ArticlePDF Available

Abstract

The Parametric FEM Toolbox is a plug‐in for the visual programming environment Grasshopper which implements the RF‐COM API of the Dlubal RFEM finite element software to establish a connection between these two platforms. Both the transfer of data from Grasshopper into RFEM and back from RFEM into Grasshopper are supported. Thus, new possibilities are enabled beyond the options of the conventional graphical user interface (GUI) of RFEM: the use of the Rhino 3D modelling tools to create NURBS curves and surfaces; the possibility of the parametric modification of an existing FE model or part of it; the export and processing of FE model data, which sometimes is not even available through the program GUI, e.g. 3D shapes of beam elements; etc. With these functionalities, the object‐oriented structure and compact GUI, this tool can easily be adapted to numerous workflows and optimization processes. This paper explores which possibilities exist for implementing a commercial FEM software in a parametric design platform. Existing approaches are reviewed, the development of the Parametric FEM Toolbox is described and some of the possible workflows with this new tool are explored through a collection of real‐world case studies.
 






















 



 

 


        
       

      





      
 
       
   

       
 
       
    



        

   
        
      


 


   
       


 
 



        

   

 
        
        
       

       




 
        

   
         


  
 

      

   
        
   
  
      



       
       


  
 

 
       

 


 
 


   
 


 
      
     

     

        
 

 
  

          

 


        
         


 
  

        
        
        
  
   
      
  




        


          
  

   


        
       



 
       

         

 



 

 
        
         

       

        
  
      
       
 
 




   
       

      
  
       

 

       
  
       
     
        


  


       









 



     

 


 


 

 
      


 

  
         

   

 


   


 


 


 
 
 

  
       

      
       


 

 
     
       

      
 
        

 



 
         
          

 

      



     






       


       

         

 
     
        

  
        
          


  

        
     
  


       

        




 
          

         
        


 
        
       




  
     

        
   

       
    

     
   

 
      

 
   

 


  
        


        


       












... The parameter analysis is conducted using several computer programs (Figure 4)using visual programming in the Grasshopper interface [31], which is part of Rhino 8 software [32]. The Parametric FEM Toolbox [33] is an add-on in Grasshopper that generates a numerical model in Dlubal RFEM and allows communication with it-this includes the subsequent modification and reading results after the analysis has been conducted. Additionally, with the Colibri add-on, numerical models are generated by varying certain parameters by predefined values. ...
... The parameter analysis is conducted using several computer programs ( Figure 4)using visual programming in the Grasshopper interface [31], which is part of Rhino 8 software [32]. The Parametric FEM Toolbox [33] is an add-on in Grasshopper that generates a numerical model in Dlubal RFEM and allows communication with it-this includes the subsequent modification and reading results after the analysis has been conducted. Additionally, with the Colibri add-on, numerical models are generated by varying certain parameters by predefined values. ...
... Pre-processing in B + G Toolbox[33]. ...
Article
Full-text available
For wide flange box sections, conventional Euler–Bernoulli beam theory with maintaining the cross-section planarity may lead to underestimation of axial stresses. Axial stresses in cross-section flanges may have a non-uniform distribution due to shear pliability, decreasing in value from the flange–web junction to the middle area of the flange. This phenomenon leads to the introduction of an effective flange width with a uniform distribution of original maximum stress. Furthermore, the introduction of flange curvature makes it even more complex due to the varying lever arm of each flange part with respect to the neutral bending axis. Because of this, in some cases, it is hard to predict where the flange’s highest normal stress value will appear. In this paper, the shear lag effect on wide curved box sections is analyzed through parametric numerical analysis using the FEA software Dlubal RFEM 5, together with visual programming performed in Rhino Grasshopper. This study investigates the interaction of the shear lag effect and plane section hypothesis, which can be simplistically represented as a reduction in the impact of shear lag and the activation of a larger part of the flange of a wide-flange beam in the structural system of a continuous beam. The results suggest that for higher flange curvature and higher width to length ratio, this effect is more prominent.
... Rhinoceros is a 3D modelling CAD software whose geometry is based on mathematical NURBS model (Fink & Koenig, 2019). It has Grasshopper plug-in to define algorithms for its visual programming environment (Apellániz & Vierlinger, 2022). ...
Article
Full-text available
Metaphor technique adapting organic shape from nature requires advanced technology for its development. Metaphor with regular irregularity concepts provides better camouflage and harmony within context. Irregularity on bird’s nest metaphor is shown better in section plan. Conceptual thinking by section integrating various parameters requires dominant understanding toward structural context. Design context is a pavilion at Nansha Bird Park, Guangzhou, China. The presence of the pavilion should not interfere bird's habitat. Design purpose is making a pavilion that camouflage with minimum interruption toward site. Design approach applies metaphor technique. Metaphor utilizes natural shape (biomimicry) of bird’s nest as nest for humans and birds. By cutting the pavilion into half, the structural complexity of bamboo construction can be shown clearly. Form finding process is done by digital technology and parametric design to achieve optimal form from desired metaphor. Site contextuality is responded specifically by the utilization of bamboo material and construction. Structural system utilizes interwoven bamboo layers to shape monocoque structure with vector-active system. Exploration is done by Rhino 5 and Grasshopper application. Form exploration focuses on bamboo layers as pavilion's structure. Patterns by Grasshopper’s script are applied to each layer. The pavilion’s shape is derived from basic spherical shapes as a metaphor of bird's nest. The resulting shape is stretched to create more space and split in half to expose its structure. Pavilion design responds to site and climate by considering the relationship of function, material, and bamboo construction parameters. Limitation on parametric concepts makes optimization simulation problems have to be adjusted with constructability.
... The most preferred design software package for 3D modeling and parametric design is Rhinoceros and Grasshopper3d. Rhinoceros is a professional modeling software and Grasshopper is a plug-in for Rhinoceros which provides it with a visual programming environment that is used to define algorithms that automate tasks in Rhino (Apellániz & Vierlinger, 2022). ...
Article
Full-text available
In contemporary architectural Design, we speak of a parametric structural design. A design that integrates new functionalities crossed with the spatial geometry of objects. It has been considered structured because it optimizes combinations that integrate a minimum of materials and data to respond to functions, uses, and needs more adapted to a society in perpetual evolution. Parametric modelling allows the usability of new materials and the integration of new structures in a variety of design environments. This transdisciplinary research explores aspects of parametric modelling, a design method that creates digital models using algorithms and parameters. By focusing on the material and immaterial plurality of the designed space, this method enables the generation of complex and innovative forms that would be difficult to realize with traditional methods. Then, from a position that redefines the city as both a "medium" city and an "object" city, we explore the fields of application and novelties that are investing in the fields of architectural construction. We examine how parametric modelling can be used to create more sustainable and environmentally efficient buildings, using parametric processes, and optimizing the use of space. In this sense, our research will lead us to identify two aspects of parametric modelling: the conceptual parametric design aspect and the constructive parametric design aspect. Finally, the results of our research enable us to identify a design process that demonstrates the feasibility of using parametric modelling to generate viable, sustainable, and versatile spaces.
Article
Existing computational design tools for steel connection design predominantly employ a point-based design (PBD) approach, which requires iterative re-evaluation whenever there are changes in design specifications. This paper introduces a new framework that adopts a set-based design (SBD) approach, aiming to substantially reduce the iteration and time cost associated with steel connection design and rework. The framework integrates a component-set connection design model with a database storage and query-based data retrieval method. The first method enables the flexible and efficient generation of a large connection design space from all possible component combinations, and automated identification of valid connection configurations within it. The latter method allows for automated design space refinement from preference-based evaluation of connection design efficiency and high-speed comparison and selection of optimal connection designs. To evaluate the relative performance of SBD and PBD approaches, the framework is applied to a steel floor system design case study with 62 connections. Results showed that the SBD approach achieved near-instantaneous connection design automation, with a total execution time of fewer than 55 milliseconds, making it over 10 times faster than the corresponding PBD approach.
Article
Comparative analysis of two structural schemes for covering the car unloading station for one trip as part of the elevator complex for grain storage is considered in this paper. The first option is to use the same frame structures combined into a spatial scheme. The second option involves the structure with two types of frames and another approach to ensure lateral stiffness. Detailed descriptions of each structural scheme, their peculiarities, advantages and disadvantages are included in this paper. The stability and economic effects of each scheme are analyzed. This paper benefits engineers, designers and specialists in the field of construction and infrastructure operating in grain storage and logistics.
Conference Paper
Full-text available
This paper presents an approach for implementing life-cycle assessment (LCA) in the early design stages of a building project based on the new plugins for Rhino and Grasshopper of One Click LCA, which aims to contribute to fight climate change from within the construction industry. These new tools developed by Bollinger + Grohmann in collaboration with Bionova Ltd. combine the extensive environmental database of One Click LCA with a user-friendly interface and an object-oriented structure to provide parametric and holistic LCA within the environment Rhino + Grasshopper. A case-study of the implementation of this tool in the design phase of an office building complex in Berlin is also included to illustrate new possible workflows in the early design stages regarding comparison of embodied energy of design alternatives, automatic LCA from architectural and calculation models, optimization processes based on global warming potential (GWP) and environmental benchmarking.
Article
A graduate in architecture and urbanism from TU Delft, David Rutten works with software company Robert McNeel & Associates (RMN). The developer of Grasshopper®, he was recently awarded the ACADIA 2012 award for innovative research. The Galapagos plug-in, which Rutten has developed for Grasshopper®, implements two generic solvers (one using a genetic algorithm and one using a simulated annealing algorithm). A generic solver will find a solution to a problem that can be expressed in a mathematical way; however, as he explains here, while these solutions may not be exact, they will be very good.
Article
The Karamba plug-in developed by Clemens Preisinger in collaboration with Bollinger + Grohmann Engineers has been developed to predict the behaviour of structures under external loads. Intended to be used by architects rather than being solely confined to an engineering setting, it enables a seamless flow of data between structural and geometric models. Preisinger here describes the program's evolution and application.
KarambaIDEA download page
  • R Ajouz
Optimization in the architectural practice
  • J M Cichocka
  • W N Browne
  • E Rodriguez
The Politics of Parametricism. Digital Technologies In Architecture
  • M Poole
  • M Shvartzberg