Content uploaded by Katrin Frauenknecht
Author content
All content in this area was uploaded by Katrin Frauenknecht on Aug 06, 2022
Content may be subject to copyright.
Copyright:©2022Theauthor(s).ThisisanopenaccessarticledistributedunderthetermsoftheCreativeCommonsAttribution4.0InternationalLicense(https://creativecommons.org/licenses/by/4.0/),
whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited,alinktotheCreativeCommonslicenseisprovided,andanychanges
areindicated.TheCreativeCommonsPublicDomainDedicationwaiver(https://creativecommons.org/publicdomain/zero/1.0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
page1of32
Klammingeretal
Correspondingauthor:
FelixB.Kleine‐Borgmann∙DepartmentofOncology(DONC)∙84,ValFleur∙1526Luxembourg∙Luxembourg
felix.kleineborgmann@lih.lu
Submitted:31May2022∙Accepted:17July2022∙CopyeditandLayoutby:JerryLou∙Published:05August2022
Abstract
Keywords:Ramanspectroscopy,Neurooncology,Neurodegeneration,Neurosurgery,Neuropathology,Machinelearning
1SaarlandUniversityMedicalCenterandFacultyofMedicine,Homburg,Germany
2NationalCenterofPathology(NCP),Laboratoirenationaldesanté(LNS),Dudelange,Luxembourg
3LuxembourgCenterofNeuropathology(LCNP),Dudelange,Luxembourg
4LuxembourgCentreofSystemsBiomedicine(LCSB),UniversityofLuxembourg(UL),Esch‐sur‐Alzette,
Luxembourg
5DepartmentofCancerResearch(DoCR),LuxembourgInstituteofHealth(LIH),Luxembourg,Luxembourg
6DepartmentofLifeSciencesandMedicine(DLSM);UniversityofLuxembourg;Esch‐sur‐Alzette,Luxembourg
7FacultyofScience,TechnologyandMedicine(FSTM),UniversityofLuxembourg,Esch‐sur‐Alzette,Luxembourg
Inrecentyears,Ramanspectroscopyhasbeenmoreandmorefrequentlyappliedtoaddressresearchques‐
onsinneuroscience.Asanon‐destrucvetechniquebasedoninelascscaeringofphotons,itcanbeusedfor
awidespectrumofapplicaonsincludingneurooncologicaltumordiagnoscsoranalysisofmisfoldedprotein
aggregatesinvolvedin neurodegeneravediseases.Progressin the technicaldevelopmentofthis method al‐
lowsforanincreasinglydetailedanalysisofbiologicalsamplesandmaythereforeopennewfieldsofapplica‐
ons.The goal of our review is to providean introduconintoRaman scaering, itspraccalusage and also
commonlyassociatedpialls.Furthermore,intraoperaveassessmentoftumorrecurrenceusingRamanbased
histologyimages aswell as the search for non‐invasiveways of diagnosis inneurodegeneravediseases are
discussed.Someoftheapplicaonsmenonedheremayserveasabasisandpossiblysetthecourseforafu‐
tureuseofthe techniqueinclinicalpracce.Coveringabroadrangeof content, this overviewcanservenot
onlyasaquickandaccessiblereferencetoolbutalsoprovidemorein‐depthinformaononaspecificsubtopic
ofinterest.
FromResearchtoDiagnosticApplicationofRamanSpectroscopyin
Neurosciences:PastandPerspectives
Gilbert Georg Klamminger1,2,3, Katrin B.M. Frauenknecht2,3, Michel Mittelbronn2,3,4,5,6,7, Felix B. Kleine‐
Borgmann2,3,1,5
Review
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Introduction
As one special method of various vibraonal
spectroscopic techniques, Raman spectroscopy
(RS) has been an integral part in neuroscience re‐
searchforsomemenow,beitinneuro‐oncology
fortumorclassificaon1orforthebiochemicaldes‐
cripon of various protein aggregates in neurode‐
generavediseases2. Currentlyitismaking itsway
towardsa clinicalimplementaon3.Looking at the
numerousadvantagesofRS,thereasonsforanin‐
creaseduseinresearchareobvious:itenablesfast
and user‐friendly (easy to apply) analysis for the
purpose of ssue idenficaon (e.g., idenficaon
ofdifferentbrainregionsin three mice strains4)by
observedchangesinthevibraonalleveloftheun‐
derlying biochemical and molecular composion.
Compared to other advanced molecular techni‐
ques, reproducible results can be obtained with
few requirements regarding sample preparaon.
The insensivity to water molecules predesnes
thetechnologyforitsuseinabiomedicalcontext.
Todate,thevastmajorityofstudiesusingRa‐
manspectroscopy examine unprocessednave,or
frozen ssue/cells ‐ few publicaons make use of
formalin‐fixed or paraffin‐embedded (FFPE) ssue
becauseRaman measurementsremainchallenging
due to the strong contribuon of paraffin wax to
spectralintensity,thin specimens,andadisrupon
of the molecular integrity, which is related to the
preceding fixaon process. The long‐term archiva‐
bility and the large number of available samples,
however,suggestuseofRSFFPE ssue in patholo‐
gyisdesirable,e.g.,fortheanalysisoftumorhete‐
rogeneity, or idenficaon of very small tumor
fragments, which could escape diagnosc high
throughputofhistology samples.Thefollowing re‐
view and perspecve paper is divided into three
parts: a) the basics of RS and the most common
forms of its applicaon in medical research are
presented, b) the use of RS in selected neuros‐
cience disciplines is accentuated with the aim to
present different research quesons – but even
more importantly – the most interesng findings
discoveredwiththehelpofRS,c)afuture outlook
forpotenalapplicaonofRS inresearchbut also
inthe dailyclinical work isprovided.At this point,
the minireview by Payne et al.5 needs to be men‐
oned;itdescribesinaclearwaynot onlyapplica‐
ons ofRSin neuroscience, butalsosetsa special
focuson thetechnical aspectsand benefitsof ad‐
vanced spectroscopy‐based techniques depending
ontheparcularusecase.
Bycontrast,thefollowingworkplacesaspeci‐
al emphasis on topics that will inevitably become
relevant to the praccing spectroscopist at some
point, such as varying ssue sample requirements
in different clinical sengs (surgery department/
pathology department) or common data proces‐
sing methods, to name a few. Whenever it serves
expedienttheaenvereader shall bereferredto
addionalmorein‐depthreading.
Searchforrelevantliterature
A literature search (the search terms
“Raman”, “Raman spectroscopy” were each
combined alternately with the terms “brain”,
“neuro”, “neuroscience”, “brain tumor”, “tumor”,
“neurooncology”, “glioma”, “neurodegeneraon”,
“neurodegenerave disease”, “Alzheimer’s
disease”, “Parkinson’s disease”, “Hunngton”,
“amyotrophic lateral sclerosis”, “prion disease“,
”mulple sclerosis”, “myelin”, “demyelinaon”,
“stroke”“brainischemia”,“braininjury”,“muscular
diseases”, “brain infecons”, “meningis”,
“psychiatry”)wasperformed,andonlinedatabases
PubMed Central® and Google Scholar® were
browsed for relevant reviews and original arcles;
othertypes of literature, such as congress papers,
leers,commentse.g.,wereexcluded.Aersearch
results were idenfied, they were hand‐screened
for eligibility (inclusion criteria: employment of RS
on brain/peripheral nervous/muscle ssue, RS on
extracellular components/cells of the nervous/
muscularsystem,orRSinrelaontoneurological/
oncological/psychological disorders; exclusion
criteria: use of vibraonal spectroscopic
techniques otherthan RS) basedon tle/abstract.
Within the responsibility of the authors, the final
seleconofliteraturewasconductedbasedonthe
arclefulltext.Finally,associatedbibliographiesof
selectedpublicaonswere searchedfor addional
relevant sources that semancally met the search
criteria. Only English language literature was
considered – even though Japanese research
groups describe an employment of Raman
spectroscopyinratbrains,andhumanbrains/
page2of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
brain tumors as early as the 90s6–9. Although
references to historical developments are pointed
out whenever a contemplaon of the historical
context seemed valuable special focus is set on
literature of the years 2021 and 2022, reflecng
ongoing research projects/groups ‐ such as
spectroscopical examinaon of microglial changes
due to SARS‐Cov‐2 exposure10 ‐ using RS in
neuroscience.
PrincipleofRamanscatteringandge‐
neralspectrometersetup
The Raman effect is the process of inelasc
scaering of photons; this effect was first descri‐
bedin1928byC.V.Raman,whoexaminedthecha‐
racteriscs of scaered photons when applying a
lightsourceondifferentliquids11,12.Forhisdiscove‐
ry, the Indian physicist won the Nobel prize in
193013, but despite the discovery of the Raman
effectinthefirsthalfofthe21stcentury,ittookun‐
l late1960sbeforeit wasfirstused inabiomedi‐
calcontext14–17.
The interaconof incident lightwith a mole‐
cule leads to changes in the vibraonal state, so
thatthemoleculefallsintoanexcitedvirtualvibra‐
onal state. When returning to the ground state,
the largest amountof theincident photons is ela‐
scally scaered, which means that the energy of
thescaeredphotonisthesameasthatofthein‐
cidentphoton (=Rayleigh scaering). Only aminor
partofthe scaeredlightexperiencesachange in
its energy compared to the incident light; in fact
whenthemolecule endsupona differentstatein
comparison to the ground state, the photon is in‐
elascally scaered. Depending on the interacon
betweenthemoleculeandthephoton,inelascally
scaered lightcan havea higherenergy (an‐Sto‐
kes effect) or a lower energy (Stokes effect) than
the incident light, whereas in praccal applicaon
mainlyStokesscaerisaributedtoaresulngRa‐
man signal, due to its higher intensity.18 See
Figure1 foravisualizaonofthevibraonalstates
transions.
In order to be Raman‐acve as a molecule,
i.e.,toemitinelascRamanscaering,achangein
polarizability is required ‐ this already shows a
difference to a related and oen confused spec‐
troscopic technique, infrared spectroscopy, in
whichanabsorbedphotonleadstoachangeinthe
dipole moment19. Another phenomenon, also ba‐
sed on absorpon and oen observable as a dis‐
rupve factor in Raman measurements due to its
strongersignalis fluorescence;herethe molecule,
excitedby energyofabsorbedphotons,leavesthe
groundelectronicstateandistransferredtoa hig‐
her electronic state ‐ as soon as it returns to the
groundstate,energy isre‐emiedas fluorescence
light20.
The interacon of photons with their target
molecules resulng in an inelasc Raman scae‐
ringwithadisnctenergydifferencereflectsspeci‐
ficchemical bondsand constuons. Thisspectral
fingerprint can indicate the identy of the target
molecule.A spectrumcan thereforebe definedas
a representaonof the intensity values (based on
the degree of change in polarizability) and the
differing frequencies (Raman shi) in a func‐
on18,20. The x‐axis displays the Raman shi in the
unitwavenumbercm‐1,therebythewavenumberis
reciprocaltothewavelengthandthus directly pro‐
poronalto photonenergy19.Theconvenonalex‐
page3of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
Figure 1. Occurring opcal phenomena when irradiang a
biologicalsamplewithaphotonsource(laser).
Le: Vibraonal states (v0, v1, v2) involved in Rayleigh and
Raman scaering. In case of elasc scaering (Raleigh
scaering), incoming photons temporarily change the
vibraonal state of a molecule ‐ aer this excitaon, the
moleculereturnsbacktotheinialvibraonalstate(v0).Inthe
caseof StokesRamanscaering,amoleculegainsenergy due
to the excitaon process and finally ends up in a higher
vibraonalstate(it rises fromv0tov1)–the scaered photon
has lower energy than the incident light. In An‐Stokes
scaering the molecule ends up on a lower vibraonal state
aerexcitaoncomparedtothegroundstate(itfallsfromv1to
v0)–therefore,thescaeredphotongainsenergy.
Right: In contrast, the phenomenon of fluorescence occurs
when a molecule absorbs light and thus is temporarily
transferredtoahigherelectronicstate(v’0,v’1,v’2).
perimentalapplicaonoftheprocessusingthepu‐
re Raman effect is so the called Spontaneous Ra‐
man Scaering (SpRS). Addionally, there are
several derivave methods allowing, for example,
scaering with enhanced signal intensity or redu‐
ced background noise, thus lending themselves to
differentapplicaonssuchasRamanImaging (e.g.,
bycoherentRamanspectroscopy).Table1givesan
overviewofthetechnicalbackgroundandadvanta‐
ges of commonly used variants of RS in neuros‐
cience. For a more detailed insight into the
theorecalaspectsofRStheinterestedreadermay
refertoCialla‐Mayetal.21,whoprovidesacompre‐
hensiveoverviewin thebook“Micro‐Raman Spec‐
troscopy:Theory andApplicaon” by Poppetal.22.
Addionally,Huetal.23,Shietal.24andEvansetal.
25 give a good overview about smulated Raman
spectroscopy (SRS) and coherent an‐Stokes Ra‐
man scaering (CARS); Zheng et al.26 wrote an in‐
strucve review about surface‐enhanced Raman
scaering(SERS).
Theexactstructure of aRaman spectrometer
differs depending on the manufacturer and the
technology used. Only general components and
theirfunconarediscussedbelow;addionalcom‐
ponentssuchasanaddionallaseroraspecialRa‐
man substrate are commonly required in
spectrometer setups of advanced Raman techni‐
ques(Table1).With a focus lens,emied photons
of a laser source are focused on the sample, and
aer interacon with the sample both the elasc
and the inelasc scaered photons are collected
by a collecng lens. The reflected and elascally
scaered light is then separated from the remai‐
ninglight,typicallybyadichroicmirror. A prism or
diffracon grang spaally separates the light ac‐
cording to wavelength, leading it to a detecon
system ‐ a photo paper was employed in the
classicalsetup‐eithersimultaneouslyonacharge‐
coupleddevice(CCD)orthroughamonochromator
onaphotomulpliertube(PMT)(Figure2).
As excitaon source, typically lasers, is used
wherethemannerofphotongeneraonaswellas
thewavelengthdiffer.Commonlyemployedexcita‐
on wavelengths within the biomedical field are
532nm, 785nm, 830nm, or 1064nm ‐ for praccal
applicaonspecificeffectsonthessuetypeofin‐
terestaswellaspotenallyinducedbackgroundsi‐
gnalsmustbeconsideredindividuallyandadapted
according to the experimental setup27. Most em‐
ployed lasers nowadays are diode lasers;w ith the
advantageof portability and favorableenergy effi‐
ciency, they have replaced the gas‐based lasers
(helium neon laser, argon‐ion laser) that were
oenusedinthepast.Thetypeofprotonemission
can be divided into connuous‐wave lasers and
pulsed lasers; the former being more common in
SpRSandthelaerbeingnecessaryinSRS18,28.Itis
necessary to bundle photons both in the suitable
focuson thesample(focus lens)andtocollectthe
scaeredphotons(collecnglens)aerinteracon
with the sample. Next, Raleigh scaered photons
arefilteredby adichroic mirror andseparatedac‐
cordingto their wavelengthusingadiffracongra‐
ng;dependingonthesamplingaperture(exitslits/
pinholes) within the setup, a certain number of
photonsaredetectedinafinalstepbythesensi‐
ve detecon system. While the classical “scanning
spectrometer” employs a rotatable grid concen‐
trangthephotonsonanarrowexitslitandapho‐
tomulplier tubebehind detecng RS,modern set
ups usually use a CCD detector. This mulchannel
wayofphotondetecon(amulchannelarraychip
consisngofseveralpixels)allowsforsimultaneous
registraon and display of all photons, i.e., the
whole Raman spectra18,28,29. Regular wavelength
calibraon(processoftransferringpixelhitsonthe
CCDdetectortodisnctdisplayedwavenumbers)is
recommendedtoreceivereproduciblespectraover
theenreduraonoftheexperiment28.
page4of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
Figure2. Schemacandsimplifiedrepresentaonofa Raman
spectrometersetup.
Raman spectra can be employed in various
ways.Inaddiontothepossibilityofusingthemas
raw spectra primarily for the idenficaon of bio‐
chemicalcomponentsof a sample,methodscalled
Raman microscopy/imaging use the assignment of
colors to Raman bands (only a limited number of
wavenumbers is acquired or analyzed)30 over a
scannedsampletogeneratecontrast.Whenexten‐
ded to focusing through the depth of the sample,
three‐dimensional Raman images can be built16.
Raman microscopy/imaging techniques31,32 and
computaonal image generaon algorithms have
been advanced to generate Raman images of va‐
rious brain pathologies, e.g., gliomas, stroke and
demyelinaon25 or to image metabolism in the
brain33–35.Usingthisapproachofdatavisualizaon,
itis possibleto obtaina similarlook totradional
H&E‐stained slides on unstained specimen, which
enables histopathological diagnosis36. In Raman
mapping, the whole Raman spectrum for each
pointofthedesiredareaofthespecimenisacqui‐
red(either pointby point orwith anexcitaonla‐
ser forming a line on the sample and measuring
simultaneously); using computaonal analysis
aerwards, a visualizaon of differences in the
spectralproperesofdatapointsisachieved30.
Peakassignment
Raman peaks may occur at first sight in va‐
riousformswithdifferentcharacteriscs. Inaddi‐
ontocertain singlepeaks that appearnarrowand
canbeassignedtoexactlyonecorrespondingfunc‐
onalgroup,an addive effectofseveraladjacent
Ramanacvemoleculesinthesamplecanalsore‐
sult in broad peaks. Furthermore, the presence of
several contribung components, and thus neigh‐
bordependent changesin thevibraonalmode in
onespecimen, mayaffect theactual peak in com‐
parisontoanisolatedmeasurement20.Theapplica‐
on of RS in the biomedical context oen pays
special aenon of the regions within the wave‐
numbers 400‐2000cm‐1 and 2700‐3500cm‐1. These
regions,oen referredtoas "biologicalfingerprint
regions" in the literature, are characterized by a
high proporon of Raman peaks arriving from
funconal groups of a typical biological speci‐
men28.AnintroducontotheuseofRSforidenfi‐
caon ofdifferentmolecular funconalgroupscan
be found in Pezzo et al.37 (RS and cell biology) ,
Czamaraet al.38 (RS and lipids), Rygula etal.39 (RS
andproteins)andWiercigrochetal.40 (RS andcar‐
bohydrates).
ByusingRSonbiomoleculessuchasproteins,
itisnotonlypossibletoidenfymolecularfunco‐
nalgroupsi.e.,differenatebetweendifferentami‐
no acids/proteins, but also spaal confirmaons
can be detected since the Raman signal is influ‐
enced by aromac/non‐aromac side chains and
thebackboneofaprotein.Disnctvibraonsresult
in certain amide bands (Amide band A, B, I‐VII)41;
for example carbonyl stretching modes, N–H ben‐
ding or C–N stretching results in the widely used
AmidI(1600‐1690cm−1),AmidII(1480‐1580cm‐1)
and Amid III peaks (1230‐1300 cm−1). They allow
further examinaon of the pepde secondary
structure. In larger unordered protein measure‐
mentsaprecisepeakaribuonmaynotbepossi‐
bledueitslargenumberofcontributors18,39,42–44.
Lipids are ubiquitous in biological specimen,
asthey form themembranes of cellsand organel‐
les. Depending on the literature, spectral proper‐
es resulng mainly from the hydrocarbon chain
andpartly fromthepolar headgroup can beassi‐
gned to the regions 1050‐1200cm‐1 (C‐C stret‐
ching), 1250‐1300cm‐1 and 1400‐1600cm‐1 (CH2,
CH3 group acvity) or also to the regions below
600cm‐1 and between 1000‐1150 cm‐1 (opposite
moonofcarbonatomsofthehydrocarbonchain).
Consistently,an area within the high wavenumber
region2700‐3500cm‐1(somemessolelytherange
between2800‐3100cm‐1isconsideredinthelitera‐
ture) is reported and aributed in a large part to
stretchingofC‐Hgroups.In‐depthanalyzesofpeak
intensityand distribuon inthe high wavenumber
regionallowconclusionstobedrawnaboutthesa‐
turaon status of fayacidsand the aliphac/aro‐
mac components of steroids18,38,45,46. An
interesng contribuon at this point may come
fromKraetal.45,whoin2005measuredandcha‐
racterized twelve brain lipids and further related
occurringpeakstotheirfunconalgroupsandPez‐
zo et al.47, who employed RS to visualize single
(phospho‐)lipidsinneuronalcells.
Carbohydrates and underlying C‐C and C‐H
structuresgiverisetobondsinvariousareaswithin
the Raman spectrum18. For a long me, minor
page6of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
aenonwaspaidto the invesgaonofcarbohy‐
drates.Althoughspecific peak assignmentispossi‐
ble,in comparisonto proteinand lipids itremains
lessspecific40.
About 30 Raman peaks of nucleodes, distri‐
buted over severalareas withinthe spectrum, are
mostly aributed due to purine/pyrimidine ring
modes and phosphate groups (especially peaks
nextto800cm‐1and1100cm‐1).Theyareusefulfor
characterizaon of inter alia DNA, tRNA, and
nucleicacid‐proteincomplexes18,48.
Spectroscopicexaminaonnotonlyallowsfor
examinaon of these specific funconal groups
enumerated above, but also to display their inter‐
acons, such as protein‐protein / protein‐lipid in‐
teracon.Theirchanges inspectralpropertyunder
different condions can also be measured17. On
that note, Lee et al.49 have even managed to use
SRS as a tool in neurophysiology when examining
thespectral properesof neuronalmembranepo‐
tenal.
AlthoughspecificRamanpeakshavebeende‐
scribed for various molecules50–56, one should be
cauous when actually assigning peaks to one's
ownsample.Whilepeaksmaybecharacteriscfor
acertainbiochemicalcompound,theycanalsoari‐
sefromdifferentsources;viz they are not specific.
Inordertocorrectlyassignpeaks/detectthemwi‐
thin a spectrum, itis essenal to reducepotenal
confounders within the sample or the experimen‐
talset‐uppre/post‐experimentally.Apotenalway
toassigndisnctpeakswithhighevidenceisdirect
observaon: Targeted manipulaon of a sample
canhelptoconfirmthesourceofapeak.
Thevibrationalspectroscopicexperi‐
mentalsetup
RSisafast,non‐destrucve,userfriendly,and
easytoapplyontoolprovidingmolecularinforma‐
on with minimal sample preparaon require‐
ments in a reproducible manner. However, a
roune use of RS‐base d tools in neuroscience has
notyetbeen established.Regardlessofthe nume‐
rousadvantagescertainlimitaonshavetobecon‐
sidered not only pre‐experimentally, but also
duringimplementaonofanexperimentandaer‐
wards when visualizing and processing the obtai‐
neddata.
Theoccurrence ofthe physicallyrelatedphe‐
nomenon of (auto‐)fluorescence (photons of the
pump beam are absorbed by molecules of the
sample which are raisedto anotherenergy level‐
whenreturningtothe basicenergylevelaphoton
isemied,see also Figure1)is regularly observed
andtheexpectedintensityinthiscaseiswellabo‐
ve the intensity of the Raman signals. To reduce
wavelength‐ dependent autofluorescence, a dis‐
nct wavelength of the excitaon source can be
selected,orSERScanbeused57,58.Althoughincon‐
trast to other sophiscated laboratory techniques
(e.g.,genec/epigenectesng)therearelessre‐
quirements for a correctly prepared Raman sam‐
ple.Afewthingsneedtobeconsideredinorderto
avoidtheoccurrenceofspectral background noise
and spectral contaminaon: Samples mustbe pla‐
cedonarobustRamansubstratesothattheselec‐
ted measuring point and the focus remain stable.
Dependingontheexperimentalquesonaswellas
the expected background noise and the costs, va‐
riousRamansubstratesareavailable.Inaddionto
goldoraluminum‐coatedglassslides(asafuncon
oftheexcitaonwavelengthglassaloneexhibitsa
strong and broad fluorescence background signal
inthe“biologicalfingerprintregion”),specialslides
(low‐eslides,CaF2slides,quartzslides)canbecon‐
sidered28.Thesearecharacterizedbyalowspectral
backgroundorsinglepeakaribuon. Fullwoodet
al.59 and Kerr et al.60 examined the effect of sub‐
strate choice for spectral histopathology in more
detail.IthasbeenshownthatCaF2slides(exclusive
peak at 321cm‐1 or 322cm‐1 respecvely, depen‐
dingontheliterature)61havetheleastinfluenceon
thespectralbackgroundincomparisontolow‐Esli‐
des and Spectrosil slides. The single background
peakcaneitherbeignoredduetoitsirrelevantoc‐
currence out of the important range of biological
componentswithintheRamanspectrum,orcanbe
subtracted via computaonal analysis aerwards.
As a low‐cost alternave aluminum foil can be
used,whichitselfdoesnotgenerateanysignificant
backgroundnoise62–64.
Furthermore, the sample condion (most
commonly nave/frozen or formalin‐fixed) needs
to be considered pre‐experimentally. Although
page7of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page8of32
fresh ssue samples allow for a straighorward
aribuon of Raman peaks to underlying bioche‐
mical components, they must be processed and
analyzedwithinacertainmewindowandcannot
be stored for a longer period of me. When wor‐
king with fresh ssue, dehydraon and associated
denaturaon of funconal biochemical groups
need to be prevented e.g., by keeping the speci‐
men hydrated19,65. As an alternave, Raman mea‐
surements of frozen biological samples allow
longerstorageandatthesamemesllgiveanin‐
sightinthebiochemicalcomposionofthebiologi‐
calsample.Nevertheless,itshouldbenotedthata
reducon in certainpeakintensiesandsignificant
alteraon of Ramansignalin comparison tonave
ssue were described when using frozen secons
66,67.
The handling of formalin‐fixed, methanol‐fi‐
xed,orFFPEsamplesisrouneduringthepatholo‐
gical workflow; even though samples allow long
archivability and are broadly available,t his way of
fixaondamagesthebiologicalRamanspectrumto
acertaindegree since thessueundergoesanag‐
gressive chemical procedure68–72. Both formalin
and methanol fixaon reproducibly alter spectral
ssueproperes and affectRamanbandsassigned
tolipids,proteins,and nucleicacids73. Despitefor‐
malin‐inducedbiochemicalchanges such asforma‐
on of cross‐links in the structure of the amino
acids, spectroscopic assessment and classificaon
of formalin‐fixed biological ssue is possible66; in
contrast,methanol‐fixaonwas reported topoten‐
ally hamper the detecon of ssue malignan‐
cy72,74.
The prominent spectrum of bound paraffin
wax is reflected in certain points at 1063, 1133,
1296and 1441cm‐1, whichmakea manualor digi‐
taldewaxingprocessnecessaryandrequireacare‐
fulinterpretaonoftheobtainedspectra75.Several
condions (aggressive chemical processing, requi‐
redchoiceof specialsubstrateandthefineness of
the ssue) hamper spectroscopic examinaon
whenemployingRSonFFPEssueinthepathology
department, although spaal orientaon on the
sample and proper idenficaon of certain areas
areapotenaladvantage.
IntheliteraturedifferentapproachesusedRS
onprocessedssue;inanycase they allfacesimi‐
lardifficules. Huang et al.68 described theeffects
of formalin fixaon on RS of cancerous human
bronchial ssue, whereas Draux et al.71 described
the influence of formalin and air drying on single
cancer cells and aributed spectral changes to
affecon of nucleic acids and proteins. Even
though not only a loss of the original chemical
composion but also potenal contaminaon due
tothe process offormalin‐fixaon inmurine brain
ssuewas determined byHacke etal.76, several
studies proposed formalin fixaon as a sufficient
and favorable method for subsequent spectrosco‐
picdiagnosc77,78.Asaproofofconcept,Stefanakis
et al.79 demonstrated the feasibility of vibraonal
spectroscopyon formalin‐fixedmalignantbrains‐
sue. Employing vibraonal spectroscopy on FFPE
ssue,aneffectonthelipidcontentduetothede‐
waxingprocesswasreported;nevertheless,Raman
bandsrelatedtocellular andextracellularproteins
weresuccessfullymeasured80.Gaifulinaandcollea‐
gues81 examined large intesne FFPE ssue from
rats and analyzed biochemical signals obtained
with label‐free RS in the processed ssue. Other
groups examined FFPE ssue of rectal cancer to
predict radiotherapy response82, to map/analyze
cervicalssue83,84,oremployed RS onhealthyand
malignantbreast85–88/ovarian89/prostac90 ssuein
variousfixaonstates.Foragoodoverviewonthe
influenceof ssue processing onbiological Raman
spectra the reader may refer to the work from
Faoláinetal.66.
During spectroscopic examinaon, back‐
groundnoiseduetoa nearby photon source(e.g.,
room light) should be considered and reduced by
performingtheRamanmeasurementinadarkened
areaorwithdimmedoperangroomlight91–94.Ad‐
dional methods of spectra quality control during
intraoperave measurement have also been pro‐
posed95,96.By ensuringthat thelaser sengs (wa‐
velength and power, duraon of acquision) are
opmized for the examined sample, the best si‐
gnal‐to‐noiseraocanbedetermined,andthermal
ssuedecomposion can be prevented.This form
ofsampledestruconcanbedetectedbyaburned
areawheretheformerfocusareaofthelaserislo‐
cated,as wellas bythe presence ofan addional
carbon band at approx. 1500cm‐1 in the Raman
spectrum28.
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page9of32
Dataprocessingandcomputational
analysis
Aer the measurement, the large amount of
data97shouldbe sorted andstoredin a structured
manner (data annotaon) to address the research
queson properly. It is good pracce to start the
data processing with an inial visualizaon of the
data.Inthiswaycleardeviaonsfromanexpected
result such as strong contaminaon or cosmic ray
arfacts (randomly occurring electromagnec ra‐
diaon) andhot pixels(overresponseofa pixelon
the CCD detector to an incoming photon) can be
recognized and corrected28,98,99. For a more detai‐
led reading on potenal anomalies and arfacts
thatmayoccur,seeBowieetal.100.
During data preprocessing, a baseline correc‐
on canbe appliedtothe datatominimalizeresi‐
dualbackgroundsignalandautofluorescence101,102;
a common way to model and subtract the back‐
ground noise to obtain the intrinsic sample spec‐
trum103,104. Addionally, a common way to further
reducethenoiseinthedataisasmoothingtechni‐
que, such as Savitzky‐Golay filtering28,105,106. Both
of the above‐menoned methods must not be
usedwithoutpropercauonasthereisalwaysthe
riskof producingarfacts,as well as equalizing si‐
gnificant data points. In order to correct confoun‐
ders that result from the experiment setup itself
(e.g., slightly different dryness or thickness of the
specimens) data normalizaon methods, such as
min‐max normalizaon or z‐normalizaon, usually
precede the actual data analysis107. Specialized
spectroscopy soware are commercially available
and enable even the inexperienced spectroscopist
touse the acquired data ina structured andcom‐
prehensivemanner108.
Duetothelargeamountofdata,severaldata
reducon methods are used for quick explorave
purposes,aboveallPCA(principalcomponentana‐
lysis)iswidelyemployed.Thisunsupervisedcluste‐
ringtechnique canbe used to determineprincipal
componentsin a big data set, which explainsa si‐
gnificant part of the variance and reduces noi‐
se41,109.
In the last step of computaonal analysis,
classificaon algorithms and machine learning
techniques110,111arecommonlyusedtoclassifythe
spectraldata eitheraccording to pre‐experimental
definedgroups(supervisedclustering)oraccording
tonewgroupsbasedonsimilariesinspectralpro‐
peres(unsupervisedclustering)112.
Awidelyusedtechniqueinunsupervisedclus‐
tering is hierarchical cluster analysis (HCA), in
whichthedataistransferredtoahigher‐dimensio‐
nalspace,clusterinacertainproximitytooneano‐
ther based on similar properes. A number of
cluster variables can be specified individually,
which forms the selected number of similar clus‐
ters103.Unsupervised clusteringisbeneficialforex‐
ploratory research quesons since no prior
knowledge of possible group properes is requi‐
red28.
Commonmethodsusedforsupervisedcluste‐
ringaretrees/randomforestclassificaons(several
decisiontreesinarow)orsupportvectormachines
(search for a hyperplane to disnguish between
classes)91. The groups determined a priori are re‐
ferredtoas "classes" andthe goldstandardhisto‐
pathologyoenservesasgroundtruth.Ingeneral,
thealgorithmistrainedwithatrainingdatasetand
tested with an external validaon data set aer‐
wards.Toavoidoverfing(capabilityofgooddiffe‐
renaon only on the specific training data set) a
validaonofperformancee.g.,k‐foldcrossvalida‐
on or holdout validaon is performed, and metri‐
ces of algorithm performance (e.g., sensivity,
specificity, f1‐score, accuracy, AUROC/AUPR value)
are calculated aerwards based on its output113.
Ralbovskyand colleaguesprovidedan overviewof
machinelearningalgorithmsand their funconsin
Ramanbasedcancerdetecon112.
RSinNeurooncology
Withagrowingnumberofpublicaons in the
lastyears(Zhangetal.114andBanerjeeetal.115de‐
scribed a change in spectroscopic properes of
gliomacellsincomparison to astrocytes already in
the mid‐2000s), the neuro‐oncological field is one
ofthelargestareasofresearchonRS,inwhichthe
therapeucal balancing act betweenmaximum re‐
seconof normal‐brain‐resemblingtumorous resi‐
dues and minimal surgical disrupon of healthy
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page10of32
brainfunconsprovesparcularlydifficult.
On the subject of RS in (neuro)oncology re‐
views by Auner et al.20 and Hollon et al.117 give a
comprehensive introducon to the respecve to‐
pic;forfurtherreadingonimplicaonsandcurrent
progressofRSinoncologyseealsoSantosetal.117.
Atfirstsight, use ofthisspectroscopictechni‐
quemainlyapplytotwomainresearchfocuses:on
the one hand a spectroscopic detecon of mali‐
gnancy118,119 which in a next steps allows precise,
accurate diagnosis of the tumor ent y intraopera‐
vely withouthavingtowait forfurther tradional
ssueprocessing (pathologicaldiagnosis onfrozen
secons)120,121, and on the other hand real me
surgeryguidance i.e., live feedbackintraoperave‐
ly122,123 aiming for maximal tumor resecon124–126.
Both topics merge and evolve at a certain point;
this may result in new research quesons, e.g.,
whenaimingtodeterminetumorinfiltraonzone/
resecon margin or when aiming for detecon of
tumor genecs on various states of tumor ssue.
Moreover,alsobasicresearchquesonsin oncolo‐
gycanbeaddressedwiththis vibraonalspectros‐
copic technique e.g., monitoring lipotoxicity in
glioblastoma cells127, observing cell response of
U251glioblastomacellsaerinduced apoptosis128,
examining the glycosylaon paern of proteins in
medulloblastoma129, or observaon of redox state
of mitochondrial cytochromes130, just to name a
few. Most research groups use SpRS20 as an easy
toapply,labelfreemethod.MoreadvancedRaman
techniques in neurooncology131are usedpredomi‐
nantlyinanimal models132–134–where Surface en‐
hanced resonant Raman spectroscopy (SERRS)
detecon of tumor margins135 has shown progno‐
sc benefits136,orCARSwas employedfordetec‐
on of different human brain tumors in a mouse
model137.
RSfordetectionoftumorgroup,ge‐
neticalterationandhistomorphology
RS can disnguish between grey and white
maer and (partly)otherbrainregionssuchas ce‐
rebellum, striatum, basal forebrain ‐ both macros‐
copically and on cellular resoluon4,138–146,147.
Interesngly,oneanalysisofthemousebrainusing
SERS revealed a different spectral fingerprint and
thus also different biochemical composion bet‐
ween le and right hemisphere148. Spectroscopi‐
callyfeasiblediscriminaonbetweengliomassue
andbrainssuewasreportedinseveralstudies3,149–
153 as well as between dura mater and meningio‐
ma, which was demonstrated to be based in part
onpeakscorrespondingtocollagenandonthehig‐
herlipidcontentwithin tumorous ssue154–156.Be‐
side these binary classificaon models, several
studies showed the potenal of RS aiming for a
mulc lass classificaon to differenate various tu‐
moreneswithinoneclassifier119,157–166ortode‐
terminetheprimarysiteofmetastasis167,168.
Using Raman mapping/imaging for brain tu‐
morvisualizaon116,169,evenspecial morphological
features of tumors (e.g., necrosis in glioblastoma,
celldensityorindividualcellnuclei)couldbeiden‐
fied170–172. Even though areas of tumor necrosis
are typically characterized by an increased pre‐
sence of proteins such as phenylalanine (around
1032cm‐1,amongothers)aswellascholesteroles‐
ters(1739cm‐1)171,173,one groupproposedtwodis‐
nct spectral properes within the necrosis of
glioblastomacells:“highlynecroc”,showinganin‐
creaseinplasmaproteinsand“peri‐necroc”,exhi‐
bing a higher lipid content174. The
histopathological heterogeneity of tumor ssue
samples was addressed in fresh and frozen brain
secons, although possible confusion between
different tumor components (i.e., tumor hemor‐
rhageandnecrosis)isdescribed36,173.The genomic
heterogeneity in glioblastoma has also been suc‐
cessfullyaddressed175.Otherapproachesmakeuse
of an alternave advanced Raman technique na‐
medSmulatedRamanhistology176–179(SRH),whe‐
re disnct wavenumbers are used for image
acquisionandvirtualH&E‐likeimagesaregenera‐
ted aer computaonal processing. With this ap‐
proach in combinaon with deep convoluonal
neural networks, amongst others Hollon et al. as‐
sessed (pediatric180) brain tumors intraoperave‐
ly1,181,182. In the scope of this imaging approach,
also a tradional pathological diagnosis based on
digital Raman histology slides seems feasible183–
185.
RS could be used to idenfy brain edema186,
tumorrecurrence187ortumormargins188–194butal‐
sotumorinfiltraonzones.195,196Ingeneral,infiltra‐
ve glioma cells showed significant spectral
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page11of32
differences in the regions of phenylalanine and
Amide III (around 1030cm‐1 and 1230‐1300cm−1),
aswell as the region assignedto C‐C stretching li‐
pids and nucleodes (around 1050‐1100cm‐1) –
justtolistafewwavenumbersofinterestexempla‐
rily197.Jietal.196reportthecellularitywithinasam‐
pleaswellasthedensityofaxonsandtheraoof
lipidandproteincontentsasthebasisforthediffe‐
rence in spectral properes. Even single tumor
cells198were detectable using RS, somethingalter‐
nave imagingmethodsstruggle with. RSwasalso
applied to observe glioblastoma tumor evolu‐
on199,to determine the molecularsubtype ofglio‐
blastoma200, and to give insight in glioma
biochemistry201.
RSwasshowntobesuperiorindifferenaon
of brain tumor and glioblastoma in comparison to
5‐ALA‐induced fluorescence202,203, and capable to
detect IDH mutaon s in gliomas – inter alia chan‐
ges in the spectral protein profile are consistently
reportedincaseofIDHmutaon204–206.Italsosho‐
weddiagnoscvalueintumordiscriminaonwhen
measuringsmall extracellularvesicles207, or poten‐
al when tracking/detecngmetabolicchanges208–
210in braintumors/cancercells,aswellasdrugde‐
livery mechanisms211 and post‐therapeuc chan‐
ges212inglioblastomacells.
Spectroscopicclassificaonofdifferentgrades
ofbraintumors is possible213.Zhou etal.214 disn‐
guishedbetween differentWHO gradesofgliomas
using Raman bands of tryptophane (around
1588cm−1, among others) and carotenoids
(1008cm−1, 1157cm−1, 1521cm−1, 2320cm−1, and
2667cm−1) as well as the peak intensity rao bet‐
ween proteins and lipids in the high wavenumber
region (2934cm−1/2885cm−1). The group of Morais
et al.215 and Lilo et al.216 differenated between
differentgradesofmeningiomas.Zhangetal.217as‐
sociatedan intensityraointhehighwavenumber
region with different meningioma grades. While
gliomas/neuroepithelial tumors and meningiomas
have been described218 and morpho‐chemically
analyzed219,220 extensively221, some work also exist
on neuroblastomas. One group differenated bet‐
weendifferentneuralcrest‐derivedtumorsinfresh
and frozen ssue222,223, and Ricciardi et al.224 used
RSto examinechangesinthebiochemistryofneu‐
roblastoma cells aer exposure to radiaon. Me‐
dulloblastomas225, biopsies of the pituitary
gland209,226,seeds of renoblastomas227, andcarci‐
noma metastases228 have been spectroscopically
studiedaswell.
Early,intraoperative,andneuropa‐
thologicaldiagnosticsusingRS
Perioperave ex vivo ssue assessments al‐
low for direct and early treatment decision, e.g.,
when examining smear brain tumor samples94 or
discriminang between primary CNS (central ner‐
vous system) lymphoma and glioblastoma based
on biopsies229. RS can also be applied intraopera‐
vely (in vivo) ‐ recently even in dogs230 ‐ using a
hand‐held probe for tumor classificaon231–237,
where a real‐me auditory feedback mechanism
has been proposed to guide the neurosurgeon238.
Transcranial RS, leaving the skull intact, has been
proposedanddemonstratedinamousemodel239.
Using opcal spectroscopy applied on FFPE
ssue,Devpura et al.240and Gajjaret al.159exami‐
nedapossibleapplicaonofRStovariousbraintu‐
morsalreadyin 2012/2013. Shortly aer,Fulwood
etal.241disnguishedbetweenglioblastoma,meta‐
stasesandnormalbrainusingimmersionRSonFF‐
PE samples. Livermore et al.204 have been able to
carryouttheabove‐menonedanalysisoftheIDH
mutaon deteconinglioblastomatumorsalsoon
FFPEssue.Differenthistological areas can bedis‐
nguished in glioblastoma in FFPE ssue, with a
sound separability between the peritumoral area
andtheareaofnecrosis242.
To enable early and non‐invasive cancer dia‐
gnosis, some approaches aim for idenficaon of
meningioma243andglioma244paentsbasedonse‐
rumsamples andresulngspectroscopicbehavior.
UsingRSasanaddivetechnique,LeResteetal.245
combinespectroscopicdataandtranscriptomicda‐
ta for machine learning analyses on glioblastoma
subtypesandrelatedclinicaloutcomes.
RSinNeurodegenerativeDiseases
Misfolded proteins and aggregates in various
diseases246–248,e.g., Alzheimer's(tauand amyloid),
Parkinson's (alpha‐synuclein), Hunngton's (poly‐
glutamine),are in generalaccessible to vibraonal
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page12of32
spectroscopictechniques249.Usageofthesetechni‐
ques ranges from tracking and characterizaon of
misfolded proteins41, to potenal new diagnosc
methods250,251,especiallyin biofluids252–254. Studies
on the pathological hallmarks of neurodegenera‐
vediseasesused avarietyof RS techniques;most
frequently employed techniques are SERS, TERS
(Tip‐enhanced Raman spectroscopy), as well as
DUVRR255,256(deepUVresonance Raman),wherea
wavelengthinthe rangeofUV (200nm)is usedas
excitaonsourcewhich resultsinanincreased in‐
tensity. Another common technique named ROA
(Ramanopcalacvity)makesuse oftheprinciple
that a chiral molecule scaers le and right han‐
ded polarized photons at different intensies and
soisparcularly useful to analyzeproteinaggrega‐
tes257,258. Furthermore, also IR (infrared)‐spectros‐
copyand related/modifiedvibraonalmethods are
common, and a combinaon of techniques could
lead to an increased diagnosc ability and gain of
knowledge2,259–262. Several ways of increasing the
detectabilityofasample via RShavegainedpopu‐
larity in the neurodegenerave field. Bringing in a
labelled isotope into the backbone of a pepde
shiscertainamidbandsandenablesa demarca‐
onfromthe exisng amidebands emanang from
theunlabeled proteinsin thesample, althoughan
overlap of Raman peaks of interests may oc‐
cur263,264. Another similar approach integrates ex‐
ternal probes such as unnatural amino acids with
vibraonal potenal into the sample, which can
aerwards be traced by specific Raman peaks,
oen in the range between 1900‐2900cm‐1where
theinterferencewithotherpeaks of thespecimen
is minor264–266. For further reading, Devi et al.2
providesadetailedinsightintotheuseofRSinthe
fieldofneurodegeneravediseases.
Around 20 years ago convenonal RS was al‐
ready capable of disnguishing between AD brain
ssueandhealthycontrolbrainssue(in2022ma‐
chine learning algorithms are useful to do the sa‐
me267) and to determine the presence of
amyloid‐beta‐sheetsin senile plaques268–270. Short‐
ly aer, Raman signals of the hippocampus of AD
rats were proposed to aid diagnosis of AD271.
Kurouskietal.44giveanoverviewoftheapplicaon
ofRSin the courseofplaque formaonandstruc‐
ture; Wilkosz et al.41 provide a comprehensive list
ofwavenumbersassociatedwithproteinaggrega‐
on. Detailed examinaons of the (secondary)‐
structure of beta‐amyloid in various experimental
set ups have been carried out using DUVRR272–275
orROA44.Cunhaetal.276usedacombinaonofRa‐
man techniques for amyloidplaque characteriza‐
on.SERShasbeenusedtoidenfytauproteinand
(soluble) amyloid beta277,278, and to detect amylo‐
id‐beta1‐40monomersandamyloid‐beta1‐40fibrilsin
soluon279 as well as in brain ssue280. Aβ40 and
Aβ42281 were shown to be disnguishable. TERS
was used to characterize natural Aβ1‐42 fibrils and
idenfytoxicoligomericforms282,283.
RS was capable of visualizing amyloid in AD
brains post mortem and of displaying neuric
plaques and neurofibrillary tangles284 – even
though the laer findings were quesoned and
measurement of lipofuscin granulates instead of
plaques was proposed285 Raman imaging also de‐
termined the presence of hemoproteins in senile
plaques286 and allowed for reconstrucon of the
evoluon process of differenttypes of amyloid be‐
ta plaques287. Based on RS measurements, AD‐as‐
sociatedastrogliosis288andlipiddepositsinvicinity
of fibrillary plaques were idenfied and further
morphologicallydescribed289.
Beside the idenficaon of amyloid beta290–
292,forexampleinthesurroundingofneuronalspi‐
nes293,Ramanimaging294,295hasbeenusedtocom‐
pare the concentraon of Aβ in hippocampal
regions and eye lens ssue296 and to determine
cholesterol‐andsphingomyelin‐richstructuressur‐
rounding amyloid plaques, thought to represent
dystrophic neurites297. Another research group
used CARS to determinea higher content of lipid,
collagen and amyloid fibers in Alzheimer‐affected
brainsamples298.
Searching for biomarkers as an early diagno‐
sc toolinAD299–302, humantears303,saliva,304 ce‐
rebrospinalfluid305(differentstatesofamyloidbeta
confirmaons could be detected in cerebrospinal
fluid already in 2008306), renal imaging307 and
bloodsamples308–318havebeenevaluatedforapo‐
tenal diagnosis of AD using spectral differences
arriving from platelets319 or the concentraon of
theneurotransmiers Glutamate (GLU) and γ‐ami‐
nobutyric acid (GABA)320. Inthe courseof this ap‐
proach, it has been shown that corcal cataract
maynotbeasufficientpredictorofAD296. The de‐
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page13of32
tecon of neurotransmiers using RS has been
shownandfurtheranalyzed,byArdinietal.321,Lee
etal322,Moodyetal.323–325 (i.e. RSfordetecon of
neurotransmiersthroughtheskull),Caoetal.326/
Zhou et al.327 (neurotransmier detecon in se‐
rum), Ciubuc et al.328 (RS for dopamine detecon
andanalysis), Silwalet al.329 (dopamineand dopa‐
minetransporterinteracon), Manciuetal.330(do‐
pamine – serotonin interacon) and Shi et al.331
(quanficaonofnorepinephrine).
Inaddion,RSisalsosuitabletoexaminethe
interacon of beta‐amyloid with metal ions332–337.
Interesngly, detecon of tau335–338 and insulin342–
345hassofarbeenstudiedtoalesserextent;ozone
exposureas a knownrisk factorhasbeen foundto
lead to spectroscopically measurable changes of
thehippocampusinaratmodel346.
In Parkinson’s Disease (PD), a main focus of
theapplicaonof RS isthe characterizaon of the
secondary structure of alpha‐synuclein338,347–349 as
wellas theidenficaon of alpha‐synucleinaggre‐
gaons, feasible not only in the brain but also in
the gut350. Mensch et al.351 used ROA to examine
the spectral properes of α‐synuclein during tran‐
sion to its secondary structure. Another group
spectroscopically characterized the striatal extra‐
cellularmatrixin a PD mouse model352. Sinceearly
lossofdopaminergicneuronsisanearlychange in
paents with PD, differentapproachesaim forde‐
tecon of dopamine353–355, e.g., in striatum of mi‐
ce356, or in blood samples of paents with
anpsychoc drug‐induced Parkinsonism357. Other
efforts to establish early diagnosc tests for PD,
such as examinaon of erythrocytes and blood
coagulaoninPDpaents358,werecarriedoute.g.,
byCarlomagno etal.359 usingsaliva of PD paents
and Schipper et al.360 who combined RS and NIRS
(near infrared spectroscopy) to disnguish bet‐
ween blood samples of PD paents and a control
group through different spectroscopic properes
correlatedwithoxidavestress.Mammadovaetal.
361usedRSinaPDmousemodeltodetectpatholo‐
gical renal changes as a method to disnguish
betweenhealthyanddiseasedsamples.
AnalyzingperipheralnervousssueinALSmi‐
ceandautopsiesofpaentssufferingfromALS,Ti‐
an et al.362 showed that Raman imaging was
capable of visualizing anddetecng early patholo‐
gical changes. Different approaches disnguish
betweenaltered lipids and proteoglycans in spinal
cordssueofALS miceand healthycontrols363,or
testtheprognoscvalueofSERSinALSpaents364.
InaddiontothemanyapproachestodiagnoseAD
andPDpaentsbyRS,othersfocusonALSaswell.
Fordiagnoscpurposes, Zhang et al.365 used SERS
onplasmasamplestodisnguishbetweenALSpa‐
ents and a healthycontrol group; Morasso et al.
366proposedvibraonalspectroscopyandextracel‐
lularvesiclesasapotenal biomarkerandanother
research group spectroscopically examined saliva
fromALS,PD,andADpaents,showingdifferences
inthespectralproperesofeachgroup367.
InthecontextofHunngtonDisease (HD), RS
has been used for quanficaon and visualizaon
ofaggregatedpolyglutamine368andfortheassess‐
mentofitsstructure369,370.Huefner et al.371 found
significantchangesin thespectrarelatedto disea‐
se progression, as well as differences correspon‐
dingto genotypeand genderin serum samples of
HD paents and healthy controls. In another ap‐
proach, membrane composion of HD‐affected
andcontrolperipheralfibroblastswereseparatable
using RS, suggesng that cell membrane damage
mayserveasfuturediagnoscbiomarker372.
RS has also been used for research on Prion
Diseases373–378; one research group employed the
methodtoexaminethediagnoscvaluewhenana‐
lyzing blood samples of sheep to detect the alte‐
ringfromofPrPCtoPrPSc379.
Spectroscopicexaminationofmyelin
compositionintheCNSandinperi‐
pheralnervetissue
RSproves useful togain adeeper understan‐
dingofthemolecular myelincomposion;Pezzo
etal.380 examinedthe physical chemistryof cocul‐
tured neuronal and Schwann cells. In addion, RS
may be advantageous to detect pathological pro‐
cesses of demyelinang diseases in the CNS or in
peripheral nerve ssue. Carmona et al.381 studied
thespectroscopichallmarksof lipid chainsinmye‐
lin membranes as well as the secondary structure
of associated proteolipid proteins (PLP). Some pu‐
blicaonsreportthepossibilityofdetecngmyelin
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page14of32
invivousingRaman microscopy382,383;Huang et al.
384 described different composions of myelin
structures, whereas Wang et al.385 used CARS mi‐
croscopytodetectnot only myelinbutalsoaxons,
the node of Ranvier, and the Schmidt‐Lanterman
incisure. Fu et al.386 visualized fiber tracts in mice
brain by imaging the myelin along the axons. In
2021Lucasetal.387 usedCARStodeterminemyeli‐
naon deficits in a fragile‐X‐syndrome mouse mo‐
del.Out of pure academic interestthe publicaon
of Poulen et al.388, in which Raman scaering on
spinal cord myelin disnguishes between three
different species (human, mouse, lemur), shall be
menonedatthispoint.
Few Raman experiments deal with Mulple
sclerosis(MS)389;theprocessofmyelindegradaon
canbeaddressedwithRSnotonlyquantavely390
but also qualitavely. To tackle alteraons in the
biochemical composions in human brains post‐
mortem,Poonetal.391–393measuredvariouspatho‐
logic features and showed that even normal
appearing white maer next to MS lesions inclu‐
ded spectroscopically measurablechanges. Imitola
et al.394 correlate the presence of microglia (on a
side note: even the acvaon of microglia is tra‐
ceable using RS395) and axonal injury/demyelina‐
onusing CARS microscopy.Fu etal.396 appliedthe
same method to examine different me points of
experimental autoimmune encephalomyelis in
miceandGasecka et al.397 usedCARStodetect in‐
ducedautoimmunedemyelinaoninspinalcordof
mice. Another approach was carried out by the
teamof Alba‐Arbalatet al.398;they detectedspec‐
tral changes of defined molecules in the rena
(evenaninvivouseofRSappliedonhumanrena
isin line withlaser safetyregulaons399) ‐ associa‐
tednot onlywith differentphasesof MS,but also
age‐relatedinhealthypaents.
Raman‐based research of myelin composion
andpathologyisnot limited to MS, italsoextends
to the study of demyelinaon and its biochemical
changesinperipheralnervessue400‐evenpatho‐
logical401 and age related402 changes. Using diffe‐
rent Raman techniques the remyelinaon process
in the spinal cord of rats aer iatrogenic induced
demyelinaon403, as well as remyelinaon in rat
sciac nerve404, and biochemical changes during
nerve injury405,406 can be tracked. Another ap‐
proachusedCARSimagingtointerprettheinterac‐
on of different macrophages (resident and
recruited)aerWalleriandegeneraon407.
UpcomingnovelfieldsforRS‐from
stroketomusculardiseasestopsych‐
iatry
RS has been applied in combinaon with in‐
frared spectroscopy and atomic force microscopy
tocharacterizedifferenttypesofthrombiin ische‐
mic stroke408 or to characterize atheroscleroc
plaques409,410. Changes in fibrin concentraon in a
blood clot aer zonal thrombolysis with urokina‐
se411,orthe metabolic regulaon ofarterytone412
were examined. Other research groups invesga‐
tedspectroscopicchangesinthehippocampusdue
to cerebral ischemia‐reperfusion413, or spectrosco‐
picchanges in theamount ofCu+and Cu2+ions in
brain ischemia414. Russo et al.415 used Raman tra‐
ceablecytochrome cto invesgateeffects ofinsu‐
lin on the hippocampus aer transient ischemic
brain condions, Yamazoe et al.416 used a self‐de‐
veloped Raman approach to detect areas of an
ischemic core area. The group of Caine et al.417
used a combinaon of imaging techniques,
amongstothersRamanimaging,totrackbiochemi‐
cal changes in the peri‐infarct zone aer induced
strokein a mousemodel.As an alternave way of
infarcondiagnosc,Fanetal.418 proposedtearRS
in combinaon with machine learning tools as a
non‐invasivetechnique.
Incontextofbrainhemorrhages,Raman ima‐
ginghas beenused todetect microvesselsandin‐
duced hemorrhage419, as well as to track the
oxygen flow in brain vessels420. Furthermore, RS
wasemployedasamethodin ratbrainswithstria‐
talhemorrhagestoevaluatethebiochemicalcom‐
posion aer rehabilitaon treatment421.
Employing SERS, the subarachnoid hemorrhage
biomarkerglial fibrillary acidproteincan bedetec‐
ted422.SERScanalsobeusedtoassesscomplica‐
ons post subarachnoid hemorrhage, like
vasospasmandhydrocephalus423.
Inssuecondionsofbrainorspineinjury,RS
was applied to ssue of rat models424–426 and on
renae of miceaertraumacbraininjury427.Bio‐
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page15of32
chemical changes in affected areas arising from
hem or divergent levels of cholesterolwere disco‐
vered428and comparedtoMRIscans429.RSwasca‐
pable of detecng injured motor cortex areas
wherecertain spectroscopic properes were asso‐
ciated with cell death430. Employment of SERS‐ba‐
sedmethods allowfordetecon ofneuron‐specific
enolase(NSE),N‐acetylasparateor S‐100βin blood
samples as biomarkers for brain injury431–435; ai‐
ming for intraoperave assessment of molecular
changes ‐ one group developed a device for intra‐
cranialspectroscopywithinbraininjury436.Changes
in the biochemical and cellular composion of rat
brain aer gamma radiaon have been addressed
by Kočović et al.437. For a further reading the rea‐
dermayrefertoStevensetal.438,whohasrecently
reviewedthecurrentdeploymentsofRamanspec‐
troscopy in traumac brain injury in a detailed
way.
Even muscular diseases are accessible to RS:
Niedieker et al.439 used CARS imaging to visualize
morphological hallmarks such as glycogen storage
and internalized nuclei in various muscular disea‐
ses;Alixetal.440reporteddifferentspectralproper‐
es of mitochondrial and non‐mitochondrial
muscular diseases; and Gautam et al.441 showed
the differences in the spectra of Raman measure‐
ments from muscles of Drosophila with certain
mutaonsaffecngthemuscularsystemincompa‐
risontohealthycontrols.SpRSwasusedforinvivo
idenficaon of Duchenne muscular dystrophy
(DMD)affectedmusclesinamousemodelandhu‐
man muscles affected with the same disease with
ex vivo measurements showing similar Raman
peaks442. Hentschel et al.443 evaluated the use of
fibroblasts together with applicaon of CARS and
othermethods to study theeologyofneuromus‐
cular diseases. Blood sample tesng for the dia‐
gnosis of DMD was proposed and successfully
performedinamousemodel444;thecomparisonof
spectral properes of the erythrocyte membrane
in DMD paents and healthy controls demonstra‐
tedbiochemicaldifferencesduetoproteinanoma‐
ly445.
OneofthepotenaldomainsofRSinthearea
ofinfecous diseasesofthebrainandmeninges is
thediagnoscdeteconofpathogens.Ithasalrea‐
dy been capable of idenfying viral strains446,
changesinbacterialmetabolism447,ordifferenate/
detectdifferenttypesofbacteriarelatedtomenin‐
gis448,449. Although the diagnoses of tuberculous
meningis450 or Neisseria meningis451 as well as
possibledifferenaonof bloodcell types452 using
RSonCSFsamplesisreported,reliabledeteconof
bacterialmeningisin CSFwas notyet sufficiently
sensible; therefore, a combinaon of techniques
wassuggested453.AnotherapproachemploysRSin
neuroimmunology as a tool to monitor apoptoc
changesinhippocampalprogenitorcells454.
RShas also beenapplied in psychiatricdisor‐
ders;e.g.tovisualizethedrugmechanismofase‐
rotoninreuptakeinhibitorinmousebrain455andto
idenfybloodserumsamples based onalteraons
in phospholipids and proteins of paents with
affecve disorders456–458. Recently, Chaichi et al.459
measured changes in brain lipidome spectroscopi‐
cally in post‐traumac stress disorder (PTSD) rats,
but also the vibraonal spectroscopic properes
within myalgic encephalomyelis have been sub‐
jectedtofurtheranalysis460,461.
Conclusionsandoutlook
All studies and literature cited in this review
focusedonpreclinical/clinicaluseofRSwiththein‐
tenon toprovide theinterested reader a general
overview rather than a detailed account of each
parcular topic. Before jumping into acon and
establishingRSasanaddionalresearchmethodin
one’sown laboratory,taking alook on themetho‐
dological reviews by Butler et al.28 (including con‐
crete informaon about the general experimental
setup and requirements for biological ssue), and
Guo et al.462 (analysis of Raman data, machine
learningalgorithms)mayproveuseful.
Upcoming applicaons of RS potenally aim
forin vivopredicon of progressionrisk463 orem‐
ploymentofvibraonalspectroscopyfordetecon
ofepileptogenicbrainregions464.AdvancedRaman
techniques such as Spaally offset Raman Spec‐
troscopy (SORS)465 may potenally permit live in‐
sight into ssue biochemistry of deeper brain
structures.Alternavely,a futureestablishment of
intraoperaveRaman imaging(in parcular it may
evenbeperformedinvivo466)willpotenallyallow
fastdeteconof bothhistomorphological features
and tumor genecs; therefore producing an inte‐
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
page16of32
grateddiagnosis467 atan early stageofthediagno‐
sc workflow468. Extensive clinical studies aiming
for approval of RS in neuroscience by regulatory
authories are sll missing, even though a clinical
needandapaentbenefithasbeendemonstrated
by a broad range of groups and laboratories. To
translatepromisingresultsintoclinicalpracce,se‐
veral challenges should be considered. When vi‐
braonal spectroscopy is tested as a diagnosc
method in a mulcenter approach, experimental
workflowsofspectroscopicexaminaonneedtobe
standardized and facilitated; consensus within the
spectroscopic community on a collaborave expe‐
rimental setup and procedure prevents potenal
invariances due to different sample preparaon
protocolsandhiddenarfacts91.Tomaximizespec‐
traloutput andenhance spectralintensity ina cli‐
nical seng, handheld probes / spectrometers
with opmized design and in vivo parameters as
wellasapreferablylowsignal‐to‐noiseandhighsi‐
gnal‐to‐backgroundraoarecurrentlyunderinves‐
gaon by a growing number of companies
stepping up their efforts in the interface of rese‐
archandclinicalimplementaon.117,469
Since the use of RS on FFPE ssue allows di‐
rectcomparison with the diagnoscgold standard
ofhistology,RSisexpectedtoexpandits applica‐
onsin neuropathologicaldiagnoscsin thefuture.
Upcoming studies will not only challenge the cur‐
rentuseofRSonunstainedFFPE ssue(isreliable
diagnosis also achievable on H&E stained samp‐
les?)butalsodiscussapotenaluse ofvariousRa‐
man substrates in a cost‐oriented manner470. To
reducethe costfactor(id est expensivesubstrates
suchasCaF2orlow‐Eslides)futureemploymentof
RSonglassslidesseemsworthwhile;therefore,oc‐
curring autofluorescence during measurement
needs to be addressed.Within that approach,the
use of a certain excitaon wavelength or the de‐
tecon ofonlyasmallspectralwavenumberrange
havebeen proposed60,471. Inthis sense,Ibrahimet
al.472 aimed to use glass as Raman substrates by
employingadigitalprocessingmethod.
In the field of neurodegenerave diseases, a
majorandhighlyancipatedimpactofRScouldbe
theearlyandnon‐surgicaldiagnosisofdisordersin
a reproducible manner. Despite promising results,
this applicaon area is only beginning to develop.
To maximize diagnosc reliability, a deeper under‐
standing of Raman features and their correspon‐
ding biochemical origin in biofluids is key. Within
thehuge amount of obtained data, itremains ne‐
cessary to address paent dependent spectral va‐
riaon as well as variaons related to a concrete
experimental set up. Close cooperaon between
different research groups and ensured data sha‐
re470 potenally accelerate the development to‐
wardsclinicalimplementaon.
Anexemplarysuccessstoryofclinicaltransla‐
onwasreportedinthefieldofdermatology,whe‐
reRShadalreadybeenestablishedas a diagnosc
methodforearlydeteconofskincancer;ahand‐
held device was commercially produced in Cana‐
da463,473,474. To speed up translaon from research
labs to commercializaon and clinical use, several
networks have been founded, e.g., Internaonal
Society for Clinical Spectroscopy (ClirSpec, clir‐
spec.org)andRaman4Clinics(raman4clinics.eu),all
aiming for exchange of experse and creaon of
researchcollaboraon117.
Toconclude,itishighlylikelythatRSwillcon‐
nueto evolve asa methodin theinterseconof
applied biophysics and medicine – and potenally
make its way deeper into the field of life science,
such as detecon of plasc in zebrafish brain ho‐
mogenatesasaresultofexposuretonanoplasc475
and even more clinical applicaons. Where the
journeywill finally lead remains to be seenin the
nextyears.
Acknowledgements
Figure 1and Figure 2werecreated withBio‐
Render.com.MM thanksthe FNR for funding sup‐
port(FNRPEARLP16/BM/11192868grant).
Funding
Luxembourg Naonal Research Fond, FNR
(FNRPEARLP16/BM/11192868granttoM.M.)
ConflictsofInterest
Wehavenoconflictsofinteresttodisclose.
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology‐2022‐4210
Klammingeretal
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 17 of 32
References
1. Hollon TC, Pandian B, Adapa AR, et al. Near real-time intraoperative
brain tumor diagnosis using stimulated Raman histology and deep
neural networks. Nat Med. 2020;26(1):52-58. https://doi.org/
10.1038/s41591-019-0715-9
2. Devitt G, Howard K, Mudher A, Mahajan S. Raman Spectroscopy: An
Emerging Tool in Neurodegenerative Disease Research and Diagnosis.
ACS Chem Neurosci. 2018;9(3):404-420. https://doi.org/10.1021/
acschemneuro.7b00413
3. Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer
detection with Raman spectroscopy in humans. Sci Transl Med.
2015;7(274):274ra19. https://doi.org/10.1126/scitranslmed.aaa2384
4. Segura-Uribe JJ, Farfán-García ED, Guerra-Araiza C, Ciprés-Flores FJ,
García-dela Torre P, Soriano-Ursúa MA. Differences in brain regions of
three mice strains identified by label-free micro-Raman. Spectrosc Lett.
2018;51(7):356-366. https://doi.org/10.1080/00387010.2018.1473883
5. Payne TD, Moody AS, Wood AL, Pimiento PA, Elliott JC, Sharma B.
Raman spectroscopy and neuroscience: from fundamental
understanding to disease diagnostics and imaging. Analyst.
2020;145(10):346 1-3480. https://doi.org/10.1039/D0AN00083C
6. Tashibu K. [Analysis of water content in rat brain using Raman
spectroscopy]. No To Shinkei. 1990;42(10):999-1004.
7. Kitajima T, Tashibu K, Tani S, Mizuno A, Nakamura N. [Analysis of
water content in young rats brain edema by Raman spectroscopy]. No
To Shinkei. 1993;45(6):519-524.
8. Mizuno A, Hayashi T, Tashibu K, Maraishi S, Kawauchi K, Ozaki Y. Near-
infrared FT-Raman spectra of the rat brain tissues. Neurosci Lett.
1992;141(1):47-52. https://doi.org/10.1016/0304-3940(92)90331-Z
9. Mizuno A, Kitajima H, Kawauchi K, Muraishi S, Ozaki Y. Near-infrared
Fourier transform Raman spectroscopic study of human brain tissues
and tumours. J Raman Spectrosc. 1994;25(1):25-29.
https://doi.org/10.1002/jrs.1250250105
10. Pliss A, Kuzmin AN, Prasad PN, Mahajan SD. Mitochondrial
Dysfunction: A Prelude to Neuropathogenesis of SARS-CoV-2. ACS Chem
Neurosci. 2022;13(3):308-312. https://doi.org/10.1021/acschemneuro.
1c00675
11. RAMAN C V, KRISHNAN KS. A New Type of Secondary Radiation.
Nature. 1928;121(3048):501-502. https://doi.org/10.1038/121501c0
12. RAMAN C V. A Change of Wave-length in Light Scattering. Nature.
1928;121(3051):619-619. https://doi.org/10.1038/121619b0
13. Singh R. C. V. Raman and the Discovery of the Raman Effect. Phys
Perspect. 2002;4(4):399-420. https://doi.org/10.1007/s000160200002
14. C. TM. Raman Spectra of Crystalline Lysozyme, Pepsin, and Alpha
Chymotrypsin. Science (80- ). 1968;161(3836):68-69. https://doi.org/
10.1126/science.161.3836.68
15. Lord RC, Yu NT. Laser-excited Raman spectroscopy of biomolecules.
I. Native lysozyme and its constituent amino acids. J Mol Biol.
1970;50(2):509-524. https://doi.org/10.1016/0022-2836(70)90208-1
16. Antonio KA, Schultz ZD. Advances in Biomedical Raman Microscopy.
Anal Chem. 2014;86(1):30-46. https://doi.org/10.1021/ac403640f
17. Vlasov A V, Maliar NL, Bazhenov S V, et al. Raman Scattering: From
Structural Biology to Medical Applications. Crystals. 2020;10(1):38.
https://doi.org/10.3390/cryst10010038
18. Carey PR. Biochemical Applications of Raman and Resonance Raman
Spectroscopy. London, S.1-70: Academic Press; 1982.
19. Diem M, Mazur A, Lenau K, et al. Molecular pathology via IR and
Raman spectral imaging. J Biophotonics. 2013;6(11-12):855-886.
https://doi.org/10.1002/jbio.201300131
20. Auner GW, Koya SK, Huang C, et al. Applications of Raman
spectroscopy in cancer diagnosis. Cancer Metastasis Rev.
2018;37(4):691-717. https://doi.org/10.1007/s10555-018-9770-9
21. Cialla-May D, Schmitt M, Popp J. 1. Theoretical principles of Raman
spectroscopy. In: Popp J, Mayerhöfer T, eds. Micro-Raman
Spectroscopy. De Gruyter; 2020:1-14. https://doi.org/
10.1515/9783110515312-001
22. Popp J, Mayerhöfer T, eds. Micro-Raman Spectroscopy: Theory and
Application. De Gruyter; 2020. https://doi.org/10.1515/
9783110515312
23. Hu F, Shi L, Min W. Biological imaging of chemical bonds by
stimulated Raman scattering microscopy. Nat Methods.
2019;16(9):830-842. https://doi.org/10.1038/s41592-019-0538-0
24. Shi L, Fung AA, Zhou A. Advances in stimulated Raman scattering
imaging for tissues and animals. Quant Imaging Med Surg.
2021;11(3):1078-1101. https://doi.org/10.21037/qims-20-712
25. Evans CL, Xie XS. Coherent anti-Stokes Raman scattering microscopy:
Chemical imaging for biology and medicine. Annu Rev Anal Chem.
2008;1(1):883-909. https://doi.org/10.1146/annurev.anchem.
1.031207.112754
26. Zheng X-S, Jahn IJ, Weber K, Cialla-May D, Popp J. Label-free SERS in
biological and biomedical applications: Recent progress, current
challenges and opportunities. Spectrochim Acta Part A Mol Biomol
Spectrosc. 2018;197:56-77. https://doi.org/10.1016/j.saa.2018.01.063
27. Synytsya A, Judexova M, Hoskovec D, Miskovicova M, Petruzelka L.
Raman spectroscopy at different excitation wavelengths (1064, 785 and
532 nm) as a tool for diagnosis of colon cancer. J Raman Spectrosc.
2014;45(10):903-911. https://doi.org/10.1002/jrs.4581
28. Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to
characterize biological materials. Nat Protoc. 2016;11(4):664-687.
https://doi.org/10.1038/nprot.2016.036
29. Matousek P, Morris M. Emerging Raman Applications and
Techniques in Biomedical and Pharmaceutical Fields. (Matousek P,
Morris MD, eds.). Berlin Heidelberg, S. 1-24: Springer; 2010.
https://doi.org/10.1007/978-3-642-02649-2
30. Raman images explained. https://www.renishaw.de/de/raman-
images-explained--25810 . Accessed November 14, 2021.
31. He R, Xu Y, Zhang L, et al. Dual-phase stimulated Raman scattering
microscopy for real-time two-color imaging. Optica. 2017;4(1):44-47.
https://doi.org/10.1364/OPTICA.4.000044
32. Zhang B, Sun M, Yang Y, et al. Rapid, large-scale stimulated Raman
histology with strip mosaicing and dual-phase detection. Biomed Opt
Express. 2018;9(6):2604-2613. https://doi.org/10.1364/BOE.9.002604
33. Wei L, Shen Y, Xu F, et al. Imaging Complex Protein Metabolism in
Live Organisms by Stimulated Raman Scattering Microscopy with
Isotope Labeling. ACS Chem Biol. 2015;10(3):901-908.
https://doi.org/10.1021/cb500787b
34. Hu F, Lamprecht MR, Wei L, Morrison B, Min W. Bioorthogonal
chemical imaging of metabolic activities in live mammalian hippocampal
tissues with stimulated Raman scattering. Sci Rep. 2016;6(1):39660.
https://doi.org/10.1038/srep39660
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 18 of 32
35. Shi L. Raman imaging of metabolic activities in brain. In: Proc.SPIE.
Vol 11497. ; 2020. https://doi.org/10.1117/12.2571112
36. Lu F-K, Calligaris D, Olubiyi OI, et al. Label-Free Neurosurgical
Pathology with Stimulated Raman Imaging. Cancer Res.
2016;76(12):3451-3462. https://doi.org/10.1158/0008-5472.CAN-16-
0270
37. Pezzotti G. Raman spectroscopy in cell biology and microbiology. J
Raman Spectrosc. 2021;52(12):2348-2443. https://doi.org/10.1002/
jrs.6204
38. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M.
Raman spectroscopy of lipids: A review. J Raman Spectrosc.
2015;46(1):4-20. https://doi.org/10.1002/jrs.4607
39. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M.
Raman spectroscopy of proteins: A review. J Raman Spectrosc.
2013;44(8):1061-1076. https://doi.org/10.1002/jrs.4335
40. Wiercigroch E, Szafraniec E, Czamara K, et al. Raman and infrared
spectroscopy of carbohydrates: A review. Spectrochim Acta Part A Mol
Biomol Spectrosc. 2017;185:317-335. https://doi.org/10.1016/
j.saa.2017.05.045
41. Wilkosz N, Czaja M, Seweryn S, et al. Molecular Spectroscopic
Markers of Abnormal Protein Aggregation. Molecules. 2020;25(11).
https://doi.org/10.3390/molecules25112498
42. Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational
spectroscopic methods for cytology and cellular research. Analyst.
2014;139(18):4411-4444. https://doi.org/10.1039/C4AN00636D
43. Benevides JM, Overman SA, Thomas GJ. Raman Spectroscopy of
Proteins. Curr Protoc Protein Sci. 2003;33(1):1-35.
https://doi.org/10.1002/0471140864.ps1708s33
44. Kurouski D, Van Duyne RP, Lednev IK. Exploring the structure and
formation mechanism of amyloid fibrils by Raman spectroscopy: a
review. Analyst. 2015;140(15):4967-4980. https://doi.org/10.1039/
C5AN00342C
45. Krafft C, Neudert L, Simat T, Salzer R. Near infrared Raman spectra
of human brain lipids. Spectrochim Acta Part A Mol Biomol Spectrosc.
2005;61(7):1529-1535. https://doi.org/10.1016/j.saa.2004.11.017
46. Vedad J, Mojica E-RE, Desamero RZB. Raman Spectroscopic
Discrimination of Estrogens. Vib Spectrosc. 2018;96:93-100.
https://doi.org/10.1016/j.vibspec.2018.02.011
47. Pezzotti G, Horiguchi S, Boschetto F, et al. Raman Imaging of
Individual Membrane Lipids and Deoxynucleoside Triphosphates in
Living Neuronal Cells during Neurite Outgrowth. ACS Chem Neurosci.
2018;9(12):3038-3048.
https://doi.org/10.1021/acschemneuro.8b00235
48. Gorelik VS, Krylov AS, Sverbil VP. Local Raman spectroscopy of DNA.
Bull Lebedev Phys Inst. 2014;41(11):310-315. https://doi.org/
10.3103/S1068335614110025
49. Lee HJ, Zhang D, Jiang Y, et al. Label-Free Vibrational Spectroscopic
Imaging of Neuronal Membrane Potential. J Phys Chem Lett.
2017;8(9):1932-1936. https://doi.org/10.1021/acs.jpclett.7b00575
50. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of
biological tissues. Appl Spectrosc Rev. 2007;42(5):493-541.
https://doi.org/10.1080/05704920701551530
51. De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference
database of Raman spectra of biological molecules. J Raman Spectrosc.
2007. https://doi.org/10.1002/jrs.1734
52. Edwards HGM. Spectra-Structure Correlations in Raman
Spectroscopy. In: Handbook of Vibrational Spectroscopy. ; 2006.
https://doi.org/10.1002/0470027320.s4103
53. Grasselli JG, Snavely MK, Bulkin BJ. Applications of Raman
spectroscopy. Phys Rep. 1980;65(4):231-344. https://doi.org/
10.1016/0370-1573(80)90065-4
54. Visser T, Van Der Maas JH. Systematic interpretation of Raman
spectra of organic compounds. II-Ethers. J Raman Spectrosc.
1977;6(3):114-116. https://doi.org/10.1002/jrs.1250060303
55. Visser T, van der Maas JH. Systematic interpretation of Raman
spectra of organic compounds. III—carbonyl compounds. J Raman
Spectrosc. 1978;7(3):125-129. https://doi.org/10.1002/jrs.1250070304
56. Visser T, Van Der Maas JH. Systematic interpretation of Raman
spectra of organic compounds. IV—nitrogen compounds. J Raman
Spectrosc. 1978;7(5):278-281. https://doi.org/10.1002/jrs.1250070510
57. Vankeirsbilck T, Vercauteren A, Baeyens W, et al. Applications of
Raman spectroscopy in pharmaceutical analysis. TrAC Trends Anal
Chem. 2002;21(12):869-877. https://doi.org/10.1016/S0165-
9936(02)01208-6
58. Malgorzata Baranska Jan Cz. Dobrowolski, Hartwig Schulz, Rafal
Baranski, MR. Recent Advances in Raman Analysis of Plants: Alkaloids,
Carotenoids, and Polyacetylenes. Curr Anal Chem. 2013;9(1):108-127.
https://doi.org/http://dx.doi.org/10.2174/1573411011309010108
59. Fullwood LM, Griffiths D, Ashton K, et al. Effect of substrate choice
and tissue type on tissue preparation for spectral histopathology by
Raman microspectroscopy. Analyst. 2014;139(2):446-454.
https://doi.org/10.1039/C3AN01832F
60. Kerr LT, Byrne HJ, Hennelly BM. Optimal choice of sample substrate
and laser wavelength for Raman spectroscopic analysis of biological
specimen. Anal Methods. 2015;7(12):5041-5052. https://doi.org/
10.1039/C5AY00327J
61. Gee AR, O’Shea DC, Cummins HZ. Raman scattering and fluorescence
in calcium fluoride. Solid State Commun. 1966;4(1):43-46.
https://doi.org/10.1016/0038-1098(66)90102-5
62. Cui L, Butler HJ, Martin-Hirsch PL, Martin FL. Aluminium foil as a
potential substrate for ATR-FTIR, transflection FTIR or Raman
spectrochemical analysis of biological specimens. Anal Methods.
2016;8(3):481-487. https://doi.org/10.1039/C5AY02638E
63. Thomas P V, Ramakrishnan V, Vaidyan VK. Oxidation studies of
aluminum thin films by Raman spectroscopy. Thin Solid Films.
1989;170(1):35-40. https://doi.org/10.1016/0040-6090(89)90619-6
64. Hou H-C, Banadaki YM, Basu S, Sharifi S. A Cost-Efficient Surface
Enhanced Raman Spectroscopy (SERS) Molecular Detection Technique
for Clinical Applications. J Electron Mater. 2018;47(9):5378-5385.
https://doi.org/10.1007/s11664-018-6429-9
65. Shim MG, Wilson BC. The Effects of ex vivo Handling Procedures on
the Near-Infrared Raman Spectra of Normal Mammalian Tissues.
Photochem Photobiol. 1996;63(5):662-671. https://doi.org/10.1111/
j.1751-1097.1996.tb05671.x
66. Ó Faoláin E, Hunter MB, Byrne JM, et al. A study examining the
effects of tissue processing on human tissue sections using vibrational
spectroscopy. Vib Spectrosc. 2005;38(1):121-127. https://doi.org/
10.1016/j.vibspec.2005.02.013
67. Candefjord S, Ramser K, Lindahl OA. Effects of snap-freezing and
near-infrared laser illumination on porcine prostate tissue as measured
by Raman spectroscopy. Analyst. 2009;134(9):1815-1821.
https://doi.org/10.1039/B820931F
68. Huang Z, McWilliams A, Lam S, et al. Effect of formalin fixation on
the near-infrared Raman spectroscopy of normal and cancerous human
bronchial tissues. Int J Oncol. 2003;23(3):649-655.
https://doi.org/10.3892/ijo.23.3.649
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 19 of 32
69. Mariani MM, Lampen P, Popp J, Wood BR, Deckert V. Impact of
fixation on in vitro cell culture lines monitored with Raman
spectroscopy. Analyst. 2009;134(6):1154-1161. https://doi.org/
10.1039/B822408K
70. Faoláin EÓ, Hunter MB, Byrne JM, et al. Raman spectroscopic
evaluation of efficacy of current paraffin wax section dewaxing agents.
J Histochem Cytochem. 2005;53(1):121-129. https://doi.org/
10.1369/jhc.4A6536.2005
71. Draux F, Gobinet C, Sulé-Suso J, et al. Raman spectral imaging of
single cancer cells: Probing the impact of sample fixation methods. Anal
Bioanal Chem. 2010;397(7):2727-2737. https://doi.org/10.1007/
s00216-010-3759-8
72. Galli R, Uckermann O, Koch E, Schackert G, Kirsch M, Steiner G.
Effects of tissue fixation on coherent anti-Stokes Raman scattering
images of brain. J Biomed Opt. 2013;19(7):1-8. https://doi.org/
10.1117/1.JBO.19.7.071402
73. Chan JW, Taylor DS, Thompson DL. The effect of cell fixation on the
discrimination of normal and leukemia cells with laser tweezers Raman
spectroscopy. Biopolymers. 2009;91(2):132-139. https://doi.org/
10.1002/bip.21094
74. Krishna CM, Sockalingum GD, Vadhiraja BM, et al. Vibrational
spectroscopy studies of formalin-fixed cervix tissues. Biopolymers.
2007;85(3):214-221. https://doi.org/10.1002/bip.20631
75. Mian SA, Colley HE, Thornhill MH, Rehman I. Development of a
Dewaxing Protocol for Tissue-Engineered Models of the Oral Mucosa
Used for Raman Spectroscopic Analysis. Appl Spectrosc Rev.
2014;49(8):614-617. https://doi.org/10.1080/05704928.2014.882348
76. Hackett MJ, McQuillan JA, El-Assaad F, et al. Chemical alterations to
murine brain tissue induced by formalin fixation: implications for
biospectroscopic imaging and mapping studies of disease pathogenesis.
Analyst. 2011;136(14):2941-2952. https://doi.org/10.1039/
C0AN00269K
77. Mazur AI, Marcsisin EJ, Bird B, Miljković M, Diem M. Evaluating
Different Fixation Protocols for Spectral Cytopathology, Part 1. Anal
Chem. 2012;84(3):1259-1266. https://doi.org/10.1021/ac202046d
78. Mazur AI, Marcsisin EJ, Bird B, Miljković M, Diem M. Evaluating
Different Fixation Protocols for Spectral Cytopathology, Part 2: Cultured
Cells. Anal Chem. 2012;84(19):8265-8271. https://doi.org/
10.1021/ac3017407
79. Stefanakis M, Lorenz A, Bartsch JW, et al. Formalin Fixation as Tissue
Preprocessing for Multimodal Optical Spectroscopy Using the Example
of Human Brain Tumour Cross Sections. Severcan F, ed. J Spectrosc.
2021;2021:1-14. https://doi.org/10.1155/2021/5598309
80. Ali SM, Bonnier F, Tfayli A, et al. Raman spectroscopic analysis of
human skin tissue sections ex-vivo: evaluation of the effects of tissue
processing and dewaxing. J Biomed Opt. 2013;18(6):61202.
https://doi.org/10.1117/1.JBO.18.6.061202
81. Gaifulina R, Maher AT, Kendall C, et al. Label-free Raman
spectroscopic imaging to extract morphological and chemical
information from a formalin-fixed, paraffin-embedded rat colon tissue
section. Int J Exp Pathol. 2016;97(4):337-350. https://doi.org/
10.1111/iep.12194
82. Kirkby CJ, Gala de Pablo J, Tinkler-Hundal E, Wood HM, Evans SD,
West NP. Developing a Raman spectroscopy-based tool to stratify
patient response to pre-operative radiotherapy in rectal cancer. Analyst.
2021;146(2):581-589. https://doi.org/10.1039/d0an01803a
83. Lyng FM, Faoláin EÓ, Conroy J, et al. Vibrational spectroscopy for
cervical cancer pathology, from biochemical analysis to diagnostic tool.
Exp Mol Pathol. 2007;82(2):121-129. https://doi.org/10.1016/
j.yexmp.2007.01.001
84. Tan KM, Herrington CS, Brown CTA. Discrimination of normal from
pre-malignant cervical tissue by Raman mapping of de-paraffinized
histological tissue sections. J Biophotonics. 2011;4(1-2):40-48.
https://doi.org/10.1002/jbio.201000083
85. Rehman S, Movasaghi Z, Tucker AT, et al. Raman spectroscopic
analysis of breast cancer tissues: identifying differences between
normal, invasive ductal carcinoma and ductal carcinomain situ of the
breast tissue. J Raman Spectrosc. 2007;38(10):1345-1351.
https://doi.org/10.1002/jrs.1774
86. Ning T, Li H, Chen Y, Zhang B, Zhang F, Wang S. Raman spectroscopy
based pathological analysis and discrimination of formalin fixed paraffin
embedded breast cancer tissue. Vib Spectrosc. 2021;115:103260.
https://doi.org/10.1016/j.vibspec.2021.103260
87. Lazaro-Pacheco D, Shaaban AM, Titiloye NA, Rehman S, Rehman IU.
Elucidating the chemical and structural composition of breast cancer
using Raman micro-spectroscopy. EXCLI J. 2021;20:1118-1132.
https://doi.org/10.17179/excli2021-3962
88. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld
MS. Identifying Microcalcifications in Benign and Malignant Breast
Lesions by Probing Differences in Their Chemical Composition Using
Raman Spectroscopy. Cancer Res. 2002;62(18):5375-5380.
89. Krishna CM, Sockalingum GD, Venteo L, et al. Evaluation of the
suitability of ex vivo handled ovarian tissues for optical diagnosis by
Raman microspectroscopy. Biopolymers. 2005;79(5):269-276.
https://doi.org/10.1002/bip.20346
90. Devpura S, Thakur JS, Sarkar FH, Sakr WA, Naik VM, Naik R. Detection
of benign epithelia, prostatic intraepithelial neoplasia, and cancer
regions in radical prostatectomy tissues using Raman spectroscopy. Vib
Spectrosc. 2010;53(2):227-232. https://doi.org/10.1016/
j.vibspec.2010.03.009
91. Jermyn M, Desroches J, Aubertin K, et al. A review of Raman
spectroscopy advances with an emphasis on clinical translation
challenges in oncology. Phys Med Biol. 2016;61(23):R370-R400.
https://doi.org/10.1088/0031-9155/61/23/R370
92. Jermyn M, Desroches J, Mercier J, et al. Neural networks improve
brain cancer detection with Raman spectroscopy in the presence of
operating room light artifacts. J Biomed Opt. 2016;21(9):094002.
https://doi.org/10.1117/1.JBO.21.9.094002
93. Desroches J, Laurence A, Jermyn M, et al. Raman spectroscopy in
microsurgery: impact of operating microscope illumination sources on
data quality and tissue classification. Analyst. 2017;142(8):1185-1191.
https://doi.org/10.1039/C6AN02061E
94. Bury D, Morais C, Ashton K, Dawson T, Martin F. Ex Vivo Raman
Spectrochemical Analysis Using a Handheld Probe Demonstrates High
Predictive Capability of Brain Tumour Status. Biosensors. 2019;9(2):49.
https://doi.org/10.3390/bios9020049
95. Dallaire F, Picot F, Tremblay J-P, et al. Quantitative spectral quality
assessment technique validated using intraoperative in vivo Raman
spectroscopy measurements. J Biomed Opt. 2020;25(4):1-8.
https://doi.org/10.1117/1.JBO.25.4.040501
96. Zhao J, Short MA, Braun TA, M.D. HL, M.D. DIM, Zeng H. Clinical
Raman measurements under special ambient lighting illumination. J
Biomed Opt. 2014;19(11):1-4. https://doi.org/10.1117/
1.JBO.19.11.111609
97. Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J. Sample size
planning for classification models. Anal Chim Acta. 2013;760:25-33.
https://doi.org/10.1016/j.aca.2012.11.007
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 20 of 32
98. Zhang L, Henson MJ. A Practical Algorithm to Remove Cosmic Spikes
in Raman Imaging Data for Pharmaceutical Applications. Appl Spectrosc.
2007;61(9):1015-1020. http://opg.optica.org/as/abstract.cfm?URI=as-
61-9-1015.
99. Barton SJ, Hennelly BM. An Algorithm for the Removal of Cosmic Ray
Artifacts in Spectral Data Sets. Appl Spectrosc. 2019;73(8):893-901.
https://doi.org/10.1177/0003702819839098
100. Bowie BT, Chase DB, Lewis IR, Griffiths PR. Anomalies and Artifacts
in Raman Spectroscopy. In: Handbook of Vibrational Spectroscopy. In:
Griffiths PR, ed. Handbook of Vibrational Spectroscopy. Chichester, S.
2355-2378: John Wiley & Sons; 2006:2355-2378. https://doi.org/
10.1002/9780470027325.s3103
101. Zhao J, Lui H, McLean DI, Zeng H. Automated autofluorescence
background subtraction algorithm for biomedical Raman spectroscopy.
Appl Spectrosc. 2007;61(11):1225-1232. https://doi.org/10.1366/
000370207782597003
102. Cao A, Pandya AK, Serhatkulu GK, et al. A robust method for
automated background subtraction of tissue fluorescence. J Raman
Spectrosc. 2007;38(9):1199-1205. https://doi.org/10.1002/jrs.1753
103. Smith ZJ, Huser TR, Wachsmann-Hogiu S. Raman scattering in
pathology. Anal Cell Pathol. 2012;35(3):145-163. https://doi.org/
10.3233/ACP-2011-0048
104. Lieber CA, Mahadevan-Jansen A. Automated method for
subtraction of fluorescence from biological Raman spectra. Appl
Spectrosc. 2003;57(11):1363-1367. https://doi.org/10.1366/
000370203322554518
105. Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL.
Extracting biological information with computational analysis of Fourier-
transform infrared (FTIR) biospectroscopy datasets: current practices to
future perspectives. Analyst. 2012;137(14):3202-3215. https://doi.org/
10.1039/C2AN16300D
106. Savitzky A, Golay MJE. Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Anal Chem. 1964;36(8):1627-1639.
https://doi.org/10.1021/ac60214a047
107. Lasch P. Spectral pre-processing for biomedical vibrational
spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst.
2012;117:100-114. https://doi.org/10.1016/j.chemolab.2012.03.011
108. Menges F. “Spectragryph - optical spectroscopy software”, Version
1.2.14, 2020, http://www.effemm2.de/spectragryph/.
109. Jollife IT, Cadima J. Principal component analysis: A review and
recent developments. Philos Trans R Soc A Math Phys Eng Sci.
2016;374(2065). https://doi.org/10.1098/rsta.2015.0202
110. Olson RS, Cava W La, Mustahsan Z, Varik A, Moore JH. Data-driven
advice for applying machine learning to bioinformatics problems. Pac
Symp Biocomput. 2018;23:192-203. https://pubmed.ncbi.nlm.nih.gov/
29218881.
111. Meza Ramirez CA, Greenop M, Ashton L, Rehman I ur. Applications
of machine learning in spectroscopy. Appl Spectrosc Rev. 2021;56(8-
10):733-763. https://doi.org/10.1080/05704928.2020.1859525
112. Ralbovsky NM, Lednev IK. Towards development of a novel
universal medical diagnostic method: Raman spectroscopy and machine
learning. Chem Soc Rev. 2020;49(20):7428-7453. https://doi.org/
10.1039/D0CS01019G
113. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve
Analysis for Medical Diagnostic Test Evaluation. Casp J Intern Med.
2013;4(2):627-635. https://pubmed.ncbi.nlm.nih.gov/24009950.
114. Zhang Lei, Shealey P, Hayden L, Xie C, Li Y-Q. Study of brain cells by
near infrared Raman spectoscropy. J North Carolina Acad Sci.
2005;121(1):41-44. http://www.jstor.org/stable/24336004.
115. Banerjee H nath, Zhang L. Deciphering the finger Prints of Brain
Cancer Astrocytoma in comparison to Astrocytes by using near infrared
Raman Spectroscopy. Mol Cell Biochem. 2007;295(1):237-240.
https://doi.org/10.1007/s11010-006-9278-4
116. Hollon T, Orringer DA. Label-free brain tumor imaging using
Raman-based methods. J Neurooncol. 2021;151(3):393-402.
https://doi.org/10.1007/s11060-019-03380-z
117. Santos IP, Barroso EM, Bakker Schut TC, et al. Raman spectroscopy
for cancer detection and cancer surgery guidance: translation to the
clinics. Analyst. 2017;142(17):3025-3047. https://doi.org/10.1039/
C7AN00957G
118. Iturrioz-Rodríguez N, De Pasquale D, Fiaschi P, Ciofani G.
Discrimination of glioma patient-derived cells from healthy astrocytes
by exploiting Raman spectroscopy. Spectrochim Acta A Mol Biomol
Spectrosc. 2022;269:120773. https://doi.org/10.1016/j.saa.2021.
120773
119. Aguiar RP, Silveira LJ, Falcão ET, Pacheco MTT, Zângaro RA,
Pasqualucci CA. Discriminating neoplastic and normal brain tissues in
vitro through Raman spectroscopy: a principal components analysis
classification model. Photomed Laser Surg. 2013;31(12):595-604.
https://doi.org/10.1089/pho.2012.3460
120. DePaoli D, Lemoine É, Ember K, et al. Rise of Raman spectroscopy
in neurosurgery: a review. J Biomed Opt. 2020;25(05):050901.
https://doi.org/10.1117/1.JBO.25.5.050901
121. Broadbent B, Tseng J, Kast R, et al. Shining light on neurosurgery
diagnostics using Raman spectroscopy. J Neurooncol. 2016;130(1):1-9.
https://doi.org/10.1007/s11060-016-2223-9
122. Brusatori M, Auner G, Noh T, Scarpace L, Broadbent B, Kalkanis SN.
Intraoperative Raman Spectroscopy. Neurosurg Clin N Am.
2017;28(4):633-652. https://doi.org/10.1016/j.nec.2017.05.014
123. Shu C, Zheng W, Wang Z, Yu C, Huang Z. Development and
characterization of a disposable submillimeter fiber optic Raman needle
probe for enhancing real-time in vivo deep tissue and biofluids Raman
measurements. Opt Lett. 2021;46(20):5197-5200. https://doi.org/
10.1364/OL.438713
124. Brahimaj BC, Kochanski RB, Pearce JJ, et al. Structural and
Functional Imaging in Glioma Management. Neurosurgery.
2021;88(2):211-221. https://doi.org/10.1093/neuros/nyaa360
125. Hollon T, Stummer W, Orringer D, Suero Molina E. Surgical Adjuncts
to Increase the Extent of Resection: Intraoperative MRI, Fluorescence,
and Raman Histology. Neurosurg Clin N Am. 2019;30(1):65-74.
https://doi.org/10.1016/j.nec.2018.08.012
126. Luther E, Matus A, Eichberg DG, Shah AH, Ivan M. Stimulated
Raman Histology for Intraoperative Guidance in the Resection of a
Recurrent Atypical Spheno-orbital Meningioma: A Case Report and
Review of Literature. Cureus. 2019;11(10):e5905. https://doi.org/
10.7759/cureus.5905
127. Yuan Y, Shah N, Almohaisin MI, Saha S, Lu F. Assessing fatty acid-
induced lipotoxicity and its therapeutic potential in glioblastoma using
stimulated Raman microscopy. Sci Rep. 2021;11(1):7422.
https://doi.org/10.1038/s41598-021-86789-9
128. Ricci M, Ragonese F, Gironi B, et al. Glioblastoma single-cell
microRaman analysis under stress treatments. Sci Rep. 2018;8(1):7979.
https://doi.org/10.1038/s41598-018-26356-x
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 21 of 32
129. Kopec M, Imiela A, Abramczyk H. Monitoring glycosylation
metabolism in brain and breast cancer by Raman imaging. Sci Rep.
2019;9(1):166. https://doi.org/10.1038/s41598-018-36622-7
130. Abramczyk H, Surmacki JM, Brozek-Pluska B, Kopec M. Revision of
Commonly Accepted Warburg Mechanism of Cancer Development:
Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers
by Raman Imaging. Cancers (Basel). 2021;13(11). https://doi.org/
10.3390/cancers13112599
131. Hollon T, Lewis S, Freudiger CW, Sunney Xie X, Orringer DA.
Improving the accuracy of brain tumor surgery via Raman-based
technology. Neurosurg Focus FOC. 2016;40(3):E9. https://doi.org/
10.3171/2015.12.FOCUS15557
132. Soltani S, Guang Z, Zhang Z, Olson J, Robles F. Label-free detection
of brain tumors in a 9L gliosarcoma rat model using stimulated Raman
scattering-spectroscopic optical coherence tomography. J Biomed Opt.
2021;26(7). https://doi.org/10.1117/1.JBO.26.7.076004
133. Ji M, Orringer DA, Freudiger CW, et al. Rapid, Label-Free Detection
of Brain Tumors with Stimulated Raman Scattering Microscopy. Sci
Transl Med. 2013;5(201):201ra119-201ra119. https://doi.org/10.1126/
scitranslmed.3005954
134. Pope I, Masia F, Ewan K, et al. Identifying subpopulations in
multicellular systems by quantitative chemical imaging using label-free
hyperspectral CARS microscopy. Analyst. 2021;146(7):2277-2291.
https://doi.org/10.1039/d0an02381g
135. Gao X, Yue Q, Liu Z, et al. Guiding Brain-Tumor Surgery via Blood-
Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered
MRI/SERRS Signals. Adv Mater. 2017;29(21). https://doi.org/
10.1002/adma.201603917
136. Han L, Duan W, Li X, et al. Surface-Enhanced Resonance Raman
Scattering-Guided Brain Tumor Surgery Showing Prognostic Benefit in
Rat Models. ACS Appl Mater Interfaces. 2019;11(17):15241-15250.
https://doi.org/10.1021/acsami.9b00227
137. Uckermann O, Galli R, Tamosaityte S, et al. Label-Free Delineation
of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy
in an Orthotopic Mouse Model and Human Glioblastoma. PLoS One.
2014;9(9):e107115. https://doi.org/10.1371/journal.pone.0107115.
138. Kast R, Auner G, Yurgelevic S, et al. Identification of regions of
normal grey matter and white matter from pathologic glioblastoma and
necrosis in frozen sections using Raman imaging. J Neurooncol.
2015;125(2):287-295. https://doi.org/10.1007/s11060-015-1929-4
139. Kalkanis SN, Kast RE, Rosenblum ML, et al. Raman spectroscopy to
distinguish grey matter, necrosis, and glioblastoma multiforme in frozen
tissue sections. J Neurooncol. 2014;116(3):477-485. https://doi.org/
10.1007/s11060-013-1326-9
140. Koljenović S, Schut TCB, Wolthuis R, et al. Raman spectroscopic
characterization of porcine brain tissue using a single fiber-optic probe.
Anal Chem. 2007;79(2):557-564. https://doi.org/10.1021/ac0616512
PM - 17222020 M4 – Citavi
141. DePaoli DT, Lapointe N, Messaddeq Y, Parent M, Côté DC. Intact
primate brain tissue identification using a completely fibered coherent
Raman spectroscopy system. Neurophotonics. 2018;5(3):35005.
https://doi.org/10.1117/1.NPh.5.3.035005
142. Buttolph ML, Mejooli MA, Sidorenko P, Eom C-Y, Schaffer CB, Wise
FW. Synchronously pumped Raman laser for simultaneous degenerate
and nondegenerate two-photon microscopy. Biomed Opt Express.
2021;12(4):2496-2507. https://doi.org/10.1364/BOE.421647
143. Daković M, Stojiljković AS, Bajuk-Bogdanović D, et al. Profiling
differences in chemical composition of brain structures using Raman
spectroscopy. Talanta. 2013;117:133-138. https://doi.org/10.1016/
j.talanta.2013.08.058
144. Santos LF, Wolthuis R, Koljenović S, Almeida RM, Puppels GJ. Fiber-
Optic Probes for in Vivo Raman Spectroscopy in the High-Wavenumber
Region. Anal Chem. 2005;77(20):6747-6752. https://doi.org/
10.1021/ac0505730
145. Sajid J, Elhaddaoui A, Turrell S. Fourier Transform Vibrational
Spectroscopic Analysis of Human Cerebral Tissue. J Raman Spectrosc.
1997;28(2-3):165-169. https://doi.org/10.1002/(SICI)1097-
4555(199702) 28:2/3<165::AID-JRS76>3.0.CO;2-K
146. Zięba-Palus J, Wesełucha-Birczyńska A, Sacharz J, et al. 2D
correlation Raman microspectroscopy of chosen parts of rat’s brain
tissue. J Mol Struct. 2017;1147:310-316. https://doi.org/10.1016/
j.molstruc.2017.06.117
147. Meyer T, Bergner N, Bielecki C, et al. Nonlinear microscopy,
infrared, and Raman microspectroscopy for brain tumor analysis. J
Biomed Opt. 2011;16(2):21113. https://doi.org/10.1117/1.3533268
148. Guo T, Ding F, Li D, Zhang W, Cao L, Liu Z. Full-Scale Label-Free
Surface-Enhanced Raman Scattering Analysis of Mouse Brain Using a
Black Phosphorus-Based Two-Dimensional Nanoprobe. Appl Sci.
2019;9(3). https://doi.org/10.3390/app9030398
149. Riva M, Sciortino T, Secoli R, et al. Glioma biopsies classification
using raman spectroscopy and machine learning models on fresh tissue
samples. Cancers (Basel). 2021;13(5):1-14. https://doi.org/10.3390/
cancers13051073
150. Depciuch J, Tołpa B, Witek P, et al. Raman and FTIR spectroscopy in
determining the chemical changes in healthy brain tissues and
glioblastoma tumor tissues. Spectrochim Acta - Part A Mol Biomol
Spectrosc. 2020. https://doi.org/10.1016/j.saa.2019.117526
151. Baria E, Pracucci E, Pillai V, Pavone FS, Ratto GM, Cicchi R. In vivo
detection of murine glioblastoma through Raman and reflectance fiber-
probe spectroscopies. Neurophotonics. 2020;7(4):45010.
https://doi.org/10.1117/1.NPh.7.4.045010
152. Kowalska AA, Berus S, Szleszkowski Ł, et al. Brain tumour
homogenates analysed by surface-enhanced Raman spectroscopy:
Discrimination among healthy and cancer cells. Spectrochim Acta Part A
Mol Biomol Spectrosc. 2020;231:117769. https://doi.org/10.1016/
j.saa.2019.117769
153. Köhler M, Machill S, Salzer R, Krafft C. Characterization of lipid
extracts from brain tissue and tumors using Raman spectroscopy and
mass spectrometry. Anal Bioanal Chem. 2009;393(5):1513-1520.
https://doi.org/10.1007/s00216-008-2592-9
154. Jelke F, Mirizzi G, Borgmann FK, et al. Intraoperative discrimination
of native meningioma and dura mater by Raman spectroscopy. Sci Rep.
2021;11(1):23583. https://doi.org/10.1038/s41598-021-02977-7
155. Koljenović S, Schut TB, Vincent A, Kros JM, Puppels GJ. Detection of
Meningioma in Dura Mater by Raman Spectroscopy. Anal Chem.
2005;77(24):7958-7965. https://doi.org/10.1021/ac0512599
156. Di L, Eichberg DG, Park YJ, et al. Rapid Intraoperative Diagnosis of
Meningiomas using Stimulated Raman Histology. World Neurosurg.
2021;150:108-116. https://doi.org/10.1016/j.wneu.2021.02.097
157. Aydin O, Altaş M, Kahraman M, Bayrak OF, Culha M. Differentiation
of healthy brain tissue and tumors using surface-enhanced Raman
scattering. Appl Spectrosc. 2009;63(10):1095-1100. https://doi.org/
10.1366/000370209789553219
158. Leslie DG, Kast RE, Poulik JM, et al. Identification of Pediatric Brain
Neoplasms Using Raman Spectroscopy. Pediatr Neurosurg.
2012;48(2):109-117. https://doi.org/10.1159/000343285
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 22 of 32
159. Gajjar K, Heppenstall LD, Pang W, et al. Diagnostic segregation of
human brain tumours using Fourier-transform infrared and/or Raman
spectroscopy coupled with discriminant analysis. Anal Methods.
2013;5(1):89-102. https://doi.org/10.1039/C2AY25544H
160. Galli R, Meinhardt M, Koch E, et al. Rapid Label-Free Analysis of
Brain Tumor Biopsies by Near Infrared Raman and Fluorescence
Spectroscopy—A Study of 209 Patients. Front Oncol. 2019;9:1165.
https://doi.org/10.3389/fonc.2019.01165
161. Krafft C, Sobottka SB, Schackert G, Salzer R. Near infrared Raman
spectroscopic mapping of native brain tissue and intracranial tumors.
Analyst. 2005;130(7):1070-1077. https://doi.org/10.1039/B419232J
162. Aguiar RP, Falcão ET, Pasqualucci CA, Silveira L. Use of Raman
spectroscopy to evaluate the biochemical composition of normal and
tumoral human brain tissues for diagnosis. Lasers Med Sci. 2020.
https://doi.org/10.1007/s10103-020-03173-1
163. Zhou Y, Liu C-H, Sun Y, et al. Human brain cancer studied by
resonance Raman spectroscopy. J Biomed Opt. 2012;17(11):116021.
https://doi.org/10.1117/1.JBO.17.11.116021
164. Kopec M, Błaszczyk M, Radek M, Abramczyk H. Raman imaging and
statistical methods for analysis various type of human brain tumors and
breast cancers. Spectrochim Acta Part A Mol Biomol Spectrosc.
2021;262:120091. https://doi.org/10.1016/j.saa.2021.120091
165. Anna I, Bartosz P, Lech P, Halina A. Novel strategies of Raman
imaging for brain tumor research. Oncotarget. 2017;8(49):85290-
85310. https://doi.org/10.18632/oncotarget.19668
166. Bury D, Morais CLM, Martin FL, et al. Discrimination of fresh frozen
non-tumour and tumour brain tissue using spectrochemical analyses
and a classification model. Br J Neurosurg. 2020;34(1):40-45.
https://doi.org/10.1080/02688697.2019.1679352
167. Bergner N, Bocklitz T, Romeike BFM, et al. Identification of primary
tumors of brain metastases by Raman imaging and support vector
machines. Chemom Intell Lab Syst. 2012;117:224-232. https://doi.org
/10.1016/j.chemolab.2012.02.008
168. Bergner N, Romeike BFM, Reichart R, Kalff R, Krafft C, Popp J.
Raman and FTIR Microspectroscopy for Detection of Brain Metastasis.
In: Clinical and Biomedical Spectroscopy and Imaging II. Optical Society
of America; 2011:80870X. https://doi.org/10.1364/ECBO.2011.80870X
169. Krafft C, Sobottka SB, Schackert G, Salzer R. Raman and infrared
spectroscopic mapping of human primary intracranial tumors: a
comparative study. J Raman Spectrosc. 2006;37(1-3):367-375.
https://doi.org/10.1002/jrs.1450
170. Zhang Q, Yun KK, Wang H, Yoon SW, Lu F, Won D. Automatic cell
counting from stimulated Raman imaging using deep learning. PLoS
One. 2021;16(7):e0254586. https://doi.org/10.1371/journal.pone.
0254586.
171. Koljenović S, Choo-Smith L-P, Bakker Schut TC, Kros JM, van den
Berge HJ, Puppels GJ. Discriminating vital tumor from necrotic tissue in
human glioblastoma tissue samples by Raman spectroscopy. Lab Invest.
2002;82(10):1265-1277. https://doi.org/10.1097/01.lab.0000032545.
96931.b8
172. Krafft C, Belay B, Bergner N, et al. Advances in optical biopsy--
correlation of malignancy and cell density of primary brain tumors using
Raman microspectroscopic imaging. Analyst. 2012;137(23):5533-5537.
https://doi.org/10.1039/c2an36083g PM - 23050263 M4 - Citavi
173. Kast RE, Auner GW, Rosenblum ML, et al. Raman molecular imaging
of brain frozen tissue sections. J Neurooncol. 2014;120(1):55-62.
https://doi.org/10.1007/s11060-014-1536-9
174. Amharref N, Beljebbar A, Dukic S, et al. Discriminating healthy from
tumor and necrosis tissue in rat brain tissue samples by Raman spectral
imaging. Biochim Biophys Acta - Biomembr. 2007;1768(10):2605-2615.
https://doi.org/10.1016/j.bbamem.2007.06.032
175. Bae K, Xin L, Zheng W, Tang C, Ang B-T, Huang Z. Mapping the
Intratumoral Heterogeneity in Glioblastomas with Hyperspectral
Stimulated Raman Scattering Microscopy. Anal Chem. 2021;93(4):2377-
2384. https://doi.org/10.1021/acs.analchem.0c04262
176. Eichberg DG, Shah AH, Di L, et al. Stimulated Raman histology for
rapid and accurate intraoperative diagnosis of CNS tumors: Prospective
blinded study. J Neurosurg. 2021;134(1):137-143. https://doi.org/
10.3171/2019.9.JNS192075
177. Neidert N, Straehle J, Erny D, et al. Stimulated Raman histology in
the neurosurgical workflow of a major European neurosurgical center
— part A. Neurosurg Rev. 2021. https://doi.org/10.1007/s10143-021-
01712-0
178. Yang Y, Chen L, Ji M. Stimulated Raman scattering microscopy for
rapid brain tumor histology. J Innov Opt Health Sci.
2017;10(05):1730010. https://doi.org/10.1142/S1793545817300105
179. Lee M, Herrington CS, Ravindra M, et al. Recent advances in the use
of stimulated Raman scattering in histopathology. Analyst.
2021;146(3):789-802. https://doi.org/10.1039/D0AN01972K
180. Hollon TC, Lewis S, Pandian B, et al. Rapid Intraoperative Diagnosis
of Pediatric Brain Tumors Using Stimulated Raman Histology. Cancer
Res. 2018;78(1):278-289. https://doi.org/10.1158/0008-5472.CAN-17-
1974
181. Orringer DA, Pandian B, Niknafs YS, et al. Rapid intraoperative
histology of unprocessed surgical specimens via fibre-laser-based
stimulated Raman scattering microscopy. Nat Biomed Eng. 2017.
https://doi.org/10.1038/s41551-016-0027
182. Jiang C, Bhattacharya A, Linzey JR, et al. Rapid Automated Analysis
of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and
Artificial Intelligence. Neurosurgery. 2022;90(6).
https://journals.lww.com/neurosurgery/Fulltext/2022/06000/Rapid_A
utomated_Analysis_of_Skull_Base_Tumor.14.aspx.
183. Straehle J, Erny D, Neidert N, et al. Neuropathological
interpretation of stimulated Raman histology images of brain and spine
tumors: part B. Neurosurg Rev. December 2021. https://doi.org/
10.1007/s10143-021-01711-1
184. Di L, Eichberg DG, Huang K, et al. Stimulated Raman Histology for
Rapid Intraoperative Diagnosis of Gliomas. World Neurosurg.
2021;150:e135-e143. https://doi.org/10.1016/j.wneu.2021.02.122
185. Shin KS, Francis AT, Hill AH, et al. Intraoperative assessment of skull
base tumors using stimulated Raman scattering microscopy. Sci Rep.
2019;9(1):20392. https://doi.org/10.1038/s41598-019-56932-8
186. Wolthuis R, van Aken M, Fountas K, Robinson, Bruining HA, Puppels
GJ. Determination of Water Concentration in Brain Tissue by Raman
Spectroscopy. Anal Chem. 2001;73(16):3915-3920. https://doi.org/
10.1021/ac0101306
187. Hollon TC, Pandian B, Urias E, et al. Rapid, label-free detection of
diffuse glioma recurrence using intraoperative stimulated Raman
histology and deep neural networks. Neuro Oncol. 2021;23(1):144-155.
https://doi.org/10.1093/neuonc/noaa162
188. Kircher MF, de la Zerda A, Jokerst J V, et al. A brain tumor molecular
imaging strategy using a new triple-modality MRI-photoacoustic-Raman
nanoparticle. Nat Med. 2012;18(5):829-834. https://doi.org/10.1038/
nm.2721
189. Hubbard TJE, Shore A, Stone N. Raman spectroscopy for rapid intra-
operative margin analysis of surgically excised tumour specimens.
Analyst. 2019;144(22):6479-6496. https://doi.org/10.1039/
C9AN01163C
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 23 of 32
190. Daoust F, Nguyen T, Orsini P, et al. Handheld macroscopic Raman
spectroscopy imaging instrument for machine-learning-based
molecular tissue margins characterization. J Biomed Opt. 2021;26(2).
https://doi.org/10.1117/1.JBO.26.2.022911
191. Pekmezci M, Morshed RA, Chunduru P, et al. Detection of glioma
infiltration at the tumor margin using quantitative stimulated Raman
scattering histology. Sci Rep. 2021;11(1):12162. https://doi.org/
10.1038/s41598-021-91648-8
192. Neuschmelting V, Harmsen S, Beziere N, et al. Dual-Modality
Surface-Enhanced Resonance Raman Scattering and Multispectral
Optoacoustic Tomography Nanoparticle Approach for Brain Tumor
Delineation. Small. 2018;14(23):e1800740. https://doi.org/10.1002/
smll.201800740
193. Duan W, Yue Q, Liu Y, et al. A pH ratiometrically responsive surface
enhanced resonance Raman scattering probe for tumor acidic margin
delineation and image-guided surgery. Chem Sci. 2020;11(17):4397-
4402. https://doi.org/10.1039/D0SC00844C
194. Jin Z, Yue Q, Duan W, et al. Intelligent SERS Navigation System
Guiding Brain Tumor Surgery by Intraoperatively Delineating the
Metabolic Acidosis. Adv Sci (Weinheim, Baden-Wurttemberg, Ger.
January 2022:e2104935. https://doi.org/10.1002/advs.202104935
195. Galli R, Uckermann O, Temme A, et al. Assessing the efficacy of
coherent anti-Stokes Raman scattering microscopy for the detection of
infiltrating glioblastoma in fresh brain samples. J Biophotonics.
2017;10(3):404-414. https://doi.org/10.1002/jbio.201500323
196. Ji M, Lewis S, Camelo-Piragua S, et al. Detection of human brain
tumor infiltration with quantitative stimulated Raman scattering
microscopy. Sci Transl Med. 2015;7(309):309ra163-309ra163.
https://doi.org/10.1126/scitranslmed.aab0195
197. Tanahashi K, Natsume A, Ohka F, et al. Assessment of tumor cells
in a mouse model of diffuse infiltrative glioma by Raman spectroscopy.
Biomed Res Int. 2014;2014:860241. https://doi.org/10.1155/
2014/860241
198. Jermyn M, Desroches J, Mercier J, et al. Raman spectroscopy
detects distant invasive brain cancer cells centimeters beyond MRI
capability in humans. Biomed Opt Express. 2016;7(12):5129-5137.
https://doi.org/10.1364/boe.7.005129
199. Beljebbar A, Dukic S, Amharref N, Manfait M. Ex vivo and in vivo
diagnosis of C6 glioblastoma development by Raman spectroscopy
coupled to a microprobe. Anal Bioanal Chem. 2010;398(1):477-487.
https://doi.org/10.1007/s00216-010-3910-6
200. Bae K, Zheng W, Lin K, et al. Epi-Detected Hyperspectral Stimulated
Raman Scattering Microscopy for Label-Free Molecular Subtyping of
Glioblastomas. Anal Chem. 2018;90(17):10249-10255. https://doi.org/
10.1021/acs.analchem.8b01677
201. Lemoine É, Dallaire F, Yadav R, et al. Feature engineering applied
to intraoperative in vivo Raman spectroscopy sheds light on molecular
processes in brain cancer: a retrospective study of 65 patients. Analyst.
2019;144(22):6517-6532. https://doi.org/10.1039/c9an01144g
202. Livermore LJ, Isabelle M, Bell IM, et al. Raman spectroscopy to
differentiate between fresh tissue samples of glioma and normal brain:
A comparison with 5-ALA-induced fluorescence-guided surgery. J
Neurosurg. 2021;135(2):469-479. https://doi.org/10.3171/
2020.5.JNS20376
203. Kairdolf BA, Bouras A, Kaluzova M, et al. Intraoperative
Spectroscopy with Ultrahigh Sensitivity for Image-Guided Surgery of
Malignant Brain Tumors. Anal Chem. 2016;88(1):858-867.
https://doi.org/10.1021/acs.analchem.5b03453
204. Livermore LJ, Isabelle M, Bell I Mac, et al. Rapid intraoperative
molecular genetic classification of gliomas using Raman spectroscopy.
Neuro-Oncology Adv. 2019;1(1):vdz008. https://doi.org/10.1093/
noajnl/vdz008
205. Sciortino T, Secoli R, D’amico E, et al. Raman spectroscopy and
machine learning for idh genotyping of unprocessed glioma biopsies.
Cancers (Basel). 2021;13(16):1-13. https://doi.org/10.3390/
cancers13164196
206. Uckermann O, Yao W, Juratli TA, et al. IDH1 mutation in human
glioma induces chemical alterations that are amenable to optical Raman
spectroscopy. J Neurooncol. 2018;139(2):261-268. https://doi.org/
10.1007/s11060-018-2883-8
207. Bukva M, Dobra G, Gomez-Perez J, et al. Raman Spectral Signatures
of Serum-Derived Extracellular Vesicle-Enriched Isolates May Support
the Diagnosis of CNS Tumors. Cancers . 2021;13(6).
https://doi.org/10.3390/cancers13061407
208. Abramczyk H, Brozek-Pluska B, Kopec M, Surmacki J, Błaszczyk M,
Radek M. Redox Imbalance and Biochemical Changes in Cancer by
Probing Redox-Sensitive Mitochondrial Cytochromes in Label-Free
Visible Resonance Raman Imaging. Cancers (Basel). 2021;13(5).
https://doi.org/10.3390/cancers13050960
209. Giardina G, Micko A, Bovenkamp D, et al. Morpho-Molecular
Metabolic Analysis and Classification of Human Pituitary Gland and
Adenoma Biopsies Based on Multimodal Optical Imaging. Cancers
(Basel). 2021;13(13). https://doi.org/10.3390/cancers13133234
210. Abramczyk H, Imiela A, Surmacki J. Novel strategies of Raman
imaging for monitoring intracellular retinoid metabolism in cancer cells.
J Mol Liq. 2021;334:116033. https://doi.org/10.1016/j.molliq.
2021.116033
211. Nair JB, Mohapatra S, Joseph MM, et al. Tracking the Footprints of
Paclitaxel Delivery and Mechanistic Action via SERS Trajectory in
Glioblastoma Cells. ACS Biomater Sci Eng. 2020;6(9):5254-5263.
https://doi.org/10.1021/acsbiomaterials.0c00717
212. Manciu FS, Guerrero J, Bennet KE, et al. Assessing
Nordihydroguaiaretic Acid Therapeutic Effect for Glioblastoma
Multiforme. Sensors (Basel). 2022;22(7). https://doi.org/10.3390/
s22072643
213. Li J, Wang C, Yao Y, et al. Label-free discrimination of glioma brain
tumors in different stages by surface enhanced Raman scattering.
Talanta. 2020;216:120983. https://doi.org/10.1016/j.talanta.2020.
120983
214. Zhou Y, Liu C-H, Wu B, et al. Optical biopsy identification and
grading of gliomas using label-free visible resonance Raman
spectroscopy. J Biomed Opt. 2019;24(09):095001. https://doi.org/
10.1117/1.JBO.24.9.095001
215. Morais CLM, Lilo T, Ashton KM, et al. Determination of meningioma
brain tumour grades using Raman microspectroscopy imaging. Analyst.
2019;144(23):7024-7031. https://doi.org/10.1039/C9AN01551E
216. Lilo T, Morais CLM, Ashton KM, et al. Raman hyperspectral imaging
coupled to three-dimensional discriminant analysis: Classification of
meningiomas brain tumour grades. Spectrochim Acta Part A Mol Biomol
Spectrosc. 2022;273:121018. https://doi.org/10.1016/j.saa.2022.
121018
217. Zhang L, Zhou Y, Wu B, et al. Intraoperative detection of human
meningioma using a handheld visible resonance Raman analyzer. Lasers
Med Sci. 2021. https://doi.org/10.1007/s10103-021-03390-2
218. Banerjee HN, Banerji A, Banerjee AN, et al. Deciphering the Finger
Prints of Brain Cancer Glioblastoma Multiforme from Four Different
Patients by Using Near Infrared Raman Spectroscopy. J Cancer Sci Ther.
2015;7(2):44-47. https://doi.org/10.4172/1948-5956.1000323
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 24 of 32
219. Bergner N, Medyukhina A, Geiger KD, et al. Hyperspectral unmixing
of Raman micro-images for assessment of morphological and chemical
parameters in non-dried brain tumor specimens. Anal Bioanal Chem.
2013;405(27):8719-8728. https://doi.org/10.1007/s00216-013-7257-7
220. Bergner N, Krafft C, Geiger KD, Kirsch M, Schackert G, Popp J.
Unsupervised unmixing of Raman microspectroscopic images for
morphochemical analysis of non-dried brain tumor specimens. Anal
Bioanal Chem. 2012;403(3):719-725. https://doi.org/10.1007/s00216-
012-5858-1
221. Zhang J, Fan Y, He M, et al. Accuracy of Raman spectroscopy in
differentiating brain tumor from normal brain tissue. Oncotarget.
2017;8(22):36824-36831. https://doi.org/10.18632/oncotarget.15975
222. Wills H, Kast R, Stewart C, et al. Raman spectroscopy detects and
distinguishes neuroblastoma and related tissues in fresh and (banked)
frozen specimens. J Pediatr Surg. 2009;44(2):386-391.
https://doi.org/10.1016/j.jpedsurg.2008.10.095
223. Rabah R, Weber R, Serhatkulu GK, et al. Diagnosis of
neuroblastoma and ganglioneuroma using Raman spectroscopy. J
Pediatr Surg. 2008;43(1):171-176. https://doi.org/10.1016/j.jpedsurg.
2007.09.040
224. Ricciardi V, Perna G, Lasalvia M, et al. Raman micro-spectroscopy
investigation on the effects of X-rays and polyphenols in human
neuroblastoma cells. In: Clinical and Preclinical Optical Diagnostics II.
Optical Society of America; 2019:11073_35. https://doi.org/10.1117/
12.2526590
225. Polis B, Imiela A, Polis L, Abramczyk H. Raman spectroscopy for
medulloblastoma. Childs Nerv Syst. 2018;34(12):2425-2430.
https://doi.org/10.1007/s00381-018-3906-7
226. Bovenkamp D, Micko A, Püls J, et al. Line Scan Raman
Microspectroscopy for Label-Free Diagnosis of Human Pituitary
Biopsies. Molecules. 2019;24(19). https://doi.org/10.3390/molecules
24193577
227. Das D, Bhattacharjee K, Barman MJ, et al. Pathologic evidence of
retinoblastoma seeds supported by field emission scanning electron
microscopy and Raman spectroscopy. Indian J Ophthalmol.
2021;69(12):3612-3617. https://doi.org/10.4103/ijo.IJO_436_21
228. Kirsch M, Schackert G, Salzer R, Krafft C. Raman spectroscopic
imaging for in vivo detection of cerebral brain metastases. Anal Bioanal
Chem. 2010;398(4):1707-1713. https://doi.org/10.1007/s00216-010-
4116-7
229. Klamminger GG, Klein K, Mombaerts L, et al. Differentiation of
primary CNS lymphoma and glioblastoma using Raman spectroscopy
and machine learning algorithms. Free Neuropathol. 2021;2(SE-Original
Papers):26. https://doi.org/10.17879/freeneuropathology-2021-3458
230. Doran CE, Frank CB, McGrath S, Packer RA. Use of Handheld Raman
Spectroscopy for Intraoperative Differentiation of Normal Brain Tissue
From Intracranial Neoplasms in Dogs. Front Vet Sci. 2022;8.
https://doi.org/10.3389/fvets.2021.819200
231. Jermyn M, Mercier J, Aubertin K, et al. Highly Accurate Detection
of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical
Spectroscopy. Cancer Res. 2017;77(14):3942-3950. https://doi.org/
10.1158/0008-5472.CAN-17-0668
232. Desroches J, Jermyn M, Pinto M, et al. A new method using Raman
spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep.
2018;8(1):1792. https://doi.org/10.1038/s41598-018-20233-3
233. Lakomkin N, Hadjipanayis CG. The Use of Spectroscopy Handheld
Tools in Brain Tumor Surgery: Current Evidence and Techniques. Front
Surg. 2019;6:30. https://doi.org/10.3389/fsurg.2019.00030
234. Desroches J, Jermyn M, Mok K, et al. Characterization of a Raman
spectroscopy probe system for intraoperative brain tissue classification.
Biomed Opt Express. 2015;6(7):2380-2397. https://doi.org/10.1364/
BOE.6.002380
235. Karabeber H, Huang R, Iacono P, et al. Guiding brain tumor
resection using surface-enhanced Raman scattering nanoparticles and a
hand-held Raman scanner. ACS Nano. 2014;8(10):9755-9766.
https://doi.org/10.1021/nn503948b
236. Stevens OAC, Hutchings J, Gray W, Day JC. A low background
Raman probe for optical biopsy of brain tissue. In: Proc.SPIE. Vol 8939. ;
2014. https://doi.org/10.1117/12.2044139
237. Desroches J, Lemoine É, Pinto M, et al. Development and first in-
human use of a Raman spectroscopy guidance system integrated with a
brain biopsy needle. J Biophotonics. 2019;12(3):1-7. https://doi.org/
10.1002/jbio.201800396
238. Stables R, Clemens G, Butler HJ, et al. Feature driven classification
of Raman spectra for real-time spectral brain tumour diagnosis using
sound. Analyst. 2017;142(1):98-109. https://doi.org/10.1039/
C6AN01583B
239. Nicolson F, Andreiuk B, Andreou C, Hsu H-T, Rudder S, Kircher MF.
Non-invasive In Vivo Imaging of Cancer Using Surface-Enhanced
Spatially Offset Raman Spectroscopy (SESORS). Theranostics.
2019;9(20):5899-5913. https://doi.org/10.7150/thno.36321
240. Devpura S, Thakur JS, Poulik JM, Rabah R, Naik VM, Naik R. Raman
spectroscopic investigation of frozen and deparaffinized tissue sections
of pediatric tumors: neuroblastoma and ganglioneuroma. J Raman
Spectrosc. 2013;44(3):370-376. https://doi.org/10.1002/jrs.4223
241. Fullwood LM, Clemens G, Griffiths D, et al. Investigating the use of
Raman and immersion Raman spectroscopy for spectral histopathology
of metastatic brain cancer and primary sites of origin. Anal Methods.
2014;6(12):3948-3961. https://doi.org/10.1039/c3ay42190b
242. Klamminger GG, Gérardy J-J, Jelke F, et al. Application of Raman
spectroscopy for detection of histologically distinct areas in formalin-
fixed paraffin-embedded glioblastoma. Neuro-Oncology Adv.
2021;3(1):vdab077. https://doi.org/10.1093/noajnl/vdab077
243. Mehta K, Atak A, Sahu A, Srivastava S, C MK. An early investigative
serum Raman spectroscopy study of meningioma. Analyst.
2018;143(8):1916-1923. https://doi.org/10.1039/C8AN00224J
244. Chen C, Wu W, Chen C, et al. Rapid diagnosis of lung cancer and
glioma based on serum Raman spectroscopy combined with deep
learning. J Raman Spectrosc. 2021;52(11):1798-1809. https://doi.org/
10.1002/jrs.6224
245. Le Reste P, Pilalis E, Aubry M, et al. Integration of Raman spectra
with transcriptome data in glioblastoma multiforme defines tumour
subtypes and predicts patient outcome. J Cell Mol Med.
2021;(August):10846-10856. https://doi.org/10.1111/jcmm.16902
246. Selkoe DJ. Folding proteins in fatal ways. Nature.
2003;426(6968):900-904. https://doi.org/10.1038/nature02264
247. Chiti F, Dobson CM. Protein Misfolding, Functional Amyloid, and
Human Disease. Annu Rev Biochem. 2006;75(1):333-366.
https://doi.org/10.1146/annurev.biochem.75.101304.123901
248. Paul TJ, John H, H. FK. Toxic Proteins in Neurodegenerative Disease.
Science (80- ). 2002;296(5575):1991-1995. https://doi.org/10.1126/
science.1067122
249. Miller LM. Chapter 5 - Infrared spectroscopy and imaging for
understanding neurodegenerative protein-misfolding diseases. In:
Ozaki Y, Baranska M, Lednev IK, Wood BRBT-VS in PR, eds. Academic
Press; 2020:121-142. https://doi.org/10.1016/B978-0-12-818610-
7.00005-0
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 25 of 32
250. Paraskevaidi M, Martin-Hirsch PL, Martin FL. Vibrational
spectroscopy: a promising approach to discriminate neurodegenerative
disorders. Mol Neurodegener. 2018;13(1):20. https://doi.org/
10.1186/s13024-018-0252-x
251. Paraskevaidi M, Martin-Hirsch PL, Martin FL. Progress and
Challenges in the Diagnosis of Dementia: A Critical Review. ACS Chem
Neurosci. 2018;9(3):446-461. https://doi.org/10.1021/acschemneuro.
8b00007
252. Mitchell AL, Gajjar KB, Theophilou G, Martin FL, Martin-Hirsch PL.
Vibrational spectroscopy of biofluids for disease screening or diagnosis:
Translation from the laboratory to a clinical setting. J Biophotonics.
2014;7(3-4):153-165. https://doi.org/10.1002/jbio.201400018
253. Lopes J, Correia M, Martins I, et al. FTIR and Raman Spectroscopy
Applied to Dementia Diagnosis Through Analysis of Biological Fluids. J
Alzheimers Dis. 2016;52(3):801-812. https://doi.org/10.3233/JAD-
151163
254. Paraskevaidi M, Morais CLM, Lima KMG, et al. Differential diagnosis
of Alzheimer’s disease using spectrochemical analysis of blood. Proc
Natl Acad Sci U S A. 2017;114(38):E7929-E7938. https://doi.org/
10.1073/pnas.1701517114
255. Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV
Resonance Raman Investigations of Peptide and Protein Structure and
Dynamics. Chem Rev. 2012;112(5):2604-2628. https://doi.org/
10.1021/cr200198a
256. Lednev IK, Ermolenkov V V, He W, Xu M. Deep-UV Raman
spectrometer tunable between 193 and 205 nm for structural
characterization of proteins. Anal Bioanal Chem. 2005;381(2):431-437.
https://doi.org/10.1007/s00216-004-2991-5
257. Barron LD, Hecht L, Blanch EW, Bell AF. Solution structure and
dynamics of biomolecules from Raman optical activity. Prog Biophys Mol
Biol. 2000;73(1):1-49. https://doi.org/10.1016/S0079-6107(99)00017-6
258. Barron LD, Buckingham AD. Rayleigh and Raman scattering from
optically active molecules. Mol Phys. 1971;20(6):1111-1119.
https://doi.org/10.1080/00268977100101091
259. Martial B, Lefèvre T, Auger M. Understanding amyloid fibril
formation using protein fragments: structural investigations via
vibrational spectroscopy and solid-state NMR. Biophys Rev.
2018;10(4):1133-1149. https://doi.org/10.1007/s12551-018-0427-2
260. Summers KL, Fimognari N, Hollings A, et al. A Multimodal
Spectroscopic Imaging Method To Characterize the Metal and
Macromolecular Content of Proteinaceous Aggregates (“Amyloid
Plaques”). Biochemistry. 2017;56(32):4107-4116. https://doi.org/
10.1021/acs.biochem.7b00262
261. Luo Z, Xu H, Liu L, Ohulchanskyy TY, Qu J. Optical Imaging of Beta-
Amyloid Plaques in Alzheimer’s Disease. Biosensors. 2021;11(8):255.
https://doi.org/10.3390/bios11080255
262. Ghosh C, Pramanik D, Mukherjee S, Dey A, Dey SG. Interaction of
NO with Cu and Heme-Bound Aβ Peptides Associated with Alzheimer’s
Disease. Inorg Chem. 2013;52(1):362-368. https://doi.org/
10.1021/ic302131n
263. Moran SD, Zanni MT. How to Get Insight into Amyloid Structure and
Formation from Infrared Spectroscopy. J Phys Chem Lett.
2014;5(11):1984-1993. https://doi.org/10.1021/jz500794d
264. Li H, Lantz R, Du D. Vibrational Approach to the Dynamics and
Structure of Protein Amyloids. Molecules. 2019;24(1).
https://doi.org/10.3390/molecules24010186
265. Ma J, Pazos IM, Zhang W, Culik RM, Gai F. Site-Specific Infrared
Probes of Proteins. Annu Rev Phys Chem. 2015;66(1):357-377.
https://doi.org/10.1146/annurev-physchem-040214-121802
266. Bloem R, Koziol K, Waldauer SA, et al. Ligand Binding Studied by 2D
IR Spectroscopy Using the Azidohomoalanine Label. J Phys Chem B.
2012;116(46):13705-13712. https://doi.org/10.1021/jp3095209
267. Wang Z, Ye J, Zhang K, et al. Rapid Biomarker Screening of
Alzheimer’s Disease by Interpretable Machine Learning and Graphene-
Assisted Raman Spectroscopy. ACS Nano. 2022;16(4):6426-6436.
https://doi.org/10.1021/acsnano.2c00538
268. Hanlon EB, Manoharan R, Koo TW, et al. Prospects for in vivo
Raman spectroscopy. Phys Med Biol. 2000;45(2):R1-59.
https://doi.org/10.1088/0031-9155/45/2/201
269. Dong J, Atwood CS, Anderson VE, et al. Metal Binding and Oxidation
of Amyloid-β within Isolated Senile Plaque Cores: Raman Microscopic
Evidence. Biochemistry. 2003;42(10):2768-2773. https://doi.org/
10.1021/bi0272151
270. Sudworth CD, M.D. NK. Raman spectroscopy of Alzheimer’s
diseased tissue. In: Proc.SPIE. Vol 5321. ; 2004. https://doi.org/
10.1117/12.552869
271. Chen P, Shen A, Zhao W, Baek S-J, Yuan H, Hu J. Raman signature
from brain hippocampus could aid Alzheimer’s disease diagnosis. Appl
Opt. 2009;48(24):4743-4748. https://doi.org/10.1364/ao.48.004743
272. Paul TJ, Hoffmann Z, Wang C, et al. Structural and Mechanical
Properties of Amyloid Beta Fibrils: A Combined Experimental and
Theoretical Approach. J Phys Chem Lett. 2016;7(14):2758-2764.
https://doi.org/10.1021/acs.jpclett.6b01066
273. Xiong J, JiJi RD. Insights into the aggregation mechanism of Aβ(25-
40). Biophys Chem. 2017;220:42-48. https://doi.org/10.1016/
j.bpc.2016.11.003
274. Popova LA, Kodali R, Wetzel R, Lednev IK. Structural Variations in
the Cross-β Core of Amyloid β Fibrils Revealed by Deep UV Resonance
Raman Spectroscopy. J Am Chem Soc. 2010;132(18):6324-6328.
https://doi.org/10.1021/ja909074j
275. Xiong J, Roach CA, Oshokoya OO, et al. Role of Bilayer
Characteristics on the Structural Fate of Aβ(1–40) and Aβ(25–40).
Biochemistry. 2014;53(18):3004-3011. https://doi.org/10.1021/
bi4016296
276. Cunha R, Lafeta L, Fonseca EA, et al. Nonlinear and vibrational
microscopy for label-free characterization of amyloid-β plaques in
Alzheimer’s disease model. Analyst. 2021;146(9):2945-2954.
https://doi.org/10.1039/d1an00074h
277. Buividas R, Dzingelevičius N, Kubiliūtė R, et al. Statistically
quantified measurement of an Alzheimer’s marker by surface-enhanced
Raman scattering. J Biophotonics. 2015;8(7):567-574. https://doi.org/
10.1002/jbio.201400017
278. Park HJ, Cho S, Kim M, Jung YS. Carboxylic Acid-Functionalized,
Graphitic Layer-Coated Three-Dimensional SERS Substrate for Label-
Free Analysis of Alzheimer’s Disease Biomarkers. Nano Lett.
2020;20(4):2576-2584. https://doi.org/10.1021/acs.nanolett.0c00048
279. Xia Y, Padmanabhan P, Sarangapani S, Gulyás B, Vadakke Matham
M. Bifunctional Fluorescent/Raman Nanoprobe for the Early Detection
of Amyloid. Sci Rep. 2019;9(1):8497. https://doi.org/10.1038/s41598-
019-43288-2
280. Zhou Y, Liu J, Zheng T, Tian Y. Label-Free SERS Strategy for In Situ
Monitoring and Real-Time Imaging of Aβ Aggregation Process in Live
Neurons and Brain Tissues. Anal Chem. 2020;92(8):5910-5920.
https://doi.org/10.1021/acs.analchem.9b05837
281. Yu X, Hayden EY, Xia M, et al. Surface enhanced Raman
spectroscopy distinguishes amyloid Β-protein isoforms and
conformational states. Protein Sci. 2018;27(8):1427-1438.
https://doi.org/10.1002/pro.3434
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 26 of 32
282. Bonhommeau S, Talaga D, Hunel J, Cullin C, Lecomte S. Tip-
Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from
Aβ(1-42) Fibrils at the Nanometer Scale. Angew Chem Int Ed Engl.
2017;56(7):1771-1774. https://doi.org/10.1002/anie.201610399
283. D’Andrea C, Foti A, Cottat M, et al. Nanoscale Discrimination
between Toxic and Nontoxic Protein Misfolded Oligomers with Tip-
Enhanced Raman Spectroscopy. Small. 2018;14(36):e1800890.
https://doi.org/10.1002/smll.201800890
284. Michael R, Lenferink A, Vrensen GFJM, Gelpi E, Barraquer RI, Otto
C. Hyperspectral Raman imaging of neuritic plaques and neurofibrillary
tangles in brain tissue from Alzheimer’s disease patients. Sci Rep.
2017;7(1):15603. https://doi.org/10.1038/s41598-017-16002-3
285. Lochocki B, Morrema THJ, Ariese F, Hoozemans JJM, de Boer JF.
The search for a unique Raman signature of amyloid-beta plaques in
human brain tissue from Alzheimer{’}s disease patients. Analyst.
2020;145(5):1724-1736. https://doi.org/10.1039/C9AN02087J
286. El Khoury Y, Schirer A, Patte-Mensah C, et al. Raman Imaging
Reveals Accumulation of Hemoproteins in Plaques from Alzheimer’s
Diseased Tissues. ACS Chem Neurosci. 2021;12(15):2940-2945.
https://doi.org/10.1021/acschemneuro.1c00289
287. Röhr D, Boon BDC, Schuler M, et al. Label-free vibrational imaging
of different Aβ plaque types in Alzheimer’s disease reveals sequential
events in plaque development. Acta Neuropathol Commun.
2020;8(1):222. https://doi.org/10.1186/s40478-020-01091-5
288. Palombo F, Tamagnini F, Jeynes JCG, et al. Detection of Aβ plaque-
associated astrogliosis in Alzheimer’s disease brain by spectroscopic
imaging and immunohistochemistry. Analyst. 2018;143(4):850-857.
https://doi.org/10.1039/c7an01747b
289. Kiskis J, Fink H, Nyberg L, Thyr J, Li J-Y, Enejder A. Plaque-associated
lipids in Alzheimer’s diseased brain tissue visualized by nonlinear
microscopy. Sci Rep. 2015;5(1):13489. https://doi.org/10.1038/
srep13489
290. Li S, Luo Z, Zhang R, et al. Distinguishing Amyloid β-Protein in a
Mouse Model of Alzheimer’s Disease by Label-Free Vibrational Imaging.
Biosensors. 2021;11(10):365. https://doi.org/10.3390/bios11100365
291. Fonseca EA, Lafetá L, Cunha R, et al. A fingerprint of amyloid
plaques in a bitransgenic animal model of Alzheimer{’}s disease
obtained by statistical unmixing analysis of hyperspectral Raman data.
Analyst. 2019;144(23):7049-7056. https://doi.org/10.1039/
C9AN01631G
292. Lochocki B, Boon BDC, Verheul SR, et al. Multimodal, label-free
fluorescence and Raman imaging of amyloid deposits in snap-frozen
Alzheimer’s disease human brain tissue. Commun Biol. 2021;4(1):474.
https://doi.org/10.1038/s42003-021-01981-x
293. Tabatabaei M, Caetano FA, Pashee F, Ferguson SSG, Lagugné-
Labarthet F. Tip-enhanced Raman spectroscopy of amyloid β at
neuronal spines. Analyst. 2017;142(23):4415-4421. https://doi.org/
10.1039/C7AN00744B
294. Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of
Label-Free Optical Imaging in Alzheimer’s Disease Screening and
Diagnosis. Front Aging Neurosci. 2021;13:455. https://doi.org/10.3389/
fnagi.2021.699024
295. Ji M, Arbel M, Zhang L, et al. Label-free imaging of amyloid plaques
in Alzheimer’s disease with stimulated Raman scattering microscopy. Sci
Adv. 2018;4(11):eaat7715. https://doi.org/10.1126/sciadv.aat7715
296. Michael R, Otto C, Lenferink A, et al. Absence of amyloid-beta in
lenses of Alzheimer patients: A confocal Raman microspectroscopic
study. Exp Eye Res. 2014;119:44-53. https://doi.org/10.1016/
j.exer.2013.11.016
297. Fonseca EA, Lafeta L, Luiz Campos J, et al. Micro-Raman
spectroscopy of lipid halo and dense-core amyloid plaques: aging
process characterization in the Alzheimer{’}s disease APPswePS1ΔE9
mouse model. Analyst. 2021;146(19):6014-6025. https://doi.org/
10.1039/D1AN01078F
298. Lee JH, Kim DH, Song WK, Oh M-K, Ko D-K. Label-free imaging and
quantitative chemical analysis of Alzheimer’s disease brain samples with
multimodal multiphoton nonlinear optical microspectroscopy. J Biomed
Opt. 2015;20(5):1-7. https://doi.org/10.1117/1.JBO.20.5.056013
299. Huang C-C, Isidoro C. Raman Spectrometric Detection Methods for
Early and Non-Invasive Diagnosis of Alzheimer’s Disease. J Alzheimers
Dis. 2017;57(4):1145-1156. https://doi.org/10.3233/JAD-161238
300. Hrubešová K, Fousková M, Habartová L, et al. Search for biomarkers
of Alzheimer’s disease: Recent insights, current challenges and future
prospects. Clin Biochem. 2019;72:39-51. https://doi.org/10.1016/
j.clinbiochem.2019.04.002
301. Eravuchira PJ, Banchelli M, D’Andrea C, Angelis M De, Matteini P,
Gannot I. Hollow core photonic crystal fiber-assisted Raman
spectroscopy as a tool for the detection of Alzheimer’s disease
biomarkers. J Biomed Opt. 2020;25(7):1-10. https://doi.org/10.1117/
1.JBO.25.7.077001
302. Oyarzún MP, Tapia-Arellano A, Cabrera P, Jara-Guajardo P, Kogan
MJ. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection
of Alzheimer’s Disease. Sensors (Basel). 2021;21(6). https://doi.org/
10.3390/s21062067
303. Cennamo G, Montorio D, Morra VB, et al. Surface-enhanced Raman
spectroscopy of tears: toward a diagnostic tool for neurodegenerative
disease identification. J Biomed Opt. 2020;25(8):1-12. https://doi.org/
10.1117/1.JBO.25.8.087002
304. Ralbovsky NM, Halámková L, Wall K, Anderson-Hanley C, Lednev IK.
Screening for Alzheimer’s Disease Using Saliva: A New Approach Based
on Machine Learning and Raman Hyperspectroscopy. J Alzheimers Dis.
2019;71(4):1351-1359. https://doi.org/10.3233/JAD-190675
305. Ryzhikova E, Ralbovsky NM, Sikirzhytski V, et al. Raman
spectroscopy and machine learning for biomedical applications:
Alzheimer’s disease diagnosis based on the analysis of cerebrospinal
fluid. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;248:119188.
https://doi.org/10.1016/j.saa.2020.119188
306. Chou I-H, Benford M, Beier HT, et al. Nanofluidic Biosensing for β-
Amyloid Detection Using Surface Enhanced Raman Spectroscopy. Nano
Lett. 2008;8(6):1729-1735. https://doi.org/10.1021/nl0808132
307. Stiebing C, Jahn IJ, Schmitt M, et al. Biochemical Characterization
of Mouse Retina of an Alzheimer’s Disease Model by Raman
Spectroscopy. ACS Chem Neurosci. 2020;11(20):3301-3308.
https://doi.org/10.1021/acschemneuro.0c00420
308. Carmona P, Molina M, Calero M, Bermejo-Pareja F, Martínez-
Martín P, Toledano A. Discrimination analysis of blood plasma
associated with Alzheimer’s disease using vibrational spectroscopy. J
Alzheimers Dis. 2013;34(4):911-920. https://doi.org/10.3233/JAD-
122041
309. Carmona P, Molina M, López-Tobar E, Toledano A. Vibrational
spectroscopic analysis of peripheral blood plasma of patients with
Alzheimer’s disease. Anal Bioanal Chem. 2015;407(25):7747-7756.
https://doi.org/10.1007/s00216-015-8940-7
310. Paraskevaidi M, Morais CLM, Halliwell DE, et al. Raman
Spectroscopy to Diagnose Alzheimer’s Disease and Dementia with Lewy
Bodies in Blood. ACS Chem Neurosci. 2018;9(11):2786-2794.
https://doi.org/10.1021/acschemneuro.8b00198
311. Habartová L, Hrubešová K, Syslová K, et al. Blood-based molecular
signature of Alzheimer’s disease via spectroscopy and metabolomics.
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 27 of 32
Clin Biochem. 2019;72:58-63. https://doi.org/10.1016/j.clinbiochem.
2019.04.004
312. Ralbovsky NM, Fitzgerald GS, McNay EC, Lednev IK. Towards
development of a novel screening method for identifying Alzheimer’s
disease risk: Raman spectroscopy of blood serum and machine learning.
Spectrochim Acta A Mol Biomol Spectrosc. 2021;254:119603.
https://doi.org/10.1016/j.saa.2021.119603
313. Demeritte T, Viraka Nellore BP, Kanchanapally R, et al. Hybrid
Graphene Oxide Based Plasmonic-Magnetic Multifunctional
Nanoplatform for Selective Separation and Label-Free Identification of
Alzheimer’s Disease Biomarkers. ACS Appl Mater Interfaces.
2015;7(24):13693-13700. https://doi.org/10.1021/acsami.5b03619
314. Yang J-K, Hwang I-J, Cha MG, et al. Reaction Kinetics-Mediated
Control over Silver Nanogap Shells as Surface-Enhanced Raman
Scattering Nanoprobes for Detection of Alzheimer’s Disease
Biomarkers. Small. 2019;15(19):e1900613. https://doi.org/10.1002/
smll.201900613
315. Yu D, Yin Q, Wang J, et al. SERS-Based Immunoassay Enhanced with
Silver Probe for Selective Separation and Detection of Alzheimer’s
Disease Biomarkers. Int J Nanomedicine. 2021;16:1901-1911.
https://doi.org/10.2147/IJN.S293042
316. Ryzhikova E, Kazakov O, Halamkova L, et al. Raman spectroscopy of
blood serum for Alzheimer’s disease diagnostics: specificity relative to
other types of dementia. J Biophotonics. 2015;8(7):584-596.
https://doi.org/10.1002/jbio.201400060
317. Hao N, Wang Z, Liu P, et al. Acoustofluidic multimodal diagnostic
system for Alzheimer’s disease. Biosens Bioelectron. 2022;196:113730.
https://doi.org/10.1016/j.bios.2021.113730
318. Carlomagno C, Cabinio M, Picciolini S, Gualerzi A, Baglio F, Bedoni
M. SERS-based biosensor for Alzheimer disease evaluation through the
fast analysis of human serum. J Biophotonics. 2020;13(3):e201960033.
https://doi.org/10.1002/jbio.201960033
319. Chen P, Tian Q, Baek SJ, et al. Laser Raman detection of platelet as
a non-invasive approach for early and differential diagnosis of
Alzheimer’s disease. Laser Phys Lett. 2011;8(7):547-552.
https://doi.org/10.1002/lapl.201110016
320. Monfared AMT, Tiwari VS, Trudeau VL, Anis H. Surface-enhanced
raman scattering spectroscopy for the detection of glutamate and γ-
Aminobutyric acid in serum by partial least squares analysis. IEEE
Photonics J. 2015;7(3). https://doi.org/10.1109/JPHOT.2015.2423284
321. Ardini M, Huang J-A, Sánchez CS, et al. Live Intracellular
Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using
Alkyne-Silver Nanoparticles Clusters. Sci Rep. 2018;8(1):12652.
https://doi.org/10.1038/s41598-018-31165-3
322. Lee W, Kang B-H, Yang H, et al. Spread spectrum SERS allows label-
free detection of attomolar neurotransmitters. Nat Commun.
2021;12(1):159. https://doi.org/10.1038/s41467-020-20413-8
323. Moody AS, Sharma B. Multi-metal, Multi-wavelength Surface-
Enhanced Raman Spectroscopy Detection of Neurotransmitters. ACS
Chem Neurosci. 2018;9(6):1380-1387. https://doi.org/10.1021/
acschemneuro.8b00020
324. Moody AS, Baghernejad PC, Webb KR, Sharma B. Surface Enhanced
Spatially Offset Raman Spectroscopy Detection of Neurochemicals
Through the Skull. Anal Chem. 2017;89(11):5688-5692. https://doi.org/
10.1021/acs.analchem.7b00985
325. Moody AS, Payne TD, Barth BA, Sharma B. Surface-enhanced
spatially-offset Raman spectroscopy (SESORS) for detection of
neurochemicals through the skull at physiologically relevant
concentrations. Analyst. 2020;145(5):1885-1893. https://doi.org/
10.1039/C9AN01708A
326. Cao X, Qin M, Li P, et al. Probing catecholamine neurotransmitters
based on iron-coordination surface-enhanced resonance Raman
spectroscopy label. Sensors Actuators B Chem. 2018;268:350-358.
https://doi.org/10.1016/j.snb.2018.04.117
327. Zhou B, Li X, Tang X, Li P, Yang L, Liu J. Highly Selective and
Repeatable Surface-Enhanced Resonance Raman Scattering Detection
for Epinephrine in Serum Based on Interface Self-Assembled 2D
Nanoparticles Arrays. ACS Appl Mater Interfaces. 2017;9(8):7772-7779.
https://doi.org/10.1021/acsami.6b15205
328. Ciubuc JD, Bennet KE, Qiu C, Alonzo M, Durrer WG, Manciu FS.
Raman Computational and Experimental Studies of Dopamine
Detection. Biosensors. 2017;7(4). https://doi.org/10.3390/bios7040043
329. Silwal AP, Yadav R, Sprague JE, Lu HP. Raman Spectroscopic
Signature Markers of Dopamine–Human Dopamine Transporter
Interaction in Living Cells. ACS Chem Neurosci. 2017;8(7):1510-1518.
https://doi.org/10.1021/acschemneuro.7b00048
330. Manciu FS, Manciu M, Ciubuc JD, et al. Simultaneous Detection of
Dopamine and Serotonin-A Comparative Experimental and Theoretical
Study of Neurotransmitter Interactions. Biosensors. 2018;9(1).
https://doi.org/10.3390/bios9010003
331. Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a
Nanoparticle Array Stabilized by Rigid Probes for the Quantification of
Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl.
March 2022:e202117125. https://doi.org/10.1002/anie.202117125
332. Miura T, Suzuki K, Kohata N, Takeuchi H. Metal Binding Modes of
Alzheimer’s Amyloid β-Peptide in Insoluble Aggregates and Soluble
Complexes. Biochemistry. 2000;39(23):7024-7031.
https://doi.org/10.1021/bi0002479
333. Miura T, Suzuki K, Takeuchi H. Binding of iron(III) to the single
tyrosine residue of amyloid β-peptide probed by Raman spectroscopy. J
Mol Struct. 2001;598:79-84. https://doi.org/10.1016/S0022-
2860(01)00807-9
334. Yugay D, Goronzy DP, Kawakami LM, et al. Copper Ion Binding Site
in β-Amyloid Peptide. Nano Lett. 2016;16(10):6282-6289.
https://doi.org/10.1021/acs.nanolett.6b02590
335. Ren H, Zhang Y, Guo S, et al. Identifying Cu(ii)–amyloid peptide
binding intermediates in the early stages of aggregation by resonance
Raman spectroscopy: a simulation study. Phys Chem Chem Phys.
2017;19(46):31103-31112. https://doi.org/10.1039/C7CP06206K
336. Suzuki K, Miura T, Takeuchi H. Inhibitory effect of copper(II) on
zinc(II)-induced aggregation of amyloid beta-peptide. Biochem Biophys
Res Commun. 2001;285(4):991-996. https://doi.org/10.1006/
bbrc.2001.5263
337. Miura T, Mitani S, Takanashi C, Mochizuki N. Copper selectively
triggers β-sheet assembly of an N-terminally truncated amyloid β-
peptide beginning with Glu3. J Inorg Biochem. 2004;98(1):10-14.
https://doi.org/10.1016/j.jinorgbio.2003.10.008
338. Syme CD, Blanch EW, Holt C, et al. A Raman optical activity study of
rheomorphism in caseins, synucleins and tau. New insight into the
structure and behaviour of natively unfolded proteins. Eur J Biochem.
2002;269(1):148-156. https://doi.org/10.1046/j.0014-
2956.2001.02633.x
339. Ramachandran G, Milán-Garcés EA, Udgaonkar JB, Puranik M.
Resonance Raman Spectroscopic Measurements Delineate the
Structural Changes that Occur during Tau Fibril Formation. Biochemistry.
2014;53(41):6550-6565. https://doi.org/10.1021/bi500528x
340. Zengin A, Tamer U, Caykara T. A SERS-based sandwich assay for
ultrasensitive and selective detection of Alzheimer’s tau protein.
Biomacromolecules. 2013;14(9):3001-3009. https://doi.org/10.1021/
bm400968x
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 28 of 32
341. Maurer V, Frank C, Porsiel JC, Zellmer S, Garnweitner G, Stosch R.
Step‐by‐step monitoring of a magnetic and SERS‐active immunosensor
assembly for purification and detection of tau protein. J Biophotonics.
2020;13(3). https://doi.org/10.1002/jbio.201960090
342. Sereda V, Lednev IK. Polarized Raman Spectroscopy of Aligned
Insulin Fibrils. J Raman Spectrosc. 2014;45(8):665-671. https://doi.org/
10.1002/jrs.4523
343. Deckert-Gaudig T, Kurouski D, Hedegaard MAB, Singh P, Lednev IK,
Deckert V. Spatially resolved spectroscopic differentiation of hydrophilic
and hydrophobic domains on individual insulin amyloid fibrils. Sci Rep.
2016;6(1):33575. https://doi.org/10.1038/srep33575
344. Kurouski D, Deckert-Gaudig T, Deckert V, Lednev IK. Surface
characterization of insulin protofilaments and fibril polymorphs using
tip-enhanced Raman spectroscopy (TERS). Biophys J. 2014;106(1):263-
271. https://doi.org/10.1016/j.bpj.2013.10.040
345. Kurouski D, Sorci M, Postiglione T, Belfort G, Lednev IK. Detection
and structural characterization of insulin prefibrilar oligomers using
surface enhanced Raman spectroscopy. Biotechnol Prog.
2014;30(2):488-495. https://doi.org/10.1002/btpr.1852
346. Rivas-Arancibia S, Rodríguez-Martínez E, Badillo-Ramírez I, López-
González U, Saniger JM. Structural Changes of Amyloid Beta in
Hippocampus of Rats Exposed to Ozone: A Raman Spectroscopy Study.
Front Mol Neurosci. 2017;10:137. https://doi.org/10.3389/fnmol.
2017.00137
347. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE. Raman
Spectroscopic Characterization of Secondary Structure in Natively
Unfolded Proteins: α-Synuclein. J Am Chem Soc. 2004;126(8):2399-
2408. https://doi.org/10.1021/ja0356176
348. Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE.
Secondary Structure of α-Synuclein Oligomers: Characterization by
Raman and Atomic Force Microscopy. J Mol Biol. 2006;355(1):63-71.
https://doi.org/10.1016/j.jmb.2005.10.071
349. Flynn JD, McGlinchey RP, Walker RL 3rd, Lee JC. Structural features
of α-synuclein amyloid fibrils revealed by Raman spectroscopy. J Biol
Chem. 2018;293(3):767-776. https://doi.org/10.1074/jbc.M117.812388
350. Sevgi F, Brauchle EM, Carvajal Berrio DA, et al. Imaging of α-
Synuclein Aggregates in a Rat Model of Parkinson’s Disease Using
Raman Microspectroscopy. Front cell Dev Biol. 2021;9:664365.
https://doi.org/10.3389/fcell.2021.664365
351. Mensch C, Konijnenberg A, Van Elzen R, Lambeir AM, Sobott F,
Johannessen C. Raman optical activity of human α-synuclein in
intrinsically disordered, micelle-bound α-helical, molten globule and
oligomeric β-sheet state. J Raman Spectrosc. 2017;48(7):910-918.
https://doi.org/10.1002/jrs.5149
352. Freitas A, Aroso M, Barros A, et al. Characterization of the Striatal
Extracellular Matrix in a Mouse Model of Parkinson’s Disease.
Antioxidants (Basel, Switzerland). 2021;10(7). https://doi.org/10.3390/
antiox10071095
353. Palanisamy S, Yan L, Zhang X, He T. Surface enhanced Raman
scattering-active worm-like Ag clusters for sensitive and selective
detection of dopamine. Anal Methods. 2015;7(8):3438-3447.
https://doi.org/10.1039/C4AY03061C
354. Lim JW, Kang IJ. Fabrication of chitosan-gold nanocomposites
combined with optical fiber as SERS substrates to detect dopamine
molecules. Bull Korean Chem Soc. 2014;35(1):25-29. https://doi.org/
10.5012/bkcs.2014.35.1.25
355. An J-H, El-Said WA, Yea C-H, Kim T-H, Choi J-W. Surface-enhanced
Raman scattering of dopamine on self-assembled gold nanoparticles. J
Nanosci Nanotechnol. 2011;11(5):4424-4429. https://doi.org/10.1166/
jnn.2011.3688
356. Ranc V, Markova Z, Hajduch M, et al. Magnetically Assisted Surface-
Enhanced Raman Scattering Selective Determination of Dopamine in an
Artificial Cerebrospinal Fluid and a Mouse Striatum Using Fe3O4/Ag
Nanocomposite. Anal Chem. 2014;86(6):2939-2946.
https://doi.org/10.1021/ac500394g
357. Phung V-D, Jung W-S, Nguyen T-A, Kim J-H, Lee S-W. Reliable and
quantitative SERS detection of dopamine levels in human blood plasma
using a plasmonic Au/Ag nanocluster substrate. Nanoscale.
2018;10(47):22493-22503. https://doi.org/10.1039/C8NR06444J
358. Sharma A, Müller J, Schuetze K, et al. Comprehensive Profiling of
Blood Coagulation and Fibrinolysis Marker Reveals Elevated Plasmin-
Antiplasmin Complexes in Parkinson’s Disease. Biology (Basel).
2021;10(8). https://doi.org/10.3390/biology10080716
359. Carlomagno C, Bertazioli D, Gualerzi A, et al. Identification of the
Raman Salivary Fingerprint of Parkinson’s Disease Through the
Spectroscopic- Computational Combinatory Approach. Front Neurosci.
2021;15:704963. https://doi.org/10.3389/fnins.2021.704963
360. Schipper HM, Kwok CS, Rosendahl SM, et al. Spectroscopy of
human plasma for diagnosis of idiopathic Parkinson’s disease. Biomark
Med. 2008;2(3):229-238. https://doi.org/10.2217/17520363.2.3.229
361. Mammadova N, Summers CM, Kokemuller RD, et al. Accelerated
accumulation of retinal α-synuclein (pSer129) and tau,
neuroinflammation, and autophagic dysregulation in a seeded mouse
model of Parkinson’s disease. Neurobiol Dis. 2019;121:1-16.
https://doi.org/10.1016/j.nbd.2018.09.013
362. Tian F, Yang W, Mordes DA, et al. Monitoring peripheral nerve
degeneration in ALS by label-free stimulated Raman scattering imaging.
Nat Commun. 2016;7(1):13283. https://doi.org/10.1038/ncomms13283
363. Picardi G, Spalloni A, Generosi A, et al. Tissue degeneration in ALS
affected spinal cord evaluated by Raman spectroscopy. Sci Rep.
2018;8(1):13110. https://doi.org/10.1038/s41598-018-31469-4
364. Zhang Q-J, Chen Y, Zou X-H, et al. Prognostic analysis of
amyotrophic lateral sclerosis based on clinical features and plasma
surface-enhanced Raman spectroscopy. J Biophotonics.
2019;12(8):e201900012. https://doi.org/10.1002/jbio.201900012
365. Zhang QJ, Chen Y, Zou XH, et al. Promoting identification of
amyotrophic lateral sclerosis based on label-free plasma spectroscopy.
Ann Clin Transl Neurol. 2020;7(10):2010-2018. https://doi.org/10.1002/
acn3.51194
366. Morasso CF, Sproviero D, Mimmi MC, et al. Raman spectroscopy
reveals biochemical differences in plasma derived extracellular vesicles
from sporadic Amyotrophic Lateral Sclerosis patients. Nanomedicine
Nanotechnology, Biol Med. 2020;29:102249. https://doi.org/
10.1016/j.nano.2020.102249
367. Carlomagno C, Banfi PI, Gualerzi A, et al. Human salivary Raman
fingerprint as biomarker for the diagnosis of Amyotrophic Lateral
Sclerosis. Sci Rep. 2020;10(1):10175. https://doi.org/10.1038/s41598-
020-67138-8
368. Miao K, Wei L. Live-Cell Imaging and Quantification of PolyQ
Aggregates by Stimulated Raman Scattering of Selective Deuterium
Labeling. ACS Cent Sci. 2020;6(4):478-486. https://doi.org/
10.1021/acscentsci.9b01196
369. Xiong K, Punihaole D, Asher SA. UV resonance Raman spectroscopy
monitors polyglutamine backbone and side chain hydrogen bonding and
fibrillization. Biochemistry. 2012;51(29):5822-5830. https://doi.org/
10.1021/bi300551b
370. Perney NM, Braddick L, Jurna M, et al. Polyglutamine Aggregate
Structure In Vitro and In Vivo; New Avenues for Coherent Anti-Stokes
Raman Scattering Microscopy. PLoS One. 2012;7(7):e40536.
https://doi.org/10.1371/journal.pone.0040536.
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 29 of 32
371. Huefner A, Kuan W-L, Mason SL, Mahajan S, Barker RA. Serum
Raman spectroscopy as a diagnostic tool in patients with Huntington’s
disease. Chem Sci. 2020;11(2):525-533. https://doi.org/10.1039/
C9SC03711J
372. Muratore M. Raman spectroscopy and partial least squares analysis
in discrimination of peripheral cells affected by Huntington’s disease.
Anal Chim Acta. 2013;793:1-10. https://doi.org/10.1016/
j.aca.2013.06.012
373. Shashilov V, Xu M, Makarava N, Savtchenko R, Baskakov I V, Lednev
IK. Dissecting Structure of Prion Amyloid Fibrils by Hydrogen–Deuterium
Exchange Ultraviolet Raman Spectroscopy. J Phys Chem B.
2012;116(27):7926-7930. https://doi.org/10.1021/jp2122455
374. McColl IH, Blanch EW, Gill AC, et al. A New Perspective on β-Sheet
Structures Using Vibrational Raman Optical Activity: From Poly(l-lysine)
to the Prion Protein. J Am Chem Soc. 2003;125(33):10019-10026.
https://doi.org/10.1021/ja021464v
375. Zhu F, Davies P, Thompsett AR, et al. Raman Optical Activity and
Circular Dichroism Reveal Dramatic Differences in the Influence of
Divalent Copper and Manganese Ions on Prion Protein Folding.
Biochemistry. 2008;47(8):2510-2517. https://doi.org/10.1021/
bi7022893
376. Miura T, Hori-i A, Mototani H, Takeuchi H. Raman Spectroscopic
Study on the Copper(II) Binding Mode of Prion Octapeptide and Its pH
Dependence. Biochemistry. 1999;38(35):11560-11569. https://doi.org/
10.1021/bi9909389
377. Miura T, Hori-i A, Takeuchi H. Metal-dependent α-helix formation
promoted by the glycine-rich octapeptide region of prion protein. FEBS
Lett. 1996;396(2-3):248-252. https://doi.org/10.1016/0014-
5793(96)01104-0
378. Krasnoslobodtsev A V, Portillo AM, Deckert-Gaudig T, Deckert V,
Lyubchenko YL. Nanoimaging for prion related diseases. Prion.
2010;4(4):265-274. https://doi.org/10.4161/pri.4.4.13125
379. Carmona P, Monleón E, Monzón M, Badiola JJ, Monreal J. Raman
Analysis of Prion Protein in Blood Cell Membranes from Naturally
Affected Scrapie Sheep. Chem Biol. 2004;11(6):759-764.
https://doi.org/10.1016/j.chembiol.2004.04.005
380. Pezzotti G, Adachi T, Miyamoto N, et al. Raman Probes for In Situ
Molecular Analyses of Peripheral Nerve Myelination. ACS Chem
Neurosci. 2020;11(15):2327-2339. https://doi.org/10.1021/
acschemneuro.0c00284
381. Carmona P, Ramos JM, De Cózar M, Monreal J. Conformational
features of lipids and proteins in myelin membranes using Raman and
infrared spectroscopy. J Raman Spectrosc. 1987;18(7):473-476.
https://doi.org/10.1002/jrs.1250180704
382. Hu C-R, Zhang D, Slipchenko MN, Cheng J, Hu B. Label-free real-
time imaging of myelination in the Xenopus laevis tadpole by in vivo
stimulated Raman scattering microscopy. J Biomed Opt.
2014;19(8):086005. https://doi.org/10.1117/1.jbo.19.8.086005
383. Turcotte R, Rutledge DJ, Bélanger E, Dill D, Macklin WB, Côté DC.
Intravital assessment of myelin molecular order with polarimetric
multiphoton microscopy. Sci Rep. 2016;6(1):31685. https://doi.org/
10.1038/srep31685
384. Huang J-R, Cheng Y-C, Huang HJ, Chiang H-P. Confocal mapping of
myelin figures with micro-Raman spectroscopy. Appl Phys A.
2017;124(1):58. https://doi.org/10.1007/s00339-017-1450-z
385. Wang H, Fu Y, Zickmund P, Shi R, Cheng J-X. Coherent Anti-Stokes
Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues.
Biophys J. 2005;89(1):581-591. https://doi.org/10.1529/
biophysj.105.061911
386. Fu Y, Huff TB, Wang H-W, Wang H, Cheng J-X. Ex vivo and in vivo
imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman
scattering microscopy. Opt Express. 2008;16(24):19396-19409.
https://doi.org/10.1364/OE.16.019396
387. Lucas A, Poleg S, Klug A, McCullagh EA. Myelination Deficits in the
Auditory Brainstem of a Mouse Model of Fragile X Syndrome. Front
Neurosci. 2021;15:772943. https://doi.org/10.3389/fnins.2021.772943
388. Poulen G, Gerber YN, Perez J-C, et al. Coherent Anti-Stokes Raman
Scattering Microscopy: A Label-Free Method to Compare Spinal Cord
Myelin in Different Species. Front Phys. 2021;9:438.
https://doi.org/10.3389/fphy.2021.665650
389. Ramos IR, Lyng FM, Rehman IU, Sharrack B, Woodroofe MN. The
use of vibrational spectroscopy to study the pathogenesis multiple
sclerosis and other neurological conditions. Appl Spectrosc Rev.
2017;52(10):868-882.
https://doi.org/10.1080/05704928.2017.1336450
390. Ozsvár A, Szipőcs R, Ozsvár Z, et al. Quantitative analysis of lipid
debris accumulation caused by cuprizone induced myelin degradation in
different CNS areas. Brain Res Bull. 2018;137:277-284.
https://doi.org/10.1016/j.brainresbull.2018.01.003
391. Poon KWC, Brideau C, Klaver R, Schenk GJ, Geurts JJ, Stys PK. Lipid
biochemical changes detected in normal appearing white matter of
chronic multiple sclerosis by spectral coherent Raman imaging. Chem
Sci. 2018;9(6):1586-1595. https://doi.org/10.1039/C7SC03992A
392. Poon KW, Brideau C, Schenk GJ, et al. Quantitative biochemical
investigation of various neuropathologies using high-resolution spectral
CARS microscopy. In: Proc.SPIE. Vol 9305. ; 2015. https://doi.org/
10.1117/12.2076654
393. Poon KW, Brideau C, Teo W, et al. Investigation of human multiple
sclerosis lesions using high resolution spectrally unmixed CARS
microscopy. In: Proc.SPIE. Vol 8565. ; 2013. https://doi.org/
10.1117/12.2005504
394. Imitola J, Côté D, Rasmussen S, et al. Multimodal coherent anti-
Stokes Raman scattering microscopy reveals microglia-associated
myelin and axonal dysfunction in multiple sclerosis-like lesions in mice.
J Biomed Opt. 2011;16(2):21109. https://doi.org/10.1117/1.3533312
395. Dessai CVP, Pliss A, Kuzmin AN, Furlani EP, Prasad PN. Coherent
Raman spectroscopic imaging to characterize microglia activation
pathway. J Biophotonics. 2019;12(5):e201800133. https://doi.org/
10.1002/jbio.201800133
396. Fu Y, Frederick TJ, Huff TB, Goings GE, Miller SD, Cheng J-X.
Paranodal myelin retraction in relapsing experimental autoimmune
encephalomyelitis visualized by coherent anti-Stokes Raman scattering
microscopy. J Biomed Opt. 2011;16(10):106006. https://doi.org/
10.1117/1.3638180
397. Gasecka P, Jaouen A, Bioud F-Z, et al. Lipid Order Degradation in
Autoimmune Demyelination Probed by Polarized Coherent Raman
Microscopy. Biophys J. 2017;113(7):1520-1530. https://doi.org/
10.1016/j.bpj.2017.07.033
398. Alba-Arbalat S, Andorra M, Sanchez-Dalmau B, et al. In Vivo
Molecular Changes in the Retina of Patients With Multiple Sclerosis.
Invest Ophthalmol Vis Sci. 2021;62(6):11. https://doi.org/
10.1167/iovs.62.6.11
399. Stiebing C, Schie IW, Knorr F, et al. Nonresonant Raman
spectroscopy of isolated human retina samples complying with laser
safety regulations for in vivo measurements. Neurophotonics.
2019;6(4):41106. https://doi.org/10.1117/1.NPh.6.4.041106
400. Rodionova NN, Allakhverdiev ES, Maksimov G V. Study of myelin
structure changes during the nerve fibers demyelination. PLoS One.
2017;12(9):1-12. https://doi.org/10.1371/journal.pone.0185170
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 30 of 32
401. Hajjar H, Boukhaddaoui H, Rizgui A, et al. Label-free non-linear
microscopy to measure myelin outcome in a rodent model of Charcot-
Marie-Tooth diseases. J Biophotonics. 2018;11(12):e201800186.
https://doi.org/10.1002/jbio.201800186
402. Canta A, Chiorazzi A, Carozzi VA, et al. Age-related changes in the
function and structure of the peripheral sensory pathway in mice.
Neurobiol Aging. 2016;45:136-148. https://doi.org/10.1016/
j.neurobiolaging.2016.05.014
403. Shi Y, Zhang D, Huff TB, et al. Longitudinal in vivo coherent anti-
Stokes Raman scattering imaging of demyelination and remyelination in
injured spinal cord. J Biomed Opt. 2011;16(10):106012.
https://doi.org/10.1117/1.3641988
404. Bélanger E, Henry FP, Vallée R, et al. In vivo evaluation of
demyelination and remyelination in a nerve crush injury model. Biomed
Opt Express. 2011;2(9):2698-2708. https://doi.org/10.1364/
BOE.2.002698
405. Morisaki S, Ota C, Matsuda K, et al. Application of Raman
spectroscopy for visualizing biochemical changes during peripheral
nerve injury in vitro and in vivo. J Biomed Opt. 2013;18(11):1-9.
https://doi.org/10.1117/1.JBO.18.11.116011
406. Bae K, Zheng W, Huang Z. Quantitative assessment of spinal cord
injury using circularly polarized coherent anti-Stokes Raman scattering
microscopy. Appl Phys Lett. 2017;111(6):63704. https://doi.org/
10.1063/1.4991792
407. Boissonnas A, Louboutin F, Laviron M, et al. Imaging resident and
recruited macrophage contribution to Wallerian degeneration. J Exp
Med. 2020;217(11). https://doi.org/10.1084/jem.20200471
408. Blat A, Dybas J, Chrabaszcz K, et al. FTIR, Raman and AFM
characterization of the clinically valid biochemical parameters of the
thrombi in acute ischemic stroke. Sci Rep. 2019;9(1):15475.
https://doi.org/10.1038/s41598-019-51932-0
409. Matthäus C, Dochow S, Bergner G, et al. In Vivo Characterization of
Atherosclerotic Plaque Depositions by Raman-Probe Spectroscopy and
in Vitro Coherent Anti-Stokes Raman Scattering Microscopic Imaging on
a Rabbit Model. Anal Chem. 2012;84(18):7845-7851. https://doi.org/
10.1021/ac301522d
410. Lattermann A, Matthäus C, Bergner N, et al. Characterization of
atherosclerotic plaque depositions by Raman and FTIR imaging. J
Biophotonics. 2013;6(1):110-121. https://doi.org/10.1002
/jbio.201200146
411. Qin Z, Chon CH, Lam AKN, Kwok JCK, Yuen MMF, Lam DCC.
Feasibility examination of isolated zonal thrombolysis using Raman
spectroscopy. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol
Soc Annu Int Conf. 2015;2015:1353-1356. https://doi.org/
10.1109/EMBC.2015.7318619
412. Jiménez-Altayó F, Marzi J, Galan M, et al. Arachnoid membrane as
a source of sphingosine-1-phosphate that regulates mouse middle
cerebral artery tone. J Cereb blood flow Metab Off J Int Soc Cereb Blood
Flow Metab. September 2021:271678X211033362. https://doi.org/
10.1177/0271678X211033362
413. Jung GB, Kang SW, Lee G-J, Kim D. Biochemical Characterization of
the Brain Hippocampal Areas after Cerebral Ischemia-Reperfusion Using
Raman Spectroscopy. Appl Spectrosc. 2018;72(10):1479-1486.
https://doi.org/10.1177/0003702818776627
414. Liu J, Liu Z, Wang W, Tian Y. Real-time Tracking and Sensing of Cu(+)
and Cu(2+) with a Single SERS Probe in the Live Brain: Toward
Understanding Why Copper Ions Were Increased upon Ischemia. Angew
Chem Int Ed Engl. 2021;60(39):21351-21359. https://doi.org/
10.1002/anie.202106193
415. Russo V, Candeloro P, Malara N, et al. Key Role of Cytochrome C for
Apoptosis Detection Using Raman Microimaging in an Animal Model of
Brain Ischemia with Insulin Treatment. Appl Spectrosc.
2019;73(10):1208-1217. https://doi.org/10.1177/0003702819858671
416. Yamazoe S, Naya M, Shiota M, et al. Large-Area Surface-Enhanced
Raman Spectroscopy Imaging of Brain Ischemia by Gold Nanoparticles
Grown on Random Nanoarrays of Transparent Boehmite. ACS Nano.
2014;8(6):5622-5632. https://doi.org/10.1021/nn4065692
417. Caine S, Hackett MJ, Hou H, et al. A novel multi-modal platform to
image molecular and elemental alterations in ischemic stroke. Neurobiol
Dis. 2016;91:132-142. https://doi.org/10.1016/j.nbd.2016.03.006
418. Fan Y, Chen C, Xie X, et al. Rapid noninvasive screening of cerebral
ischemia and cerebral infarction based on tear Raman spectroscopy
combined with multiple machine learning algorithms. Lasers Med Sci.
2022;37(1):417-424. https://doi.org/10.1007/s10103-021-03273-6
419. Lee B-R, Joo K-I, Choi ES, Jahng J, Kim H, Kim E. Evans blue dye-
enhanced imaging of the brain microvessels using spectral focusing
coherent anti-Stokes Raman scattering microscopy. PLoS One.
2017;12(10):e0185519. https://doi.org/10.1371/journal.pone.0185519
420. Brazhe NA, Thomsen K, Lønstrup M, et al. Monitoring of blood
oxygenation in brain by resonance Raman spectroscopy. J Biophotonics.
2018;11(6):e201700311. https://doi.org/10.1002/jbio.201700311
421. Williamson MR, Dietrich K, Hackett MJ, et al. Rehabilitation
Augments Hematoma Clearance and Attenuates Oxidative Injury and
Ion Dyshomeostasis After Brain Hemorrhage. Stroke. 2017;48(1):195-
203. https://doi.org/10.1161/STROKEAHA.116.015404
422. Zhao P, Sun J, Zhao S, et al. SERS-based immunoassay based on gold
nanostars modified with 5,5’-dithiobis-2-nitrobenzoic acid for
determination of glial fibrillary acidic protein. Mikrochim Acta.
2021;188(12):428. https://doi.org/10.1007/s00604-021-05081-9
423. Kim W, Lee SH, Ahn YJ, et al. A label-free cellulose SERS biosensor
chip with improvement of nanoparticle-enhanced LSPR effects for early
diagnosis of subarachnoid hemorrhage-induced complications. Biosens
Bioelectron. 2018;111:59-65. https://doi.org/10.1016/
j.bios.2018.04.003
424. Kawon K, Setkowicz Z, Drozdz A, Janeczko K, Chwiej J. The methods
of vibrational microspectroscopy reveals long-term biochemical
anomalies within the region of mechanical injury within the rat brain.
Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;263:120214.
https://doi.org/10.1016/j.saa.2021.120214
425. Saxena T, Deng B, Hasenwinkel JM, Stelzner D, Chaiken J. Raman
spectroscopic investigation of spinal cord injury in a rat model. J Biomed
Opt. 2011;16(2):1-14. https://doi.org/10.1117/1.3549700
426. Saxena T, Deng B, Lewis-Clark E, et al. Near infrared Raman
spectroscopic study of reactive gliosis and the glial scar in injured rat
spinal cords. In: Biomedical Vibrational Spectroscopy IV: Advances in
Research and Industry. Vol 7560. ; 2010:75600I. https://doi.org/
10.1117/12.846897
427. Banbury C, Styles I, Eisenstein N, et al. Spectroscopic detection of
traumatic brain injury severity and biochemistry from the retina.
Biomed Opt Express. 2020;11(11):6249-6261. https://doi.org/10.1364/
BOE.399473
428. Surmacki JM, Ansel-Bollepalli L, Pischiutta F, Zanier ER, Ercole A,
Bohndiek SE. Label-free monitoring of tissue biochemistry following
traumatic brain injury using Raman spectroscopy. Analyst.
2017;142(1):132-139. https://doi.org/10.1039/C6AN02238C
429. Khalenkow D, Donche S, Braeckman K, Vanhove C, Skirtach AG.
Added Value of Microscale Raman Chemical Analysis in Mild Traumatic
Brain Injury (TBI): A Comparison with Macroscale MRI. ACS Omega.
2018;3(12):16806-16811. https://doi.org/10.1021/acsomega.8b02404
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 31 of 32
430. Tay L-L, Tremblay RG, Hulse J, Zurakowski B, Thompson M, Bani-
Yaghoub M. Detection of acute brain injury by Raman spectral signature.
Analyst. 2011;136(8):1620-1626. https://doi.org/10.1039/C0AN00897D
431. Li D, Yang M, Li H, Mao L, Wang Y, Sun B. SERS based protocol using
flow glass-hemostix for detection of neuron-specific enolase in blood
plasma. New J Chem. 2019;43(15):5925-5931. https://doi.org/10.1039/
C8NJ02561D
432. Gao X, Zheng P, Kasani S, et al. Paper-Based Surface-Enhanced
Raman Scattering Lateral Flow Strip for Detection of Neuron-Specific
Enolase in Blood Plasma. Anal Chem. 2017;89(18):10104-10110.
https://doi.org/10.1021/acs.analchem.7b03015
433. Rickard JJS, Di-Pietro V, Smith DJ, Davies DJ, Belli A, Oppenheimer
PG. Rapid optofluidic detection of biomarkers for traumatic brain injury
via surface-enhanced Raman spectroscopy. Nat Biomed Eng.
2020;4(6):610-623. https://doi.org/10.1038/s41551-019-0510-4
434. Gao X, Boryczka J, Zheng P, et al. A “hot Spot”-Enhanced paper
lateral flow assay for ultrasensitive detection of traumatic brain injury
biomarker S-100β in blood plasma. Biosens Bioelectron.
2021;177:112967. https://doi.org/10.1016/j.bios.2021.112967
435. Wang Y, Zhao P, Mao L, Hou Y, Li D. Determination of brain injury
biomarkers by surface-enhanced Raman scattering using hollow gold
nanospheres. RSC Adv. 2018;8(6):3143-3150. https://doi.org/10.1039/
C7RA12410D
436. Mowbray M, Banbury C, Rickard JJS, Davies DJ, Goldberg
Oppenheimer P. Development and Characterization of a Probe Device
toward Intracranial Spectroscopy of Traumatic Brain Injury. ACS
Biomater Sci Eng. 2021;7(3):1252-1262. https://doi.org/10.1021/
acsbiomaterials.0c01156
437. Kočović DM, Bajuk-Bogdanović D, Pećinar I, Nedeljković BB,
Daković M, Andjus PR. Assessment of cellular and molecular changes in
the rat brain after gamma radiation and radioprotection by anisomycin.
J Radiat Res. 2021;62(5):793-803. https://doi.org/10.1093/jrr/rrab045
438. Stevens AR, Stickland CA, Harris G, et al. Raman Spectroscopy as a
Neuromonitoring Tool in Traumatic Brain Injury: A Systematic Review
and Clinical Perspectives. Cells. 2022;11(7). https://doi.org/
10.3390/cells11071227
439. Niedieker D, GrosserÜschkamp F, Schreiner A, et al. Label-free
identification of myopathological features with coherent anti-Stokes
Raman scattering. Muscle Nerve. 2018;58(3):456-459. https://doi.org/
10.1002/mus.26140
440. Alix JJP, Plesia M, Lloyd GR, et al. Rapid identification of human
muscle disease with fibre optic Raman spectroscopy. Analyst. 2022.
https://doi.org/10.1039/D1AN01932E
441. Gautam R, Vanga S, Madan A, Gayathri N, Nongthomba U,
Umapathy S. Raman Spectroscopic Studies on Screening of Myopathies.
Anal Chem. 2015;87(4):2187-2194. https://doi.org/10.1021/ac503647x
442. Plesia M, Stevens OA, Lloyd GR, et al. In Vivo Fiber Optic Raman
Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral
Sclerosis and Duchenne Muscular Dystrophy. ACS Chem Neurosci.
2021;12(10):1768-1776.
https://doi.org/10.1021/acschemneuro.0c00794
443. Hentschel A, Czech A, Münchberg U, et al. Protein signature of
human skin fibroblasts allows the study of the molecular etiology of rare
neurological diseases. Orphanet J Rare Dis. 2021;16(1):73.
https://doi.org/10.1186/s13023-020-01669-1
444. Ralbovsky NM, Dey P, Galfano A, Dey BK, Lednev IK. Diagnosis of a
model of Duchenne muscular dystrophy in blood serum of mdx mice
using Raman hyperspectroscopy. Sci Rep. 2020;10(1):11734.
https://doi.org/10.1038/s41598-020-68598-8
445. Wallach DF, Verma SP, Singer WE. A protein anomaly in erythrocyte
membranes of patients with Duchenne muscular dystrophy. J Exp Med.
1983;157(6):2017-2028. https://doi.org/10.1084/jem.157.6.2017
446. Driskell JD, Zhu Y, Kirkwood CD, Zhao Y, Dluhy RA, Tripp RA. Rapid
and Sensitive Detection of Rotavirus Molecular Signatures Using Surface
Enhanced Raman Spectroscopy. PLoS One. 2010;5(4):e10222.
https://doi.org/10.1371/journal.pone.0010222.
447. Palchaudhuri S, Rehse SJ, Hamasha K, et al. Raman spectroscopy of
xylitol uptake and metabolism in Gram-positive and Gram-negative
bacteria. Appl Environ Microbiol. 2011;77(1):131-137. https://doi.org/
10.1128/AEM.01458-10
448. Harz M, Kiehntopf M, Stöckel S, et al. Direct analysis of clinical
relevant single bacterial cells from cerebrospinal fluid during bacterial
meningitis by means of micro-Raman spectroscopy. J Biophotonics.
2009;2(1-2):70-80. https://doi.org/10.1002/jbio.200810068
449. Gracie K, Correa E, Mabbott S, et al. Simultaneous detection and
quantification of three bacterial meningitis pathogens by SERS. Chem
Sci. 2014;5(3):1030-1040. https://doi.org/10.1039/C3SC52875H
450. Sathyavathi R, Dingari NC, Barman I, et al. Raman spectroscopy
provides a powerful, rapid diagnostic tool for the detection of
tuberculous meningitis in ex vivo cerebrospinal fluid samples. J
Biophotonics. 2013;6(8):567-572. https://doi.org/10.1002/
jbio.201200110
451. Kamińska A, Witkowska E, Kowalska A, et al. Highly efficient SERS-
based detection of cerebrospinal fluid neopterin as a diagnostic marker
of bacterial infection. Anal Bioanal Chem. 2016;408(16):4319-4327.
https://doi.org/10.1007/s00216-016-9535-7
452. Harz M, Kiehntopf M, Stöckel S, Rösch P, Deufel T, Popp J. Analysis
of single blood cells for CSF diagnostics via a combination of
fluorescence staining and micro-Raman spectroscopy. Analyst.
2008;133(10):1416-1423. https://doi.org/10.1039/B716132H
453. Steelman Z, Meng Z, Traverso AJ, Yakovlev V V. Brillouin
spectroscopy as a new method of screening for increased CSF total
protein during bacterial meningitis. J Biophotonics. 2015;8(5):408-414.
https://doi.org/10.1002/jbio.201400047
454. Ladiwala U, Bankapur A, Barkur S, Thakur B, Santhosh C, Mathur D.
Raman spectroscopic detection of rapid, reversible, early-stage
inflammatory cytokine-induced apoptosis of adult hippocampal
progenitors/stem cells: A preliminary study. Proc Indian Natl Sci Acad.
2015;81(5):1223-1236. https://doi.org/10.16943/ptinsa/2015/
v81i5/48343
455. Tanuma M, Kasai A, Bando K, et al. Direct visualization of an
antidepressant analog using surface-enhanced Raman scattering in the
brain. JCI insight. 2020;5(6):e133348. https://doi.org/10.1172/
jci.insight.133348
456. Pogocki D, Kisała J, Cebulski J. Depression as is Seen by Molecular
Spectroscopy. Phospholipid- Protein Balance in Affective Disorders and
Dementia. Curr Mol Med. 2020;20(6):484-487. https://doi.org/10.2174/
1566524020666191219102746
457. Depciuch J, Sowa-Kućma M, Nowak G, et al. Phospholipid-protein
balance in affective disorders: Analysis of human blood serum using
Raman and FTIR spectroscopy. A pilot study. J Pharm Biomed Anal.
2016;131:287-296. https://doi.org/10.1016/j.jpba.2016.08.037
458. Depciuch J, Parlinska-Wojtan M. Comparing dried and liquid blood
serum samples of depressed patients: An analysis by Raman and
infrared spectroscopy methods. J Pharm Biomed Anal. 2018;150:80-86.
https://doi.org/10.1016/j.jpba.2017.11.074
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 32 of 32
459. Chaichi A, Hasan SMA, Mehta N, et al. Label-free lipidome study of
paraventricular thalamic nucleus (PVT) of rat brain with post-traumatic
stress injury by Raman imaging. Analyst. 2021;146(1):170-183.
https://doi.org/10.1039/d0an01615b
460. Xu J, Potter M, Tomas C, et al. A new approach to find biomarkers
in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by
single-cell Raman micro-spectroscopy. Analyst. 2019;144(3):913-920.
https://doi.org/10.1039/C8AN01437J
461. González-Cebrián A, Almenar-Pérez E, Xu J, et al. Diagnosis of
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome With Partial Least
Squares Discriminant Analysis: Relevance of Blood Extracellular Vesicles.
Front Med. 2022;9:842991. https://doi.org/10.3389/fmed.2022.842991
462. Guo S, Popp J, Bocklitz T. Chemometric analysis in Raman
spectroscopy from experimental design to machine learning–based
modeling. Nat Protoc. 2021;16(12):5426-5459. https://doi.org/
10.1038/s41596-021-00620-3
463. Wang W, McGregor H, Short M, Zeng H. Clinical utility of Raman
spectroscopy: current applications and ongoing developments. Adv Heal
Care Technol. June 2016:13. https://doi.org/10.2147/AHCT.S96486
464. Li Z, Sun W, Duan W, et al. Guiding Epilepsy Surgery with an LRP1-
Targeted SPECT/SERRS Dual-Mode Imaging Probe. ACS Appl Mater
Interfaces. May 2022. https://doi.org/10.1021/acsami.2c02540
465. Mosca S, Conti C, Stone N, Matousek P. Spatially offset Raman
spectroscopy. Nat Rev Methods Prim. 2021;1(1):21. https://doi.org/
10.1038/s43586-021-00019-0
466. Liao C-S, Wang P, Huang CY, et al. In Vivo and in Situ Spectroscopic
Imaging by a Handheld Stimulated Raman Scattering Microscope. ACS
Photonics. 2018;5(3):947-954. https://doi.org/10.1021/
acsphotonics.7b01214
467. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification
of Tumors of the Central Nervous System: a summary. Neuro Oncol.
2021;23(8):1231-1251. https://doi.org/10.1093/neuonc/noab106
468. Cicerone MT, Camp CH. Histological coherent Raman imaging: a
prognostic review. Analyst. 2018;143(1):33-59. https://doi.org/
10.1039/C7AN01266G
469. Stevens O, Iping Petterson IE, Day JCC, Stone N. Developing fibre
optic Raman probes for applications in clinical spectroscopy. Chem Soc
Rev. 2016;45(7):1919-1934. https://doi.org/10.1039/C5CS00850F
470. Baker MJ, Byrne HJ, Chalmers J, et al. Clinical applications of
infrared and Raman spectroscopy: state of play and future challenges.
Analyst. 2018;143(8):1735-1757. https://doi.org/10.1039/C7AN01871A
471. Bassan P, Mellor J, Shapiro J, Williams KJ, Lisanti MP, Gardner P.
Transmission FT-IR Chemical Imaging on Glass Substrates: Applications
in Infrared Spectral Histopathology. Anal Chem. 2014;86(3):1648-1653.
https://doi.org/10.1021/ac403412n
472. Ibrahim O, Maguire A, Meade AD, et al. Improved protocols for pre-
processing Raman spectra of formalin fixed paraffin preserved tissue
sections. Anal Methods. 2017;9(32):4709-4717. https://doi.org/
10.1039/C6AY03308C
473. V F. Optical scanners for melanoma detection [Issues in emerging
health technologies, Issue 123]. Ottawa: Canadian Agency for Drugs and
Technologies in Health; 2014.
474. CBC News. Skin cancer detector approved | CBC News.
https://www.cbc.ca/news/health/skin-cancer-detector-approved-
1.1121389. Published 2011. Accessed March 25, 2022.
475. Sulukan E, Baran A, Şenol O, et al. The synergic toxicity of
temperature increases and nanopolystrene on zebrafish brain implies
that global warming may worsen the current risk based on plastic debris.
Sci Total Environ. 2021;808:152092. https://doi.org/10.1016/
j.scitotenv.2021.152092
476. Li S, Li Y, Yi R, Liu L, Qu J. Coherent Anti-Stokes Raman Scattering
Microscopy and Its Applications . Front Phys . 2020;8.
https://www.frontiersin.org/article/10.3389/fphy.2020.598420.
477. Robert B. Resonance Raman spectroscopy. Photosynth Res.
2009;101(2-3):147-155. https://doi.org/10.1007/s11120-009-9440-4
478. Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-
enhanced Raman spectroscopy (SERS) substrates for lipid and protein
characterization: sensing and beyond. Analyst. 2018;143(17):3990-
4008. https://doi.org/10.1039/C8AN00606G
479. Campion A, Kambhampati P. Surface-enhanced Raman scattering.
Chem Soc Rev. 1998;27(4):241-250. https://doi.org/10.1039/A827241Z
480. Muehlethaler C, Leona M, Lombardi JR. Review of Surface
Enhanced Raman Scattering Applications in Forensic Science. Anal
Chem. 2016;88(1):152-169. https://doi.org/10.1021/
acs.analchem.5b04131
481. Mirsadeghi S, Dinarvand R, Ghahremani MH, et al. Protein corona
composition of gold nanoparticles/nanorods affects amyloid beta
fibrillation process. Nanoscale. 2015;7(11):5004-5013. https://doi.org/
10.1039/C4NR06009A
482. Nandakumar P, Kovalev A, Volkmer A. Vibrational imaging Based
on stimulated Raman scattering microscopy. New J Phys. 2009;11.
https://doi.org/10.1088/1367-2630/11/3/033026
483. Lin H, Lee HJ, Tague N, et al. Microsecond fingerprint stimulated
Raman spectroscopic imaging by ultrafast tuning and spatial-spectral
learning. Nat Commun. 2021;12(1):3052. https://doi.org/10.1038/
s41467-021-23202-z
484. W. FC, Wei M, G. SB, et al. Label-Free Biomedical Imaging with High
Sensitivity by Stimulated Raman Scattering Microscopy. Science (80- ).
2008;322(5909):1857-1861. https://doi.org/10.1126/science.1165758
485. Topp MR. Pulsed Laser Spectroscopy. Appl Spectrosc Rev.
1978;14(1):1-100. https://doi.org/10.1080/05704927808060389
486. Zumbusch A, Holtom GR, Xie XS. Three-Dimensional Vibrational
Imaging by Coherent Anti-Stokes Raman Scattering. Phys Rev Lett.
1999;82(20):4142-4145. https://doi.org/10.1103/PhysRevLett.82.4142
487. Potma EO, Xie XS. CARS Microscopy for Biology and Medicine. Opt
Photon News. 2004;15(11):40-45. https://doi.org/10.1364/
OPN.15.11.000040