https://doi.org/10.1038/s41467‐017‐00074‐w.
36. Kristiansen,K.A.;Jensen,P.E.;Møller,I.M.;Schulz,M.Monitoringreactiveoxygenspeciesformationandlocalisationinliving
cellsbyuseofthefluorescentprobeCM‐H(2)DCFDAandconfocallasermicroscopy.Physiol.Plant2009,136,369–383.
37. Babu,T.S.;Akhtar,T.A.;Lampi,M.A.;Tripuranthakam,S.;Dixon,D.G.;Greenberg,B.M.Similarstressresponsesareelicited
bycopperandultravioletradiationintheaquaticplantLemnagibba:Implicationofreactiveoxygenspeciesascommonsig‐
nals.PlantCellPhysiol.2003,44,1320–1329.https://doi.org/10.1093/pcp/pcg160.
38. Hockberger,P.E.;Skimina,T.A.;Centonze,V.E.;Lavin,C.;Chu,S.;Dadras,S.;Reddy,J.K.;White,J.G.Activationoffla‐
vin‐containingoxidasesunderlieslight‐inducedproductionofH2O2inmammaliancells.Proc.Natl.Acad.Sci.USA1999,96,
6255–6260.https://doi.org/10.1073/pnas.96.11.6255.
39. Noctor,G.;Foyer,C.H.IntracellularRedoxCompartmentationandROS‐RelatedCommunicationinRegulationandSignaling.
PlantPhysiol.2016,171,1581–1592.https://doi.org/10.1104/pp.16.00346.
40. Carqueijeiro,I.;Guimaraes,A.L.;Bettencourt,S.;Martinez‐Cortes,T.;Guedes,J.G.;Gardner,R.;Lopes,T.;Andrade,C.;Bispo,
C.;Martins,N.P.;etal.IsolationofCellsSpecializedinAnticancerAlkaloidMetabolismbyFluorescence‐ActivatedCellSort‐
ing.PlantPhysiol.2016,171,2371–2378.https://doi.org/10.1104/pp.16.01028.
41. FalconeFerreyra,M.L.;Serra,P.;Casati,P.RecentadvancesontherolesofflavonoidsasplantprotectivemoleculesafterUV
andhighlightexposure.Physiol.Plant2021,173,736–749.
42. Winkel‐Shirley,B.Flavonoidbiosynthesis.Acolorfulmodelforgenetics,biochemistry,cellbiology,andbiotechnology.Plant
Physiol.2001,126,485–493.https://doi.org/10.1104/pp.126.2.485.
43. Myouga,F.;Hosoda,C.;Umezawa,T.;Iizumi,H.;Kuromori,T.;Motohashi,R.;Shono,Y.;Nagata,N.;Ikeuchi,M.;Shinozaki,
K.Aheterocomplexofironsuperoxidedismutasesdefendschloroplastnucleoidsagainstoxidativestressandisessentialfor
chloroplastdevelopmentinArabidopsis.PlantCell2008,20,3148–3162.https://doi.org/10.1105/tpc.108.061341.
44. Kawai‐Yamada,M.;Ohori,Y.;Uchimiya,H.DissectionofArabidopsisBaxinhibitor‐1suppressingBax‐,hydrogenperoxide‐,
andsalicylicacid‐inducedcelldeath.PlantCell2004,16,21–32.https://doi.org/10.1105/tpc.014613.
45. Isah,T.Stressanddefenseresponsesinplantsecondarymetabolitesproduction.Biol.Res.2019,52,39.
https://doi.org/10.1186/s40659‐019‐0246‐3.
46. Chen,L.C.;Han,Z.Y.;Fan,X.T.;Zhang,S.H.;Wang,J.H.;Duan,X.X.Animpedance‐coupledmicrofluidicdeviceforsingle‐cell
analysisofprimarycellwallregeneration.Biosens.Bioelectron.2020,165,112374.https://doi.org/10.1016/j.bios.2020.112374.
47. Hagen,G.Auxinsignaltransduction.EssaysBiochem.2015,58,1–12.https://doi.org/10.1042/bse0580001.
48. Millner,P.A.Theauxinsignal.Curr.Opin.CellBiol.1995,7,224–231.https://doi.org/10.1016/0955‐0674(95)80032‐8.
49. Weijers,D.;Jurgens,G.Funnelingauxinaction:Specificityinsignaltransduction.Curr.Opin.PlantBiol.2004,7,687–693.
https://doi.org/10.1016/j.pbi.2004.09.006.
50. Delarue,M.;Prinsen,E.;VanOnckelen,H.;Caboche,M.;Bellini,C.Sur2mutationsofArabidopsisthalianadefineanewlocus
involvedinthecontrolofauxinhomeostasis.PlantJ.1998,14,603–611.https://doi.org/10.1046/j.1365‐313X.1998.00163.x.
Biosensors2022,12,68814of14
51. Stepanova,A.N.;Robertson‐Hoyt,J.;Yun,J.;Benavente,L.M.;Xie,D.‐Y.;Dolezal,K.;Schlereth,A.;Juergens,G.;Alonso,J.M.
TAA1‐mediatedauxinbiosynthesisisessentialforhormonecrosstalkandplantdevelopment.Cell2008,133,177–191.
https://doi.org/10.1016/j.cell.2008.01.047.
52. Petersson,S.V.;Johansson,A.I.;Kowalczyk,M.;Makoveychuk,A.;Wang,J.Y.;Moritz,T.;Grebe,M.;Benfey,P.N.;Sandberg,
G.;Ljung,K.AnauxingradientandmaximumintheArabidopsisrootapexshownbyhigh‐resolutioncell‐specificanalysisof
IAAdistributionandsynthesis.PlantCell2009,21,1659–1668.https://doi.org/10.1105/tpc.109.066480.
53. Ulmasov,T.;Murfett,J.;Hagen,G.;Guilfoyle,T.J.Aux/IAAproteinsrepressexpressionofreportergenescontainingnatural
andhighlyactivesyntheticauxinresponseelements.PlantCell1997,9,1963–1971.https://doi.org/10.1105/tpc.9.11.1963.