ArticlePDF Available

From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives

Authors:

Abstract

In recent years, Raman spectroscopy has been more and more frequently applied to address research questions in neuroscience. As a non-destructive technique based on inelastic scattering of photons, it can be used for a wide spectrum of applications including neurooncological tumor diagnostics or analysis of misfolded protein aggregates involved in neurodegenerative diseases. Progress in the technical development of this method allows for an increasingly detailed analysis of biological samples and may therefore open new fields of applications. The goal of our review is to provide an introduction into Raman scattering, its practical usage and also commonly associated pitfalls. Furthermore, intraoperative assessment of tumor recurrence using Raman based histology images as well as the search for non-invasive ways of diagnosis in neurodegenerative diseases are discussed. Some of the applications mentioned here may serve as a basis and possibly set the course for a future use of the technique in clinical practice. Covering a broad range of content, this overview can serve not only as a quick and accessible reference tool but also provide more in-depth information on a specific subtopic of interest.
Copyright:©2022Theauthor(s).ThisisanopenaccessarticledistributedunderthetermsoftheCreativeCommonsAttribution4.0InternationalLicense(https://creativecommons.org/licenses/by/4.0/),
whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited,alinktotheCreativeCommonslicenseisprovided,andanychanges
areindicated.TheCreativeCommonsPublicDomainDedicationwaiver(https://creativecommons.org/publicdomain/zero/1.0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
page1of32
Klammingeretal
Correspondingauthor:
FelixB.Kleine‐Borgmann∙DepartmentofOncology(DONC)∙84,ValFleur∙1526Luxembourg∙Luxembourg
felix.kleineborgmann@lih.lu
Submitted:31May2022∙Accepted:17July2022∙CopyeditandLayoutby:JerryLou∙Published:05August2022
Abstract
Keywords:Ramanspectroscopy,Neurooncology,Neurodegeneration,Neurosurgery,Neuropathology,Machinelearning
1SaarlandUniversityMedicalCenterandFacultyofMedicine,Homburg,Germany
2NationalCenterofPathology(NCP),Laboratoirenationaldesanté(LNS),Dudelange,Luxembourg
3LuxembourgCenterofNeuropathology(LCNP),Dudelange,Luxembourg
4LuxembourgCentreofSystemsBiomedicine(LCSB),UniversityofLuxembourg(UL),Esch‐sur‐Alzette,
Luxembourg
5DepartmentofCancerResearch(DoCR),LuxembourgInstituteofHealth(LIH),Luxembourg,Luxembourg
6DepartmentofLifeSciencesandMedicine(DLSM);UniversityofLuxembourg;Esch‐sur‐Alzette,Luxembourg
7FacultyofScience,TechnologyandMedicine(FSTM),UniversityofLuxembourg,Esch‐sur‐Alzette,Luxembourg
Inrecentyears,Ramanspectroscopyhasbeenmoreandmorefrequentlyappliedtoaddressresearchques
onsinneuroscience.Asanon‐destrucvetechniquebasedoninelascscaeringofphotons,itcanbeusedfor
awidespectrumofapplicaonsincludingneurooncologicaltumordiagnoscsoranalysisofmisfoldedprotein
aggregatesinvolvedin neurodegeneravediseases.Progressin the technicaldevelopmentofthis method al‐
lowsforanincreasinglydetailedanalysisofbiologicalsamplesandmaythereforeopennewfieldsofapplica
ons.The goal of our review is to providean introduconintoRaman scaering, itspraccalusage and also
commonlyassociatedpialls.Furthermore,intraoperaveassessmentoftumorrecurrenceusingRamanbased
histologyimages aswell as the search for non‐invasiveways of diagnosis inneurodegeneravediseases are
discussed.Someoftheapplicaonsmenonedheremayserveasabasisandpossiblysetthecourseforafu‐
tureuseofthe techniqueinclinicalpracce.Coveringabroadrangeof content, this overviewcanservenot
onlyasaquickandaccessiblereferencetoolbutalsoprovidemorein‐depthinformaononaspecificsubtopic
ofinterest.
FromResearchtoDiagnosticApplicationofRamanSpectroscopyin
Neurosciences:PastandPerspectives
Gilbert Georg Klamminger1,2,3, Katrin B.M. Frauenknecht2,3, Michel Mittelbronn2,3,4,5,6,7, Felix B. Kleine‐
Borgmann2,3,1,5
Review
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Introduction
As one special method of various vibraonal
spectroscopic techniques, Raman spectroscopy
(RS) has been an integral part in neuroscience re‐
searchforsomemenow,beitinneuro‐oncology
fortumorclassificaon1orforthebiochemicaldes‐
cripon of various protein aggregates in neurode‐
generavediseases2. Currentlyitismaking itsway
towardsa clinicalimplementaon3.Looking at the
numerousadvantagesofRS,thereasonsforanin‐
creaseduseinresearchareobvious:itenablesfast
and user‐friendly (easy to apply) analysis for the
purpose of ssue idenficaon (e.g., idenficaon
ofdifferentbrainregionsin three mice strains4)by
observedchangesinthevibraonalleveloftheun‐
derlying biochemical and molecular composion.
Compared to other advanced molecular techni‐
ques, reproducible results can be obtained with
few requirements regarding sample preparaon.
The insensivity to water molecules predesnes
thetechnologyforitsuseinabiomedicalcontext.
Todate,thevastmajorityofstudiesusingRa‐
manspectroscopy examine unprocessednave,or
frozen ssue/cells ‐ few publicaons make use of
formalin‐fixed or paraffin‐embedded (FFPE) ssue
becauseRaman measurementsremainchallenging
due to the strong contribuon of paraffin wax to
spectralintensity,thin specimens,andadisrupon
of the molecular integrity, which is related to the
preceding fixaon process. The long‐term archiva‐
bility and the large number of available samples,
however,suggestuseofRSFFPE ssue in patholo‐
gyisdesirable,e.g.,fortheanalysisoftumorhete‐
rogeneity, or idenficaon of very small tumor
fragments, which could escape diagnosc high
throughputofhistology samples.Thefollowing re‐
view and perspecve paper is divided into three
parts: a) the basics of RS and the most common
forms of its applicaon in medical research are
presented, b) the use of RS in selected neuros‐
cience disciplines is accentuated with the aim to
present different research quesons – but even
more importantly – the most interesng findings
discoveredwiththehelpofRS,c)afuture outlook
forpotenalapplicaonofRS inresearchbut also
inthe dailyclinical work isprovided.At this point,
the minireview by Payne et al.5 needs to be men‐
oned;itdescribesinaclearwaynot onlyapplica‐
ons ofRSin neuroscience, butalsosetsa special
focuson thetechnical aspectsand benefitsof ad‐
vanced spectroscopy‐based techniques depending
ontheparcularusecase.
Bycontrast,thefollowingworkplacesaspeci‐
al emphasis on topics that will inevitably become
relevant to the praccing spectroscopist at some
point, such as varying ssue sample requirements
in different clinical sengs (surgery department/
pathology department) or common data proces‐
sing methods, to name a few. Whenever it serves
expedienttheaenvereader shall bereferredto
addionalmorein‐depthreading.
Searchforrelevantliterature
A literature search (the search terms
“Raman”, “Raman spectroscopy” were each
combined alternately with the terms “brain”,
“neuro”, “neuroscience”, “brain tumor, “tumor”,
“neurooncology”, “glioma”, “neurodegeneraon,
“neurodegenerave disease”, Alzheimer’s
disease”, “Parkinson’s disease”, “Hunngton”,
“amyotrophic lateral sclerosis”, “prion disease“,
”mulple sclerosis”, “myelin”, demyelinaon”,
“stroke”“brainischemia”,“braininjury”,“muscular
diseases”, “brain infecons”, “meningis”,
“psychiatry”)wasperformed,andonlinedatabases
PubMed Central® and Google Scholar® were
browsed for relevant reviews and original arcles;
othertypes of literature, such as congress papers,
leers,commentse.g.,wereexcluded.Aersearch
results were idenfied, they were hand‐screened
for eligibility (inclusion criteria: employment of RS
on brain/peripheral nervous/muscle ssue, RS on
extracellular components/cells of the nervous/
muscularsystem,orRSinrelaontoneurological/
oncological/psychological disorders; exclusion
criteria: use of vibraonal spectroscopic
techniques otherthan RS) basedon tle/abstract.
Within the responsibility of the authors, the final
seleconofliteraturewasconductedbasedonthe
arclefulltext.Finally,associatedbibliographiesof
selectedpublicaonswere searchedfor addional
relevant sources that semancally met the search
criteria. Only English language literature was
considered – even though Japanese research
groups describe an employment of Raman
spectroscopyinratbrains,andhumanbrains/
page2of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
brain tumors as early as the 90s6–9. Although
references to historical developments are pointed
out whenever a contemplaon of the historical
context seemed valuable special focus is set on
literature of the years 2021 and 2022, reflecng
ongoing research projects/groups ‐ such as
spectroscopical examinaon of microglial changes
due to SARS‐Cov‐2 exposure10 ‐ using RS in
neuroscience.
PrincipleofRamanscatteringandge‐
neralspectrometersetup
The Raman effect is the process of inelasc
scaering of photons; this effect was first descri‐
bedin1928byC.V.Raman,whoexaminedthecha‐
racteriscs of scaered photons when applying a
lightsourceondifferentliquids11,12.Forhisdiscove‐
ry, the Indian physicist won the Nobel prize in
193013, but despite the discovery of the Raman
effectinthefirsthalfofthe21stcentury,ittookun‐
l late1960sbeforeit wasfirstused inabiomedi‐
calcontext14–17.
The interaconof incident lightwith a mole‐
cule leads to changes in the vibraonal state, so
thatthemoleculefallsintoanexcitedvirtualvibra‐
onal state. When returning to the ground state,
the largest amountof theincident photons is ela‐
scally scaered, which means that the energy of
thescaeredphotonisthesameasthatofthein‐
cidentphoton (=Rayleigh scaering). Only aminor
partofthe scaeredlightexperiencesachange in
its energy compared to the incident light; in fact
whenthemolecule endsupona differentstatein
comparison to the ground state, the photon is in‐
elascally scaered. Depending on the interacon
betweenthemoleculeandthephoton,inelascally
scaered lightcan havea higherenergy (an‐Sto‐
kes effect) or a lower energy (Stokes effect) than
the incident light, whereas in praccal applicaon
mainlyStokesscaerisaributedtoaresulngRa‐
man signal, due to its higher intensity.18 See
Figure1 foravisualizaonofthevibraonalstates
transions.
In order to be Raman‐acve as a molecule,
i.e.,toemitinelascRamanscaering,achangein
polarizability is required ‐ this already shows a
difference to a related and oen confused spec‐
troscopic technique, infrared spectroscopy, in
whichanabsorbedphotonleadstoachangeinthe
dipole moment19. Another phenomenon, also ba‐
sed on absorpon and oen observable as a dis‐
rupve factor in Raman measurements due to its
strongersignalis fluorescence;herethe molecule,
excitedby energyofabsorbedphotons,leavesthe
groundelectronicstateandistransferredtoa hig‐
her electronic state ‐ as soon as it returns to the
groundstate,energy isre‐emiedas fluorescence
light20.
The interacon of photons with their target
molecules resulng in an inelasc Raman scae‐
ringwithadisnctenergydifferencereflectsspeci‐
ficchemical bondsand constuons. Thisspectral
fingerprint can indicate the identy of the target
molecule.A spectrumcan thereforebe definedas
a representaonof the intensity values (based on
the degree of change in polarizability) and the
differing frequencies (Raman shi) in a func
on18,20. The x‐axis displays the Raman shi in the
unitwavenumbercm‐1,therebythewavenumberis
reciprocaltothewavelengthandthus directly pro‐
poronalto photonenergy19.Theconvenonalex‐
page3of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
Figure 1. Occurring opcal phenomena when irradiang a
biologicalsamplewithaphotonsource(laser).
Le: Vibraonal states (v0, v1, v2) involved in Rayleigh and
Raman scaering. In case of elasc scaering (Raleigh
scaering), incoming photons temporarily change the
vibraonal state of a molecule ‐ aer this excitaon, the
moleculereturnsbacktotheinialvibraonalstate(v0).Inthe
caseof StokesRamanscaering,amoleculegainsenergy due
to the excitaon process and finally ends up in a higher
vibraonalstate(it rises fromv0tov1)–the scaered photon
has lower energy than the incident light. In An‐Stokes
scaering the molecule ends up on a lower vibraonal state
aerexcitaoncomparedtothegroundstate(itfallsfromv1to
v0)–therefore,thescaeredphotongainsenergy.
Right: In contrast, the phenomenon of fluorescence occurs
when a molecule absorbs light and thus is temporarily
transferredtoahigherelectronicstate(v’0,v’1,v’2).
perimentalapplicaonoftheprocessusingthepu‐
re Raman effect is so the called Spontaneous Ra‐
man Scaering (SpRS). Addionally, there are
several derivave methods allowing, for example,
scaering with enhanced signal intensity or redu‐
ced background noise, thus lending themselves to
differentapplicaonssuchasRamanImaging (e.g.,
bycoherentRamanspectroscopy).Table1givesan
overviewofthetechnicalbackgroundandadvanta‐
ges of commonly used variants of RS in neuros‐
cience. For a more detailed insight into the
theorecalaspectsofRStheinterestedreadermay
refertoCialla‐Mayetal.21,whoprovidesacompre‐
hensiveoverviewin thebook“Micro‐Raman Spec‐
troscopy:Theory andApplicaon” by Poppetal.22.
Addionally,Huetal.23,Shietal.24andEvansetal.
25 give a good overview about smulated Raman
spectroscopy (SRS) and coherent an‐Stokes Ra‐
man scaering (CARS); Zheng et al.26 wrote an in‐
strucve review about surface‐enhanced Raman
scaering(SERS).
Theexactstructure of aRaman spectrometer
differs depending on the manufacturer and the
technology used. Only general components and
theirfunconarediscussedbelow;addionalcom‐
ponentssuchasanaddionallaseroraspecialRa‐
man substrate are commonly required in
spectrometer setups of advanced Raman techni‐
ques(Table1).With a focus lens,emied photons
of a laser source are focused on the sample, and
aer interacon with the sample both the elasc
and the inelasc scaered photons are collected
by a collecng lens. The reflected and elascally
scaered light is then separated from the remai‐
ninglight,typicallybyadichroicmirror. A prism or
diffracon grang spaally separates the light ac‐
cording to wavelength, leading it to a detecon
system ‐ a photo paper was employed in the
classicalsetup‐eithersimultaneouslyonacharge‐
coupleddevice(CCD)orthroughamonochromator
onaphotomulpliertube(PMT)(Figure2).
As excitaon source, typically lasers, is used
wherethemannerofphotongeneraonaswellas
thewavelengthdiffer.Commonlyemployedexcita‐
on wavelengths within the biomedical field are
532nm, 785nm, 830nm, or 1064nm ‐ for praccal
applicaonspecificeffectsonthessuetypeofin‐
terestaswellaspotenallyinducedbackgroundsi‐
gnalsmustbeconsideredindividuallyandadapted
according to the experimental setup27. Most em‐
ployed lasers nowadays are diode lasers;w ith the
advantageof portability and favorableenergy effi‐
ciency, they have replaced the gas‐based lasers
(helium neon laser, argon‐ion laser) that were
oenusedinthepast.Thetypeofprotonemission
can be divided into connuous‐wave lasers and
pulsed lasers; the former being more common in
SpRSandthelaerbeingnecessaryinSRS18,28.Itis
necessary to bundle photons both in the suitable
focuson thesample(focus lens)andtocollectthe
scaeredphotons(collecnglens)aerinteracon
with the sample. Next, Raleigh scaered photons
arefilteredby adichroic mirror andseparatedac‐
cordingto their wavelengthusingadiffracongra‐
ng;dependingonthesamplingaperture(exitslits/
pinholes) within the setup, a certain number of
photonsaredetectedinafinalstepbythesensi
ve detecon system. While the classical “scanning
spectrometer” employs a rotatable grid concen‐
trangthephotonsonanarrowexitslitandapho‐
tomulplier tubebehind detecng RS,modern set
ups usually use a CCD detector. This mulchannel
wayofphotondetecon(amulchannelarraychip
consisngofseveralpixels)allowsforsimultaneous
registraon and display of all photons, i.e., the
whole Raman spectra18,28,29. Regular wavelength
calibraon(processoftransferringpixelhitsonthe
CCDdetectortodisnctdisplayedwavenumbers)is
recommendedtoreceivereproduciblespectraover
theenreduraonoftheexperiment28.
page4of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
Figure2. Schemacandsimplifiedrepresentaonofa Raman
spectrometersetup.
page5of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
Table 1. Summary of commonly used Raman techniques, their physical background and the associated
advantagesanddisadvantages.
Raman spectra can be employed in various
ways.Inaddiontothepossibilityofusingthemas
raw spectra primarily for the idenficaon of bio‐
chemicalcomponentsof a sample,methodscalled
Raman microscopy/imaging use the assignment of
colors to Raman bands (only a limited number of
wavenumbers is acquired or analyzed)30 over a
scannedsampletogeneratecontrast.Whenexten‐
ded to focusing through the depth of the sample,
three‐dimensional Raman images can be built16.
Raman microscopy/imaging techniques31,32 and
computaonal image generaon algorithms have
been advanced to generate Raman images of va‐
rious brain pathologies, e.g., gliomas, stroke and
demyelinaon25 or to image metabolism in the
brain33–35.Usingthisapproachofdatavisualizaon,
itis possibleto obtaina similarlook totradional
H&E‐stained slides on unstained specimen, which
enables histopathological diagnosis36. In Raman
mapping, the whole Raman spectrum for each
pointofthedesiredareaofthespecimenisacqui‐
red(either pointby point orwith anexcitaonla‐
ser forming a line on the sample and measuring
simultaneously); using computaonal analysis
aerwards, a visualizaon of differences in the
spectralproperesofdatapointsisachieved30.
Peakassignment
Raman peaks may occur at first sight in va‐
riousformswithdifferentcharacteriscs. Inaddi
ontocertain singlepeaks that appearnarrowand
canbeassignedtoexactlyonecorrespondingfunc‐
onalgroup,an addive effectofseveraladjacent
Ramanacvemoleculesinthesamplecanalsore‐
sult in broad peaks. Furthermore, the presence of
several contribung components, and thus neigh‐
bordependent changesin thevibraonalmode in
onespecimen, mayaffect theactual peak in com‐
parisontoanisolatedmeasurement20.Theapplica‐
on of RS in the biomedical context oen pays
special aenon of the regions within the wave‐
numbers 400‐2000cm‐1 and 2700‐3500cm‐1. These
regions,oen referredtoas "biologicalfingerprint
regions" in the literature, are characterized by a
high proporon of Raman peaks arriving from
funconal groups of a typical biological speci‐
men28.AnintroducontotheuseofRSforidenfi‐
caon ofdifferentmolecular funconalgroupscan
be found in Pezzo et al.37 (RS and cell biology) ,
Czamaraet al.38 (RS and lipids), Rygula etal.39 (RS
andproteins)andWiercigrochetal.40 (RS andcar‐
bohydrates).
ByusingRSonbiomoleculessuchasproteins,
itisnotonlypossibletoidenfymolecularfunco‐
nalgroupsi.e.,differenatebetweendifferentami‐
no acids/proteins, but also spaal confirmaons
can be detected since the Raman signal is influ‐
enced by aromac/non‐aromac side chains and
thebackboneofaprotein.Disnctvibraonsresult
in certain amide bands (Amide band A, B, I‐VII)41;
for example carbonyl stretching modes, N–H ben‐
ding or C–N stretching results in the widely used
AmidI(1600‐1690cm−1),AmidII(1480‐1580cm‐1)
and Amid III peaks (1230‐1300 cm−1). They allow
further examinaon of the pepde secondary
structure. In larger unordered protein measure‐
mentsaprecisepeakaribuonmaynotbepossi‐
bledueitslargenumberofcontributors18,39,42–44.
Lipids are ubiquitous in biological specimen,
asthey form themembranes of cellsand organel‐
les. Depending on the literature, spectral proper‐
es resulng mainly from the hydrocarbon chain
andpartly fromthepolar headgroup can beassi‐
gned to the regions 1050‐1200cm‐1 (C‐C stret‐
ching), 1250‐1300cm‐1 and 1400‐1600cm‐1 (CH2,
CH3 group acvity) or also to the regions below
600cm‐1 and between 1000‐1150 cm‐1 (opposite
moonofcarbonatomsofthehydrocarbonchain).
Consistently,an area within the high wavenumber
region2700‐3500cm‐1(somemessolelytherange
between2800‐3100cm‐1isconsideredinthelitera‐
ture) is reported and aributed in a large part to
stretchingofC‐Hgroups.In‐depthanalyzesofpeak
intensityand distribuon inthe high wavenumber
regionallowconclusionstobedrawnaboutthesa‐
turaon status of fayacidsand the aliphac/aro‐
mac components of steroids18,38,45,46. An
interesng contribuon at this point may come
fromKraetal.45,whoin2005measuredandcha‐
racterized twelve brain lipids and further related
occurringpeakstotheirfunconalgroupsandPez‐
zo et al.47, who employed RS to visualize single
(phospho‐)lipidsinneuronalcells.
Carbohydrates and underlying C‐C and C‐H
structuresgiverisetobondsinvariousareaswithin
the Raman spectrum18. For a long me, minor
page6of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
aenonwaspaidto the invesgaonofcarbohy‐
drates.Althoughspecific peak assignmentispossi‐
ble,in comparisonto proteinand lipids itremains
lessspecific40.
About 30 Raman peaks of nucleodes, distri‐
buted over severalareas withinthe spectrum, are
mostly aributed due to purine/pyrimidine ring
modes and phosphate groups (especially peaks
nextto800cm‐1and1100cm‐1).Theyareusefulfor
characterizaon of inter alia DNA, tRNA, and
nucleicacid‐proteincomplexes18,48.
Spectroscopicexaminaonnotonlyallowsfor
examinaon of these specific funconal groups
enumerated above, but also to display their inter‐
acons, such as protein‐protein / protein‐lipid in‐
teracon.Theirchanges inspectralpropertyunder
different condions can also be measured17. On
that note, Lee et al.49 have even managed to use
SRS as a tool in neurophysiology when examining
thespectral properesof neuronalmembranepo‐
tenal.
AlthoughspecificRamanpeakshavebeende‐
scribed for various molecules50–56, one should be
cauous when actually assigning peaks to one's
ownsample.Whilepeaksmaybecharacteriscfor
acertainbiochemicalcompound,theycanalsoari‐
sefromdifferentsources;viz they are not specific.
Inordertocorrectlyassignpeaks/detectthemwi‐
thin a spectrum, itis essenal to reducepotenal
confounders within the sample or the experimen‐
talset‐uppre/post‐experimentally.Apotenalway
toassigndisnctpeakswithhighevidenceisdirect
observaon: Targeted manipulaon of a sample
canhelptoconfirmthesourceofapeak.
Thevibrationalspectroscopicexperi‐
mentalsetup
RSisafast,non‐destrucve,userfriendly,and
easytoapplyontoolprovidingmolecularinforma‐
on with minimal sample preparaon require‐
ments in a reproducible manner. However, a
roune use of RS‐base d tools in neuroscience has
notyetbeen established.Regardlessofthe nume
rousadvantagescertainlimitaonshavetobecon‐
sidered not only pre‐experimentally, but also
duringimplementaonofanexperimentandaer‐
wards when visualizing and processing the obtai‐
neddata.
Theoccurrence ofthe physicallyrelatedphe‐
nomenon of (auto‐)fluorescence (photons of the
pump beam are absorbed by molecules of the
sample which are raisedto anotherenergy level‐
whenreturningtothe basicenergylevelaphoton
isemied,see also Figure1)is regularly observed
andtheexpectedintensityinthiscaseiswellabo‐
ve the intensity of the Raman signals. To reduce
wavelength‐ dependent autofluorescence, a dis‐
nct wavelength of the excitaon source can be
selected,orSERScanbeused57,58.Althoughincon‐
trast to other sophiscated laboratory techniques
(e.g.,genec/epigenectesng)therearelessre‐
quirements for a correctly prepared Raman sam‐
ple.Afewthingsneedtobeconsideredinorderto
avoidtheoccurrenceofspectral background noise
and spectral contaminaon: Samples mustbe pla‐
cedonarobustRamansubstratesothattheselec‐
ted measuring point and the focus remain stable.
Dependingontheexperimentalquesonaswellas
the expected background noise and the costs, va‐
riousRamansubstratesareavailable.Inaddionto
goldoraluminum‐coatedglassslides(asafuncon
oftheexcitaonwavelengthglassaloneexhibitsa
strong and broad fluorescence background signal
inthe“biologicalfingerprintregion”),specialslides
(low‐eslides,CaF2slides,quartzslides)canbecon‐
sidered28.Thesearecharacterizedbyalowspectral
backgroundorsinglepeakaribuon. Fullwoodet
al.59 and Kerr et al.60 examined the effect of sub‐
strate choice for spectral histopathology in more
detail.IthasbeenshownthatCaF2slides(exclusive
peak at 321cm‐1 or 322cm‐1 respecvely, depen‐
dingontheliterature)61havetheleastinfluenceon
thespectralbackgroundincomparisontolow‐Esli‐
des and Spectrosil slides. The single background
peakcaneitherbeignoredduetoitsirrelevantoc‐
currence out of the important range of biological
componentswithintheRamanspectrum,orcanbe
subtracted via computaonal analysis aerwards.
As a low‐cost alternave aluminum foil can be
used,whichitselfdoesnotgenerateanysignificant
backgroundnoise62–64.
Furthermore, the sample condion (most
commonly nave/frozen or formalin‐fixed) needs
to be considered pre‐experimentally. Although
page7of32
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page8of32
fresh ssue samples allow for a straighorward
aribuon of Raman peaks to underlying bioche‐
mical components, they must be processed and
analyzedwithinacertainmewindowandcannot
be stored for a longer period of me. When wor‐
king with fresh ssue, dehydraon and associated
denaturaon of funconal biochemical groups
need to be prevented e.g., by keeping the speci‐
men hydrated19,65. As an alternave, Raman mea‐
surements of frozen biological samples allow
longerstorageandatthesamemesllgiveanin‐
sightinthebiochemicalcomposionofthebiologi‐
calsample.Nevertheless,itshouldbenotedthata
reducon in certainpeakintensiesandsignificant
alteraon of Ramansignalin comparison tonave
ssue were described when using frozen secons
66,67.
The handling of formalin‐fixed, methanol‐fi‐
xed,orFFPEsamplesisrouneduringthepatholo‐
gical workflow; even though samples allow long
archivability and are broadly available,t his way of
fixaondamagesthebiologicalRamanspectrumto
acertaindegree since thessueundergoesanag‐
gressive chemical procedure68–72. Both formalin
and methanol fixaon reproducibly alter spectral
ssueproperes and affectRamanbandsassigned
tolipids,proteins,and nucleicacids73. Despitefor‐
malin‐inducedbiochemicalchanges such asforma‐
on of cross‐links in the structure of the amino
acids, spectroscopic assessment and classificaon
of formalin‐fixed biological ssue is possible66; in
contrast,methanol‐fixaonwas reported topoten‐
ally hamper the detecon of ssue malignan‐
cy72,74.
The prominent spectrum of bound paraffin
wax is reflected in certain points at 1063, 1133,
1296and 1441cm‐1, whichmakea manualor digi‐
taldewaxingprocessnecessaryandrequireacare‐
fulinterpretaonoftheobtainedspectra75.Several
condions (aggressive chemical processing, requi‐
redchoiceof specialsubstrateandthefineness of
the ssue) hamper spectroscopic examinaon
whenemployingRSonFFPEssueinthepathology
department, although spaal orientaon on the
sample and proper idenficaon of certain areas
areapotenaladvantage.
IntheliteraturedifferentapproachesusedRS
onprocessedssue;inanycase they allfacesimi‐
lardifficules. Huang et al.68 described theeffects
of formalin fixaon on RS of cancerous human
bronchial ssue, whereas Draux et al.71 described
the influence of formalin and air drying on single
cancer cells and aributed spectral changes to
affecon of nucleic acids and proteins. Even
though not only a loss of the original chemical
composion but also potenal contaminaon due
tothe process offormalin‐fixaon inmurine brain
ssuewas determined byHacke etal.76, several
studies proposed formalin fixaon as a sufficient
and favorable method for subsequent spectrosco‐
picdiagnosc77,78.Asaproofofconcept,Stefanakis
et al.79 demonstrated the feasibility of vibraonal
spectroscopyon formalin‐fixedmalignantbrains‐
sue. Employing vibraonal spectroscopy on FFPE
ssue,aneffectonthelipidcontentduetothede‐
waxingprocesswasreported;nevertheless,Raman
bandsrelatedtocellular andextracellularproteins
weresuccessfullymeasured80.Gaifulinaandcollea‐
gues81 examined large intesne FFPE ssue from
rats and analyzed biochemical signals obtained
with label‐free RS in the processed ssue. Other
groups examined FFPE ssue of rectal cancer to
predict radiotherapy response82, to map/analyze
cervicalssue83,84,oremployed RS onhealthyand
malignantbreast85–88/ovarian89/prostac90 ssuein
variousfixaonstates.Foragoodoverviewonthe
influenceof ssue processing onbiological Raman
spectra the reader may refer to the work from
Faoláinetal.66.
During spectroscopic examinaon, back‐
groundnoiseduetoa nearby photon source(e.g.,
room light) should be considered and reduced by
performingtheRamanmeasurementinadarkened
areaorwithdimmedoperangroomlight91–94.Ad‐
dional methods of spectra quality control during
intraoperave measurement have also been pro‐
posed95,96.By ensuringthat thelaser sengs (wa‐
velength and power, duraon of acquision) are
opmized for the examined sample, the best si‐
gnal‐to‐noiseraocanbedetermined,andthermal
ssuedecomposion can be prevented.This form
ofsampledestruconcanbedetectedbyaburned
areawheretheformerfocusareaofthelaserislo‐
cated,as wellas bythe presence ofan addional
carbon band at approx. 1500cm‐1 in the Raman
spectrum28.
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page9of32
Dataprocessingandcomputational
analysis
Aer the measurement, the large amount of
data97shouldbe sorted andstoredin a structured
manner (data annotaon) to address the research
queson properly. It is good pracce to start the
data processing with an inial visualizaon of the
data.Inthiswaycleardeviaonsfromanexpected
result such as strong contaminaon or cosmic ray
arfacts (randomly occurring electromagnec ra‐
diaon) andhot pixels(overresponseofa pixelon
the CCD detector to an incoming photon) can be
recognized and corrected28,98,99. For a more detai‐
led reading on potenal anomalies and arfacts
thatmayoccur,seeBowieetal.100.
During data preprocessing, a baseline correc‐
on canbe appliedtothe datatominimalizeresi‐
dualbackgroundsignalandautofluorescence101,102;
a common way to model and subtract the back‐
ground noise to obtain the intrinsic sample spec‐
trum103,104. Addionally, a common way to further
reducethenoiseinthedataisasmoothingtechni‐
que, such as Savitzky‐Golay filtering28,105,106. Both
of the above‐menoned methods must not be
usedwithoutpropercauonasthereisalwaysthe
riskof producingarfacts,as well as equalizing si‐
gnificant data points. In order to correct confoun‐
ders that result from the experiment setup itself
(e.g., slightly different dryness or thickness of the
specimens) data normalizaon methods, such as
min‐max normalizaon or z‐normalizaon, usually
precede the actual data analysis107. Specialized
spectroscopy soware are commercially available
and enable even the inexperienced spectroscopist
touse the acquired data ina structured andcom‐
prehensivemanner108.
Duetothelargeamountofdata,severaldata
reducon methods are used for quick explorave
purposes,aboveallPCA(principalcomponentana‐
lysis)iswidelyemployed.Thisunsupervisedcluste‐
ringtechnique canbe used to determineprincipal
componentsin a big data set, which explainsa si‐
gnificant part of the variance and reduces noi‐
se41,109.
In the last step of computaonal analysis,
classificaon algorithms and machine learning
techniques110,111arecommonlyusedtoclassifythe
spectraldata eitheraccording to pre‐experimental
definedgroups(supervisedclustering)oraccording
tonewgroupsbasedonsimilariesinspectralpro‐
peres(unsupervisedclustering)112.
Awidelyusedtechniqueinunsupervisedclus‐
tering is hierarchical cluster analysis (HCA), in
whichthedataistransferredtoahigher‐dimensio‐
nalspace,clusterinacertainproximitytooneano‐
ther based on similar properes. A number of
cluster variables can be specified individually,
which forms the selected number of similar clus‐
ters103.Unsupervised clusteringisbeneficialforex‐
ploratory research quesons since no prior
knowledge of possible group properes is requi‐
red28.
Commonmethodsusedforsupervisedcluste‐
ringaretrees/randomforestclassificaons(several
decisiontreesinarow)orsupportvectormachines
(search for a hyperplane to disnguish between
classes)91. The groups determined a priori are re‐
ferredtoas "classes" andthe goldstandardhisto‐
pathologyoenservesasgroundtruth.Ingeneral,
thealgorithmistrainedwithatrainingdatasetand
tested with an external validaon data set aer‐
wards.Toavoidoverfing(capabilityofgooddiffe‐
renaon only on the specific training data set) a
validaonofperformancee.g.,k‐foldcrossvalida
on or holdout validaon is performed, and metri‐
ces of algorithm performance (e.g., sensivity,
specificity, f1‐score, accuracy, AUROC/AUPR value)
are calculated aerwards based on its output113.
Ralbovskyand colleaguesprovidedan overviewof
machinelearningalgorithmsand their funconsin
Ramanbasedcancerdetecon112.
RSinNeurooncology
Withagrowingnumberofpublicaons in the
lastyears(Zhangetal.114andBanerjeeetal.115de‐
scribed a change in spectroscopic properes of
gliomacellsincomparison to astrocytes already in
the mid‐2000s), the neuro‐oncological field is one
ofthelargestareasofresearchonRS,inwhichthe
therapeucal balancing act betweenmaximum re‐
seconof normal‐brain‐resemblingtumorous resi‐
dues and minimal surgical disrupon of healthy
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page10of32
brainfunconsprovesparcularlydifficult.
On the subject of RS in (neuro)oncology re‐
views by Auner et al.20 and Hollon et al.117 give a
comprehensive introducon to the respecve to‐
pic;forfurtherreadingonimplicaonsandcurrent
progressofRSinoncologyseealsoSantosetal.117.
Atfirstsight, use ofthisspectroscopictechni‐
quemainlyapplytotwomainresearchfocuses:on
the one hand a spectroscopic detecon of mali‐
gnancy118,119 which in a next steps allows precise,
accurate diagnosis of the tumor ent y intraopera‐
vely withouthavingtowait forfurther tradional
ssueprocessing (pathologicaldiagnosis onfrozen
secons)120,121, and on the other hand real me
surgeryguidance i.e., live feedbackintraoperave‐
ly122,123 aiming for maximal tumor resecon124–126.
Both topics merge and evolve at a certain point;
this may result in new research quesons, e.g.,
whenaimingtodeterminetumorinfiltraonzone/
resecon margin or when aiming for detecon of
tumor genecs on various states of tumor ssue.
Moreover,alsobasicresearchquesonsin oncolo‐
gycanbeaddressedwiththis vibraonalspectros‐
copic technique e.g., monitoring lipotoxicity in
glioblastoma cells127, observing cell response of
U251glioblastomacellsaerinduced apoptosis128,
examining the glycosylaon paern of proteins in
medulloblastoma129, or observaon of redox state
of mitochondrial cytochromes130, just to name a
few. Most research groups use SpRS20 as an easy
toapply,labelfreemethod.MoreadvancedRaman
techniques in neurooncology131are usedpredomi‐
nantlyinanimal models132–134–where Surface en‐
hanced resonant Raman spectroscopy (SERRS)
detecon of tumor margins135 has shown progno‐
sc benefits136,orCARSwas employedfordetec
on of different human brain tumors in a mouse
model137.
RSfordetectionoftumorgroup,ge‐
neticalterationandhistomorphology
RS can disnguish between grey and white
maer and (partly)otherbrainregionssuchas ce
rebellum, striatum, basal forebrain ‐ both macros‐
copically and on cellular resoluon4,138–146,147.
Interesngly,oneanalysisofthemousebrainusing
SERS revealed a different spectral fingerprint and
thus also different biochemical composion bet‐
ween le and right hemisphere148. Spectroscopi‐
callyfeasiblediscriminaonbetweengliomassue
andbrainssuewasreportedinseveralstudies3,149–
153 as well as between dura mater and meningio‐
ma, which was demonstrated to be based in part
onpeakscorrespondingtocollagenandonthehig‐
herlipidcontentwithin tumorous ssue154–156.Be‐
side these binary classificaon models, several
studies showed the potenal of RS aiming for a
mulc lass classificaon to differenate various tu‐
moreneswithinoneclassifier119,157–166ortode‐
terminetheprimarysiteofmetastasis167,168.
Using Raman mapping/imaging for brain tu‐
morvisualizaon116,169,evenspecial morphological
features of tumors (e.g., necrosis in glioblastoma,
celldensityorindividualcellnuclei)couldbeiden‐
fied170–172. Even though areas of tumor necrosis
are typically characterized by an increased pre‐
sence of proteins such as phenylalanine (around
1032cm‐1,amongothers)aswellascholesteroles‐
ters(1739cm‐1)171,173,one groupproposedtwodis‐
nct spectral properes within the necrosis of
glioblastomacells:“highlynecroc”,showinganin‐
creaseinplasmaproteinsand“peri‐necroc”,exhi‐
bing a higher lipid content174. The
histopathological heterogeneity of tumor ssue
samples was addressed in fresh and frozen brain
secons, although possible confusion between
different tumor components (i.e., tumor hemor‐
rhageandnecrosis)isdescribed36,173.The genomic
heterogeneity in glioblastoma has also been suc‐
cessfullyaddressed175.Otherapproachesmakeuse
of an alternave advanced Raman technique na‐
medSmulatedRamanhistology176–179(SRH),whe‐
re disnct wavenumbers are used for image
acquisionandvirtualH&E‐likeimagesaregenera‐
ted aer computaonal processing. With this ap‐
proach in combinaon with deep convoluonal
neural networks, amongst others Hollon et al. as‐
sessed (pediatric180) brain tumors intraoperave‐
ly1,181,182. In the scope of this imaging approach,
also a tradional pathological diagnosis based on
digital Raman histology slides seems feasible183–
185.
RS could be used to idenfy brain edema186,
tumorrecurrence187ortumormargins188–194butal‐
sotumorinfiltraonzones.195,196Ingeneral,infiltra‐
ve glioma cells showed significant spectral
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page11of32
differences in the regions of phenylalanine and
Amide III (around 1030cm‐1 and 1230‐1300cm−1),
aswell as the region assignedto C‐C stretching li‐
pids and nucleodes (around 1050‐1100cm‐1) –
justtolistafewwavenumbersofinterestexempla‐
rily197.Jietal.196reportthecellularitywithinasam‐
pleaswellasthedensityofaxonsandtheraoof
lipidandproteincontentsasthebasisforthediffe‐
rence in spectral properes. Even single tumor
cells198were detectable using RS, somethingalter‐
nave imagingmethodsstruggle with. RSwasalso
applied to observe glioblastoma tumor evolu
on199,to determine the molecularsubtype ofglio‐
blastoma200, and to give insight in glioma
biochemistry201.
RSwasshowntobesuperiorindifferenaon
of brain tumor and glioblastoma in comparison to
5‐ALA‐induced fluorescence202,203, and capable to
detect IDH mutaon s in gliomas – inter alia chan‐
ges in the spectral protein profile are consistently
reportedincaseofIDHmutaon204–206.Italsosho‐
weddiagnoscvalueintumordiscriminaonwhen
measuringsmall extracellularvesicles207, or poten‐
al when tracking/detecngmetabolicchanges208–
210in braintumors/cancercells,aswellasdrugde‐
livery mechanisms211 and post‐therapeuc chan‐
ges212inglioblastomacells.
Spectroscopicclassificaonofdifferentgrades
ofbraintumors is possible213.Zhou etal.214 disn‐
guishedbetween differentWHO gradesofgliomas
using Raman bands of tryptophane (around
1588cm−1, among others) and carotenoids
(1008cm−1, 1157cm−1, 1521cm−1, 2320cm−1, and
2667cm−1) as well as the peak intensity rao bet‐
ween proteins and lipids in the high wavenumber
region (2934cm−1/2885cm−1). The group of Morais
et al.215 and Lilo et al.216 differenated between
differentgradesofmeningiomas.Zhangetal.217as‐
sociatedan intensityraointhehighwavenumber
region with different meningioma grades. While
gliomas/neuroepithelial tumors and meningiomas
have been described218 and morpho‐chemically
analyzed219,220 extensively221, some work also exist
on neuroblastomas. One group differenated bet‐
weendifferentneuralcrest‐derivedtumorsinfresh
and frozen ssue222,223, and Ricciardi et al.224 used
RSto examinechangesinthebiochemistryofneu‐
roblastoma cells aer exposure to radiaon. Me‐
dulloblastomas225, biopsies of the pituitary
gland209,226,seeds of renoblastomas227, andcarci‐
noma metastases228 have been spectroscopically
studiedaswell.
Early,intraoperative,andneuropa‐
thologicaldiagnosticsusingRS
Perioperave ex vivo ssue assessments al‐
low for direct and early treatment decision, e.g.,
when examining smear brain tumor samples94 or
discriminang between primary CNS (central ner‐
vous system) lymphoma and glioblastoma based
on biopsies229. RS can also be applied intraopera‐
vely (in vivo) ‐ recently even in dogs230 ‐ using a
hand‐held probe for tumor classificaon231–237,
where a real‐me auditory feedback mechanism
has been proposed to guide the neurosurgeon238.
Transcranial RS, leaving the skull intact, has been
proposedanddemonstratedinamousemodel239.
Using opcal spectroscopy applied on FFPE
ssue,Devpura et al.240and Gajjaret al.159exami‐
nedapossibleapplicaonofRStovariousbraintu‐
morsalreadyin 2012/2013. Shortly aer,Fulwood
etal.241disnguishedbetweenglioblastoma,meta‐
stasesandnormalbrainusingimmersionRSonFF‐
PE samples. Livermore et al.204 have been able to
carryouttheabove‐menonedanalysisoftheIDH
mutaon deteconinglioblastomatumorsalsoon
FFPEssue.Differenthistological areas can bedis‐
nguished in glioblastoma in FFPE ssue, with a
sound separability between the peritumoral area
andtheareaofnecrosis242.
To enable early and non‐invasive cancer dia‐
gnosis, some approaches aim for idenficaon of
meningioma243andglioma244paentsbasedonse‐
rumsamples andresulngspectroscopicbehavior.
UsingRSasanaddivetechnique,LeResteetal.245
combinespectroscopicdataandtranscriptomicda‐
ta for machine learning analyses on glioblastoma
subtypesandrelatedclinicaloutcomes.
RSinNeurodegenerativeDiseases
Misfolded proteins and aggregates in various
diseases246–248,e.g., Alzheimer's(tauand amyloid),
Parkinson's (alpha‐synuclein), Hunngton's (poly‐
glutamine),are in generalaccessible to vibraonal
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page12of32
spectroscopictechniques249.Usageofthesetechni‐
ques ranges from tracking and characterizaon of
misfolded proteins41, to potenal new diagnosc
methods250,251,especiallyin biofluids252–254. Studies
on the pathological hallmarks of neurodegenera
vediseasesused avarietyof RS techniques;most
frequently employed techniques are SERS, TERS
(Tip‐enhanced Raman spectroscopy), as well as
DUVRR255,256(deepUVresonance Raman),wherea
wavelengthinthe rangeofUV (200nm)is usedas
excitaonsourcewhich resultsinanincreased in‐
tensity. Another common technique named ROA
(Ramanopcalacvity)makesuse oftheprinciple
that a chiral molecule scaers le and right han‐
ded polarized photons at different intensies and
soisparcularly useful to analyzeproteinaggrega‐
tes257,258. Furthermore, also IR (infrared)‐spectros‐
copyand related/modifiedvibraonalmethods are
common, and a combinaon of techniques could
lead to an increased diagnosc ability and gain of
knowledge2,259–262. Several ways of increasing the
detectabilityofasample via RShavegainedpopu‐
larity in the neurodegenerave field. Bringing in a
labelled isotope into the backbone of a pepde
shiscertainamidbandsandenablesa demarca
onfromthe exisng amidebands emanang from
theunlabeled proteinsin thesample, althoughan
overlap of Raman peaks of interests may oc‐
cur263,264. Another similar approach integrates ex‐
ternal probes such as unnatural amino acids with
vibraonal potenal into the sample, which can
aerwards be traced by specific Raman peaks,
oen in the range between 1900‐2900cm‐1where
theinterferencewithotherpeaks of thespecimen
is minor264–266. For further reading, Devi et al.2
providesadetailedinsightintotheuseofRSinthe
fieldofneurodegeneravediseases.
Around 20 years ago convenonal RS was al‐
ready capable of disnguishing between AD brain
ssueandhealthycontrolbrainssue(in2022ma‐
chine learning algorithms are useful to do the sa‐
me267) and to determine the presence of
amyloid‐beta‐sheetsin senile plaques268–270. Short‐
ly aer, Raman signals of the hippocampus of AD
rats were proposed to aid diagnosis of AD271.
Kurouskietal.44giveanoverviewoftheapplicaon
ofRSin the courseofplaque formaonandstruc‐
ture; Wilkosz et al.41 provide a comprehensive list
ofwavenumbersassociatedwithproteinaggrega
on. Detailed examinaons of the (secondary)‐
structure of beta‐amyloid in various experimental
set ups have been carried out using DUVRR272–275
orROA44.Cunhaetal.276usedacombinaonofRa‐
man techniques for amyloidplaque characteriza
on.SERShasbeenusedtoidenfytauproteinand
(soluble) amyloid beta277,278, and to detect amylo‐
id‐beta1‐40monomersandamyloid‐beta1‐40fibrilsin
soluon279 as well as in brain ssue280. 40 and
42281 were shown to be disnguishable. TERS
was used to characterize natural 1‐42 fibrils and
idenfytoxicoligomericforms282,283.
RS was capable of visualizing amyloid in AD
brains post mortem and of displaying neuric
plaques and neurofibrillary tangles284 – even
though the laer findings were quesoned and
measurement of lipofuscin granulates instead of
plaques was proposed285 Raman imaging also de‐
termined the presence of hemoproteins in senile
plaques286 and allowed for reconstrucon of the
evoluon process of differenttypes of amyloid be‐
ta plaques287. Based on RS measurements, AD‐as‐
sociatedastrogliosis288andlipiddepositsinvicinity
of fibrillary plaques were idenfied and further
morphologicallydescribed289.
Beside the idenficaon of amyloid beta290–
292,forexampleinthesurroundingofneuronalspi‐
nes293,Ramanimaging294,295hasbeenusedtocom‐
pare the concentraon of Aβ in hippocampal
regions and eye lens ssue296 and to determine
cholesterol‐andsphingomyelin‐richstructuressur‐
rounding amyloid plaques, thought to represent
dystrophic neurites297. Another research group
used CARS to determinea higher content of lipid,
collagen and amyloid fibers in Alzheimer‐affected
brainsamples298.
Searching for biomarkers as an early diagno‐
sc toolinAD299–302, humantears303,saliva,304 ce‐
rebrospinalfluid305(differentstatesofamyloidbeta
confirmaons could be detected in cerebrospinal
fluid already in 2008306), renal imaging307 and
bloodsamples308–318havebeenevaluatedforapo‐
tenal diagnosis of AD using spectral differences
arriving from platelets319 or the concentraon of
theneurotransmiers Glutamate (GLU) and γ‐ami‐
nobutyric acid (GABA)320. Inthe courseof this ap‐
proach, it has been shown that corcal cataract
maynotbeasufficientpredictorofAD296. The de‐
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page13of32
tecon of neurotransmiers using RS has been
shownandfurtheranalyzed,byArdinietal.321,Lee
etal322,Moodyetal.323–325 (i.e. RSfordetecon of
neurotransmiersthroughtheskull),Caoetal.326/
Zhou et al.327 (neurotransmier detecon in se‐
rum), Ciubuc et al.328 (RS for dopamine detecon
andanalysis), Silwalet al.329 (dopamineand dopa‐
minetransporterinteracon), Manciuetal.330(do‐
pamine – serotonin interacon) and Shi et al.331
(quanficaonofnorepinephrine).
Inaddion,RSisalsosuitabletoexaminethe
interacon of beta‐amyloid with metal ions332–337.
Interesngly, detecon of tau335–338 and insulin342–
345hassofarbeenstudiedtoalesserextent;ozone
exposureas a knownrisk factorhasbeen foundto
lead to spectroscopically measurable changes of
thehippocampusinaratmodel346.
In Parkinson’s Disease (PD), a main focus of
theapplicaonof RS isthe characterizaon of the
secondary structure of alpha‐synuclein338,347–349 as
wellas theidenficaon of alpha‐synucleinaggre‐
gaons, feasible not only in the brain but also in
the gut350. Mensch et al.351 used ROA to examine
the spectral properes of α‐synuclein during tran‐
sion to its secondary structure. Another group
spectroscopically characterized the striatal extra‐
cellularmatrixin a PD mouse model352. Sinceearly
lossofdopaminergicneuronsisanearlychange in
paents with PD, differentapproachesaim forde‐
tecon of dopamine353–355, e.g., in striatum of mi‐
ce356, or in blood samples of paents with
anpsychoc drug‐induced Parkinsonism357. Other
efforts to establish early diagnosc tests for PD,
such as examinaon of erythrocytes and blood
coagulaoninPDpaents358,werecarriedoute.g.,
byCarlomagno etal.359 usingsaliva of PD paents
and Schipper et al.360 who combined RS and NIRS
(near infrared spectroscopy) to disnguish bet‐
ween blood samples of PD paents and a control
group through different spectroscopic properes
correlatedwithoxidavestress.Mammadovaetal.
361usedRSinaPDmousemodeltodetectpatholo‐
gical renal changes as a method to disnguish
betweenhealthyanddiseasedsamples.
AnalyzingperipheralnervousssueinALSmi‐
ceandautopsiesofpaentssufferingfromALS,Ti‐
an et al.362 showed that Raman imaging was
capable of visualizing anddetecng early patholo‐
gical changes. Different approaches disnguish
betweenaltered lipids and proteoglycans in spinal
cordssueofALS miceand healthycontrols363,or
testtheprognoscvalueofSERSinALSpaents364.
InaddiontothemanyapproachestodiagnoseAD
andPDpaentsbyRS,othersfocusonALSaswell.
Fordiagnoscpurposes, Zhang et al.365 used SERS
onplasmasamplestodisnguishbetweenALSpa‐
ents and a healthycontrol group; Morasso et al.
366proposedvibraonalspectroscopyandextracel‐
lularvesiclesasapotenal biomarkerandanother
research group spectroscopically examined saliva
fromALS,PD,andADpaents,showingdifferences
inthespectralproperesofeachgroup367.
InthecontextofHunngtonDisease (HD), RS
has been used for quanficaon and visualizaon
ofaggregatedpolyglutamine368andfortheassess‐
mentofitsstructure369,370.Huefner et al.371 found
significantchangesin thespectrarelatedto disea‐
se progression, as well as differences correspon‐
dingto genotypeand genderin serum samples of
HD paents and healthy controls. In another ap‐
proach, membrane composion of HD‐affected
andcontrolperipheralfibroblastswereseparatable
using RS, suggesng that cell membrane damage
mayserveasfuturediagnoscbiomarker372.
RS has also been used for research on Prion
Diseases373–378; one research group employed the
methodtoexaminethediagnoscvaluewhenana‐
lyzing blood samples of sheep to detect the alte‐
ringfromofPrPCtoPrPSc379.
Spectroscopicexaminationofmyelin
compositionintheCNSandinperi‐
pheralnervetissue
RSproves useful togain adeeper understan‐
dingofthemolecular myelincomposion;Pezzo
etal.380 examinedthe physical chemistryof cocul‐
tured neuronal and Schwann cells. In addion, RS
may be advantageous to detect pathological pro‐
cesses of demyelinang diseases in the CNS or in
peripheral nerve ssue. Carmona et al.381 studied
thespectroscopichallmarksof lipid chainsinmye‐
lin membranes as well as the secondary structure
of associated proteolipid proteins (PLP). Some pu‐
blicaonsreportthepossibilityofdetecngmyelin
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page14of32
invivousingRaman microscopy382,383;Huang et al.
384 described different composions of myelin
structures, whereas Wang et al.385 used CARS mi‐
croscopytodetectnot only myelinbutalsoaxons,
the node of Ranvier, and the Schmidt‐Lanterman
incisure. Fu et al.386 visualized fiber tracts in mice
brain by imaging the myelin along the axons. In
2021Lucasetal.387 usedCARStodeterminemyeli‐
naon deficits in a fragile‐X‐syndrome mouse mo‐
del.Out of pure academic interestthe publicaon
of Poulen et al.388, in which Raman scaering on
spinal cord myelin disnguishes between three
different species (human, mouse, lemur), shall be
menonedatthispoint.
Few Raman experiments deal with Mulple
sclerosis(MS)389;theprocessofmyelindegradaon
canbeaddressedwithRSnotonlyquantavely390
but also qualitavely. To tackle alteraons in the
biochemical composions in human brains post‐
mortem,Poonetal.391–393measuredvariouspatho‐
logic features and showed that even normal
appearing white maer next to MS lesions inclu‐
ded spectroscopically measurablechanges. Imitola
et al.394 correlate the presence of microglia (on a
side note: even the acvaon of microglia is tra‐
ceable using RS395) and axonal injury/demyelina
onusing CARS microscopy.Fu etal.396 appliedthe
same method to examine different me points of
experimental autoimmune encephalomyelis in
miceandGasecka et al.397 usedCARStodetect in‐
ducedautoimmunedemyelinaoninspinalcordof
mice. Another approach was carried out by the
teamof Alba‐Arbalatet al.398;they detectedspec‐
tral changes of defined molecules in the rena
(evenaninvivouseofRSappliedonhumanrena
isin line withlaser safetyregulaons399) ‐ associa‐
tednot onlywith differentphasesof MS,but also
age‐relatedinhealthypaents.
Raman‐based research of myelin composion
andpathologyisnot limited to MS, italsoextends
to the study of demyelinaon and its biochemical
changesinperipheralnervessue400‐evenpatho‐
logical401 and age related402 changes. Using diffe‐
rent Raman techniques the remyelinaon process
in the spinal cord of rats aer iatrogenic induced
demyelinaon403, as well as remyelinaon in rat
sciac nerve404, and biochemical changes during
nerve injury405,406 can be tracked. Another ap‐
proachusedCARSimagingtointerprettheinterac‐
on of different macrophages (resident and
recruited)aerWalleriandegeneraon407.
UpcomingnovelfieldsforRS‐from
stroketomusculardiseasestopsych‐
iatry
RS has been applied in combinaon with in‐
frared spectroscopy and atomic force microscopy
tocharacterizedifferenttypesofthrombiin ische‐
mic stroke408 or to characterize atheroscleroc
plaques409,410. Changes in fibrin concentraon in a
blood clot aer zonal thrombolysis with urokina‐
se411,orthe metabolic regulaon ofarterytone412
were examined. Other research groups invesga‐
tedspectroscopicchangesinthehippocampusdue
to cerebral ischemia‐reperfusion413, or spectrosco‐
picchanges in theamount ofCu+and Cu2+ions in
brain ischemia414. Russo et al.415 used Raman tra‐
ceablecytochrome cto invesgateeffects ofinsu‐
lin on the hippocampus aer transient ischemic
brain condions, Yamazoe et al.416 used a self‐de‐
veloped Raman approach to detect areas of an
ischemic core area. The group of Caine et al.417
used a combinaon of imaging techniques,
amongstothersRamanimaging,totrackbiochemi‐
cal changes in the peri‐infarct zone aer induced
strokein a mousemodel.As an alternave way of
infarcondiagnosc,Fanetal.418 proposedtearRS
in combinaon with machine learning tools as a
non‐invasivetechnique.
Incontextofbrainhemorrhages,Raman ima‐
ginghas beenused todetect microvesselsandin‐
duced hemorrhage419, as well as to track the
oxygen flow in brain vessels420. Furthermore, RS
wasemployedasamethodin ratbrainswithstria‐
talhemorrhagestoevaluatethebiochemicalcom‐
posion aer rehabilitaon treatment421.
Employing SERS, the subarachnoid hemorrhage
biomarkerglial fibrillary acidproteincan bedetec‐
ted422.SERScanalsobeusedtoassesscomplica
ons post subarachnoid hemorrhage, like
vasospasmandhydrocephalus423.
Inssuecondionsofbrainorspineinjury,RS
was applied to ssue of rat models424–426 and on
renae of miceaertraumacbraininjury427.Bio‐
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page15of32
chemical changes in affected areas arising from
hem or divergent levels of cholesterolwere disco‐
vered428and comparedtoMRIscans429.RSwasca‐
pable of detecng injured motor cortex areas
wherecertain spectroscopic properes were asso‐
ciated with cell death430. Employment of SERS‐ba‐
sedmethods allowfordetecon ofneuron‐specific
enolase(NSE),N‐acetylasparateor S‐100βin blood
samples as biomarkers for brain injury431–435; ai‐
ming for intraoperave assessment of molecular
changes ‐ one group developed a device for intra‐
cranialspectroscopywithinbraininjury436.Changes
in the biochemical and cellular composion of rat
brain aer gamma radiaon have been addressed
by Kočović et al.437. For a further reading the rea‐
dermayrefertoStevensetal.438,whohasrecently
reviewedthecurrentdeploymentsofRamanspec‐
troscopy in traumac brain injury in a detailed
way.
Even muscular diseases are accessible to RS:
Niedieker et al.439 used CARS imaging to visualize
morphological hallmarks such as glycogen storage
and internalized nuclei in various muscular disea‐
ses;Alixetal.440reporteddifferentspectralproper‐
es of mitochondrial and non‐mitochondrial
muscular diseases; and Gautam et al.441 showed
the differences in the spectra of Raman measure‐
ments from muscles of Drosophila with certain
mutaonsaffecngthemuscularsystemincompa‐
risontohealthycontrols.SpRSwasusedforinvivo
idenficaon of Duchenne muscular dystrophy
(DMD)affectedmusclesinamousemodelandhu‐
man muscles affected with the same disease with
ex vivo measurements showing similar Raman
peaks442. Hentschel et al.443 evaluated the use of
fibroblasts together with applicaon of CARS and
othermethods to study theeologyofneuromus‐
cular diseases. Blood sample tesng for the dia‐
gnosis of DMD was proposed and successfully
performedinamousemodel444;thecomparisonof
spectral properes of the erythrocyte membrane
in DMD paents and healthy controls demonstra‐
tedbiochemicaldifferencesduetoproteinanoma‐
ly445.
OneofthepotenaldomainsofRSinthearea
ofinfecous diseasesofthebrainandmeninges is
thediagnoscdeteconofpathogens.Ithasalrea‐
dy been capable of idenfying viral strains446,
changesinbacterialmetabolism447,ordifferenate/
detectdifferenttypesofbacteriarelatedtomenin‐
gis448,449. Although the diagnoses of tuberculous
meningis450 or Neisseria meningis451 as well as
possibledifferenaonof bloodcell types452 using
RSonCSFsamplesisreported,reliabledeteconof
bacterialmeningisin CSFwas notyet sufficiently
sensible; therefore, a combinaon of techniques
wassuggested453.AnotherapproachemploysRSin
neuroimmunology as a tool to monitor apoptoc
changesinhippocampalprogenitorcells454.
RShas also beenapplied in psychiatricdisor‐
ders;e.g.tovisualizethedrugmechanismofase‐
rotoninreuptakeinhibitorinmousebrain455andto
idenfybloodserumsamples based onalteraons
in phospholipids and proteins of paents with
affecve disorders456–458. Recently, Chaichi et al.459
measured changes in brain lipidome spectroscopi‐
cally in post‐traumac stress disorder (PTSD) rats,
but also the vibraonal spectroscopic properes
within myalgic encephalomyelis have been sub‐
jectedtofurtheranalysis460,461.
Conclusionsandoutlook
All studies and literature cited in this review
focusedonpreclinical/clinicaluseofRSwiththein‐
tenon toprovide theinterested reader a general
overview rather than a detailed account of each
parcular topic. Before jumping into acon and
establishingRSasanaddionalresearchmethodin
one’sown laboratory,taking alook on themetho‐
dological reviews by Butler et al.28 (including con‐
crete informaon about the general experimental
setup and requirements for biological ssue), and
Guo et al.462 (analysis of Raman data, machine
learningalgorithms)mayproveuseful.
Upcoming applicaons of RS potenally aim
forin vivopredicon of progressionrisk463 orem‐
ploymentofvibraonalspectroscopyfordetecon
ofepileptogenicbrainregions464.AdvancedRaman
techniques such as Spaally offset Raman Spec‐
troscopy (SORS)465 may potenally permit live in‐
sight into ssue biochemistry of deeper brain
structures.Alternavely,a futureestablishment of
intraoperaveRaman imaging(in parcular it may
evenbeperformedinvivo466)willpotenallyallow
fastdeteconof bothhistomorphological features
and tumor genecs; therefore producing an inte‐
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
page16of32
grateddiagnosis467 atan early stageofthediagno‐
sc workflow468. Extensive clinical studies aiming
for approval of RS in neuroscience by regulatory
authories are sll missing, even though a clinical
needandapaentbenefithasbeendemonstrated
by a broad range of groups and laboratories. To
translatepromisingresultsintoclinicalpracce,se‐
veral challenges should be considered. When vi‐
braonal spectroscopy is tested as a diagnosc
method in a mulcenter approach, experimental
workflowsofspectroscopicexaminaonneedtobe
standardized and facilitated; consensus within the
spectroscopic community on a collaborave expe‐
rimental setup and procedure prevents potenal
invariances due to different sample preparaon
protocolsandhiddenarfacts91.Tomaximizespec‐
traloutput andenhance spectralintensity ina cli‐
nical seng, handheld probes / spectrometers
with opmized design and in vivo parameters as
wellasapreferablylowsignal‐to‐noiseandhighsi‐
gnal‐to‐backgroundraoarecurrentlyunderinves‐
gaon by a growing number of companies
stepping up their efforts in the interface of rese‐
archandclinicalimplementaon.117,469
Since the use of RS on FFPE ssue allows di‐
rectcomparison with the diagnoscgold standard
ofhistology,RSisexpectedtoexpandits applica
onsin neuropathologicaldiagnoscsin thefuture.
Upcoming studies will not only challenge the cur‐
rentuseofRSonunstainedFFPE ssue(isreliable
diagnosis also achievable on H&E stained samp‐
les?)butalsodiscussapotenaluse ofvariousRa‐
man substrates in a cost‐oriented manner470. To
reducethe costfactor(id est expensivesubstrates
suchasCaF2orlow‐Eslides)futureemploymentof
RSonglassslidesseemsworthwhile;therefore,oc‐
curring autofluorescence during measurement
needs to be addressed.Within that approach,the
use of a certain excitaon wavelength or the de‐
tecon ofonlyasmallspectralwavenumberrange
havebeen proposed60,471. Inthis sense,Ibrahimet
al.472 aimed to use glass as Raman substrates by
employingadigitalprocessingmethod.
In the field of neurodegenerave diseases, a
majorandhighlyancipatedimpactofRScouldbe
theearlyandnon‐surgicaldiagnosisofdisordersin
a reproducible manner. Despite promising results,
this applicaon area is only beginning to develop.
To maximize diagnosc reliability, a deeper under‐
standing of Raman features and their correspon‐
ding biochemical origin in biofluids is key. Within
thehuge amount of obtained data, itremains ne‐
cessary to address paent dependent spectral va‐
riaon as well as variaons related to a concrete
experimental set up. Close cooperaon between
different research groups and ensured data sha‐
re470 potenally accelerate the development to‐
wardsclinicalimplementaon.
Anexemplarysuccessstoryofclinicaltransla‐
onwasreportedinthefieldofdermatology,whe‐
reRShadalreadybeenestablishedas a diagnosc
methodforearlydeteconofskincancer;ahand‐
held device was commercially produced in Cana‐
da463,473,474. To speed up translaon from research
labs to commercializaon and clinical use, several
networks have been founded, e.g., Internaonal
Society for Clinical Spectroscopy (ClirSpec, clir‐
spec.org)andRaman4Clinics(raman4clinics.eu),all
aiming for exchange of experse and creaon of
researchcollaboraon117.
Toconclude,itishighlylikelythatRSwillcon‐
nueto evolve asa methodin theinterseconof
applied biophysics and medicine – and potenally
make its way deeper into the field of life science,
such as detecon of plasc in zebrafish brain ho‐
mogenatesasaresultofexposuretonanoplasc475
and even more clinical applicaons. Where the
journeywill finally lead remains to be seenin the
nextyears.
Acknowledgements
Figure 1and Figure 2werecreated withBio‐
Render.com.MM thanksthe FNR for funding sup‐
port(FNRPEARLP16/BM/11192868grant).
Funding
Luxembourg Naonal Research Fond, FNR
(FNRPEARLP16/BM/11192868granttoM.M.)
ConflictsofInterest
Wehavenoconflictsofinteresttodisclose.
FreeNeuropathology3:19(2022)
doi:hps://doi.org/10.17879/freeneuropathology20224210
Klammingeretal
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 17 of 32
References
1. Hollon TC, Pandian B, Adapa AR, et al. Near real-time intraoperative
brain tumor diagnosis using stimulated Raman histology and deep
neural networks. Nat Med. 2020;26(1):52-58. https://doi.org/
10.1038/s41591-019-0715-9
2. Devitt G, Howard K, Mudher A, Mahajan S. Raman Spectroscopy: An
Emerging Tool in Neurodegenerative Disease Research and Diagnosis.
ACS Chem Neurosci. 2018;9(3):404-420. https://doi.org/10.1021/
acschemneuro.7b00413
3. Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer
detection with Raman spectroscopy in humans. Sci Transl Med.
2015;7(274):274ra19. https://doi.org/10.1126/scitranslmed.aaa2384
4. Segura-Uribe JJ, Farfán-García ED, Guerra-Araiza C, Ciprés-Flores FJ,
García-dela Torre P, Soriano-Ursúa MA. Differences in brain regions of
three mice strains identified by label-free micro-Raman. Spectrosc Lett.
2018;51(7):356-366. https://doi.org/10.1080/00387010.2018.1473883
5. Payne TD, Moody AS, Wood AL, Pimiento PA, Elliott JC, Sharma B.
Raman spectroscopy and neuroscience: from fundamental
understanding to disease diagnostics and imaging. Analyst.
2020;145(10):346 1-3480. https://doi.org/10.1039/D0AN00083C
6. Tashibu K. [Analysis of water content in rat brain using Raman
spectroscopy]. No To Shinkei. 1990;42(10):999-1004.
7. Kitajima T, Tashibu K, Tani S, Mizuno A, Nakamura N. [Analysis of
water content in young rats brain edema by Raman spectroscopy]. No
To Shinkei. 1993;45(6):519-524.
8. Mizuno A, Hayashi T, Tashibu K, Maraishi S, Kawauchi K, Ozaki Y. Near-
infrared FT-Raman spectra of the rat brain tissues. Neurosci Lett.
1992;141(1):47-52. https://doi.org/10.1016/0304-3940(92)90331-Z
9. Mizuno A, Kitajima H, Kawauchi K, Muraishi S, Ozaki Y. Near-infrared
Fourier transform Raman spectroscopic study of human brain tissues
and tumours. J Raman Spectrosc. 1994;25(1):25-29.
https://doi.org/10.1002/jrs.1250250105
10. Pliss A, Kuzmin AN, Prasad PN, Mahajan SD. Mitochondrial
Dysfunction: A Prelude to Neuropathogenesis of SARS-CoV-2. ACS Chem
Neurosci. 2022;13(3):308-312. https://doi.org/10.1021/acschemneuro.
1c00675
11. RAMAN C V, KRISHNAN KS. A New Type of Secondary Radiation.
Nature. 1928;121(3048):501-502. https://doi.org/10.1038/121501c0
12. RAMAN C V. A Change of Wave-length in Light Scattering. Nature.
1928;121(3051):619-619. https://doi.org/10.1038/121619b0
13. Singh R. C. V. Raman and the Discovery of the Raman Effect. Phys
Perspect. 2002;4(4):399-420. https://doi.org/10.1007/s000160200002
14. C. TM. Raman Spectra of Crystalline Lysozyme, Pepsin, and Alpha
Chymotrypsin. Science (80- ). 1968;161(3836):68-69. https://doi.org/
10.1126/science.161.3836.68
15. Lord RC, Yu NT. Laser-excited Raman spectroscopy of biomolecules.
I. Native lysozyme and its constituent amino acids. J Mol Biol.
1970;50(2):509-524. https://doi.org/10.1016/0022-2836(70)90208-1
16. Antonio KA, Schultz ZD. Advances in Biomedical Raman Microscopy.
Anal Chem. 2014;86(1):30-46. https://doi.org/10.1021/ac403640f
17. Vlasov A V, Maliar NL, Bazhenov S V, et al. Raman Scattering: From
Structural Biology to Medical Applications. Crystals. 2020;10(1):38.
https://doi.org/10.3390/cryst10010038
18. Carey PR. Biochemical Applications of Raman and Resonance Raman
Spectroscopy. London, S.1-70: Academic Press; 1982.
19. Diem M, Mazur A, Lenau K, et al. Molecular pathology via IR and
Raman spectral imaging. J Biophotonics. 2013;6(11-12):855-886.
https://doi.org/10.1002/jbio.201300131
20. Auner GW, Koya SK, Huang C, et al. Applications of Raman
spectroscopy in cancer diagnosis. Cancer Metastasis Rev.
2018;37(4):691-717. https://doi.org/10.1007/s10555-018-9770-9
21. Cialla-May D, Schmitt M, Popp J. 1. Theoretical principles of Raman
spectroscopy. In: Popp J, Mayerhöfer T, eds. Micro-Raman
Spectroscopy. De Gruyter; 2020:1-14. https://doi.org/
10.1515/9783110515312-001
22. Popp J, Mayerhöfer T, eds. Micro-Raman Spectroscopy: Theory and
Application. De Gruyter; 2020. https://doi.org/10.1515/
9783110515312
23. Hu F, Shi L, Min W. Biological imaging of chemical bonds by
stimulated Raman scattering microscopy. Nat Methods.
2019;16(9):830-842. https://doi.org/10.1038/s41592-019-0538-0
24. Shi L, Fung AA, Zhou A. Advances in stimulated Raman scattering
imaging for tissues and animals. Quant Imaging Med Surg.
2021;11(3):1078-1101. https://doi.org/10.21037/qims-20-712
25. Evans CL, Xie XS. Coherent anti-Stokes Raman scattering microscopy:
Chemical imaging for biology and medicine. Annu Rev Anal Chem.
2008;1(1):883-909. https://doi.org/10.1146/annurev.anchem.
1.031207.112754
26. Zheng X-S, Jahn IJ, Weber K, Cialla-May D, Popp J. Label-free SERS in
biological and biomedical applications: Recent progress, current
challenges and opportunities. Spectrochim Acta Part A Mol Biomol
Spectrosc. 2018;197:56-77. https://doi.org/10.1016/j.saa.2018.01.063
27. Synytsya A, Judexova M, Hoskovec D, Miskovicova M, Petruzelka L.
Raman spectroscopy at different excitation wavelengths (1064, 785 and
532 nm) as a tool for diagnosis of colon cancer. J Raman Spectrosc.
2014;45(10):903-911. https://doi.org/10.1002/jrs.4581
28. Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to
characterize biological materials. Nat Protoc. 2016;11(4):664-687.
https://doi.org/10.1038/nprot.2016.036
29. Matousek P, Morris M. Emerging Raman Applications and
Techniques in Biomedical and Pharmaceutical Fields. (Matousek P,
Morris MD, eds.). Berlin Heidelberg, S. 1-24: Springer; 2010.
https://doi.org/10.1007/978-3-642-02649-2
30. Raman images explained. https://www.renishaw.de/de/raman-
images-explained--25810 . Accessed November 14, 2021.
31. He R, Xu Y, Zhang L, et al. Dual-phase stimulated Raman scattering
microscopy for real-time two-color imaging. Optica. 2017;4(1):44-47.
https://doi.org/10.1364/OPTICA.4.000044
32. Zhang B, Sun M, Yang Y, et al. Rapid, large-scale stimulated Raman
histology with strip mosaicing and dual-phase detection. Biomed Opt
Express. 2018;9(6):2604-2613. https://doi.org/10.1364/BOE.9.002604
33. Wei L, Shen Y, Xu F, et al. Imaging Complex Protein Metabolism in
Live Organisms by Stimulated Raman Scattering Microscopy with
Isotope Labeling. ACS Chem Biol. 2015;10(3):901-908.
https://doi.org/10.1021/cb500787b
34. Hu F, Lamprecht MR, Wei L, Morrison B, Min W. Bioorthogonal
chemical imaging of metabolic activities in live mammalian hippocampal
tissues with stimulated Raman scattering. Sci Rep. 2016;6(1):39660.
https://doi.org/10.1038/srep39660
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 18 of 32
35. Shi L. Raman imaging of metabolic activities in brain. In: Proc.SPIE.
Vol 11497. ; 2020. https://doi.org/10.1117/12.2571112
36. Lu F-K, Calligaris D, Olubiyi OI, et al. Label-Free Neurosurgical
Pathology with Stimulated Raman Imaging. Cancer Res.
2016;76(12):3451-3462. https://doi.org/10.1158/0008-5472.CAN-16-
0270
37. Pezzotti G. Raman spectroscopy in cell biology and microbiology. J
Raman Spectrosc. 2021;52(12):2348-2443. https://doi.org/10.1002/
jrs.6204
38. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M.
Raman spectroscopy of lipids: A review. J Raman Spectrosc.
2015;46(1):4-20. https://doi.org/10.1002/jrs.4607
39. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M.
Raman spectroscopy of proteins: A review. J Raman Spectrosc.
2013;44(8):1061-1076. https://doi.org/10.1002/jrs.4335
40. Wiercigroch E, Szafraniec E, Czamara K, et al. Raman and infrared
spectroscopy of carbohydrates: A review. Spectrochim Acta Part A Mol
Biomol Spectrosc. 2017;185:317-335. https://doi.org/10.1016/
j.saa.2017.05.045
41. Wilkosz N, Czaja M, Seweryn S, et al. Molecular Spectroscopic
Markers of Abnormal Protein Aggregation. Molecules. 2020;25(11).
https://doi.org/10.3390/molecules25112498
42. Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational
spectroscopic methods for cytology and cellular research. Analyst.
2014;139(18):4411-4444. https://doi.org/10.1039/C4AN00636D
43. Benevides JM, Overman SA, Thomas GJ. Raman Spectroscopy of
Proteins. Curr Protoc Protein Sci. 2003;33(1):1-35.
https://doi.org/10.1002/0471140864.ps1708s33
44. Kurouski D, Van Duyne RP, Lednev IK. Exploring the structure and
formation mechanism of amyloid fibrils by Raman spectroscopy: a
review. Analyst. 2015;140(15):4967-4980. https://doi.org/10.1039/
C5AN00342C
45. Krafft C, Neudert L, Simat T, Salzer R. Near infrared Raman spectra
of human brain lipids. Spectrochim Acta Part A Mol Biomol Spectrosc.
2005;61(7):1529-1535. https://doi.org/10.1016/j.saa.2004.11.017
46. Vedad J, Mojica E-RE, Desamero RZB. Raman Spectroscopic
Discrimination of Estrogens. Vib Spectrosc. 2018;96:93-100.
https://doi.org/10.1016/j.vibspec.2018.02.011
47. Pezzotti G, Horiguchi S, Boschetto F, et al. Raman Imaging of
Individual Membrane Lipids and Deoxynucleoside Triphosphates in
Living Neuronal Cells during Neurite Outgrowth. ACS Chem Neurosci.
2018;9(12):3038-3048.
https://doi.org/10.1021/acschemneuro.8b00235
48. Gorelik VS, Krylov AS, Sverbil VP. Local Raman spectroscopy of DNA.
Bull Lebedev Phys Inst. 2014;41(11):310-315. https://doi.org/
10.3103/S1068335614110025
49. Lee HJ, Zhang D, Jiang Y, et al. Label-Free Vibrational Spectroscopic
Imaging of Neuronal Membrane Potential. J Phys Chem Lett.
2017;8(9):1932-1936. https://doi.org/10.1021/acs.jpclett.7b00575
50. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of
biological tissues. Appl Spectrosc Rev. 2007;42(5):493-541.
https://doi.org/10.1080/05704920701551530
51. De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference
database of Raman spectra of biological molecules. J Raman Spectrosc.
2007. https://doi.org/10.1002/jrs.1734
52. Edwards HGM. Spectra-Structure Correlations in Raman
Spectroscopy. In: Handbook of Vibrational Spectroscopy. ; 2006.
https://doi.org/10.1002/0470027320.s4103
53. Grasselli JG, Snavely MK, Bulkin BJ. Applications of Raman
spectroscopy. Phys Rep. 1980;65(4):231-344. https://doi.org/
10.1016/0370-1573(80)90065-4
54. Visser T, Van Der Maas JH. Systematic interpretation of Raman
spectra of organic compounds. II-Ethers. J Raman Spectrosc.
1977;6(3):114-116. https://doi.org/10.1002/jrs.1250060303
55. Visser T, van der Maas JH. Systematic interpretation of Raman
spectra of organic compounds. IIIcarbonyl compounds. J Raman
Spectrosc. 1978;7(3):125-129. https://doi.org/10.1002/jrs.1250070304
56. Visser T, Van Der Maas JH. Systematic interpretation of Raman
spectra of organic compounds. IVnitrogen compounds. J Raman
Spectrosc. 1978;7(5):278-281. https://doi.org/10.1002/jrs.1250070510
57. Vankeirsbilck T, Vercauteren A, Baeyens W, et al. Applications of
Raman spectroscopy in pharmaceutical analysis. TrAC Trends Anal
Chem. 2002;21(12):869-877. https://doi.org/10.1016/S0165-
9936(02)01208-6
58. Malgorzata Baranska Jan Cz. Dobrowolski, Hartwig Schulz, Rafal
Baranski, MR. Recent Advances in Raman Analysis of Plants: Alkaloids,
Carotenoids, and Polyacetylenes. Curr Anal Chem. 2013;9(1):108-127.
https://doi.org/http://dx.doi.org/10.2174/1573411011309010108
59. Fullwood LM, Griffiths D, Ashton K, et al. Effect of substrate choice
and tissue type on tissue preparation for spectral histopathology by
Raman microspectroscopy. Analyst. 2014;139(2):446-454.
https://doi.org/10.1039/C3AN01832F
60. Kerr LT, Byrne HJ, Hennelly BM. Optimal choice of sample substrate
and laser wavelength for Raman spectroscopic analysis of biological
specimen. Anal Methods. 2015;7(12):5041-5052. https://doi.org/
10.1039/C5AY00327J
61. Gee AR, O’Shea DC, Cummins HZ. Raman scattering and fluorescence
in calcium fluoride. Solid State Commun. 1966;4(1):43-46.
https://doi.org/10.1016/0038-1098(66)90102-5
62. Cui L, Butler HJ, Martin-Hirsch PL, Martin FL. Aluminium foil as a
potential substrate for ATR-FTIR, transflection FTIR or Raman
spectrochemical analysis of biological specimens. Anal Methods.
2016;8(3):481-487. https://doi.org/10.1039/C5AY02638E
63. Thomas P V, Ramakrishnan V, Vaidyan VK. Oxidation studies of
aluminum thin films by Raman spectroscopy. Thin Solid Films.
1989;170(1):35-40. https://doi.org/10.1016/0040-6090(89)90619-6
64. Hou H-C, Banadaki YM, Basu S, Sharifi S. A Cost-Efficient Surface
Enhanced Raman Spectroscopy (SERS) Molecular Detection Technique
for Clinical Applications. J Electron Mater. 2018;47(9):5378-5385.
https://doi.org/10.1007/s11664-018-6429-9
65. Shim MG, Wilson BC. The Effects of ex vivo Handling Procedures on
the Near-Infrared Raman Spectra of Normal Mammalian Tissues.
Photochem Photobiol. 1996;63(5):662-671. https://doi.org/10.1111/
j.1751-1097.1996.tb05671.x
66. Ó Faoláin E, Hunter MB, Byrne JM, et al. A study examining the
effects of tissue processing on human tissue sections using vibrational
spectroscopy. Vib Spectrosc. 2005;38(1):121-127. https://doi.org/
10.1016/j.vibspec.2005.02.013
67. Candefjord S, Ramser K, Lindahl OA. Effects of snap-freezing and
near-infrared laser illumination on porcine prostate tissue as measured
by Raman spectroscopy. Analyst. 2009;134(9):1815-1821.
https://doi.org/10.1039/B820931F
68. Huang Z, McWilliams A, Lam S, et al. Effect of formalin fixation on
the near-infrared Raman spectroscopy of normal and cancerous human
bronchial tissues. Int J Oncol. 2003;23(3):649-655.
https://doi.org/10.3892/ijo.23.3.649
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 19 of 32
69. Mariani MM, Lampen P, Popp J, Wood BR, Deckert V. Impact of
fixation on in vitro cell culture lines monitored with Raman
spectroscopy. Analyst. 2009;134(6):1154-1161. https://doi.org/
10.1039/B822408K
70. Faoláin EÓ, Hunter MB, Byrne JM, et al. Raman spectroscopic
evaluation of efficacy of current paraffin wax section dewaxing agents.
J Histochem Cytochem. 2005;53(1):121-129. https://doi.org/
10.1369/jhc.4A6536.2005
71. Draux F, Gobinet C, Sulé-Suso J, et al. Raman spectral imaging of
single cancer cells: Probing the impact of sample fixation methods. Anal
Bioanal Chem. 2010;397(7):2727-2737. https://doi.org/10.1007/
s00216-010-3759-8
72. Galli R, Uckermann O, Koch E, Schackert G, Kirsch M, Steiner G.
Effects of tissue fixation on coherent anti-Stokes Raman scattering
images of brain. J Biomed Opt. 2013;19(7):1-8. https://doi.org/
10.1117/1.JBO.19.7.071402
73. Chan JW, Taylor DS, Thompson DL. The effect of cell fixation on the
discrimination of normal and leukemia cells with laser tweezers Raman
spectroscopy. Biopolymers. 2009;91(2):132-139. https://doi.org/
10.1002/bip.21094
74. Krishna CM, Sockalingum GD, Vadhiraja BM, et al. Vibrational
spectroscopy studies of formalin-fixed cervix tissues. Biopolymers.
2007;85(3):214-221. https://doi.org/10.1002/bip.20631
75. Mian SA, Colley HE, Thornhill MH, Rehman I. Development of a
Dewaxing Protocol for Tissue-Engineered Models of the Oral Mucosa
Used for Raman Spectroscopic Analysis. Appl Spectrosc Rev.
2014;49(8):614-617. https://doi.org/10.1080/05704928.2014.882348
76. Hackett MJ, McQuillan JA, El-Assaad F, et al. Chemical alterations to
murine brain tissue induced by formalin fixation: implications for
biospectroscopic imaging and mapping studies of disease pathogenesis.
Analyst. 2011;136(14):2941-2952. https://doi.org/10.1039/
C0AN00269K
77. Mazur AI, Marcsisin EJ, Bird B, Miljković M, Diem M. Evaluating
Different Fixation Protocols for Spectral Cytopathology, Part 1. Anal
Chem. 2012;84(3):1259-1266. https://doi.org/10.1021/ac202046d
78. Mazur AI, Marcsisin EJ, Bird B, Miljković M, Diem M. Evaluating
Different Fixation Protocols for Spectral Cytopathology, Part 2: Cultured
Cells. Anal Chem. 2012;84(19):8265-8271. https://doi.org/
10.1021/ac3017407
79. Stefanakis M, Lorenz A, Bartsch JW, et al. Formalin Fixation as Tissue
Preprocessing for Multimodal Optical Spectroscopy Using the Example
of Human Brain Tumour Cross Sections. Severcan F, ed. J Spectrosc.
2021;2021:1-14. https://doi.org/10.1155/2021/5598309
80. Ali SM, Bonnier F, Tfayli A, et al. Raman spectroscopic analysis of
human skin tissue sections ex-vivo: evaluation of the effects of tissue
processing and dewaxing. J Biomed Opt. 2013;18(6):61202.
https://doi.org/10.1117/1.JBO.18.6.061202
81. Gaifulina R, Maher AT, Kendall C, et al. Label-free Raman
spectroscopic imaging to extract morphological and chemical
information from a formalin-fixed, paraffin-embedded rat colon tissue
section. Int J Exp Pathol. 2016;97(4):337-350. https://doi.org/
10.1111/iep.12194
82. Kirkby CJ, Gala de Pablo J, Tinkler-Hundal E, Wood HM, Evans SD,
West NP. Developing a Raman spectroscopy-based tool to stratify
patient response to pre-operative radiotherapy in rectal cancer. Analyst.
2021;146(2):581-589. https://doi.org/10.1039/d0an01803a
83. Lyng FM, Faoláin EÓ, Conroy J, et al. Vibrational spectroscopy for
cervical cancer pathology, from biochemical analysis to diagnostic tool.
Exp Mol Pathol. 2007;82(2):121-129. https://doi.org/10.1016/
j.yexmp.2007.01.001
84. Tan KM, Herrington CS, Brown CTA. Discrimination of normal from
pre-malignant cervical tissue by Raman mapping of de-paraffinized
histological tissue sections. J Biophotonics. 2011;4(1-2):40-48.
https://doi.org/10.1002/jbio.201000083
85. Rehman S, Movasaghi Z, Tucker AT, et al. Raman spectroscopic
analysis of breast cancer tissues: identifying differences between
normal, invasive ductal carcinoma and ductal carcinomain situ of the
breast tissue. J Raman Spectrosc. 2007;38(10):1345-1351.
https://doi.org/10.1002/jrs.1774
86. Ning T, Li H, Chen Y, Zhang B, Zhang F, Wang S. Raman spectroscopy
based pathological analysis and discrimination of formalin fixed paraffin
embedded breast cancer tissue. Vib Spectrosc. 2021;115:103260.
https://doi.org/10.1016/j.vibspec.2021.103260
87. Lazaro-Pacheco D, Shaaban AM, Titiloye NA, Rehman S, Rehman IU.
Elucidating the chemical and structural composition of breast cancer
using Raman micro-spectroscopy. EXCLI J. 2021;20:1118-1132.
https://doi.org/10.17179/excli2021-3962
88. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld
MS. Identifying Microcalcifications in Benign and Malignant Breast
Lesions by Probing Differences in Their Chemical Composition Using
Raman Spectroscopy. Cancer Res. 2002;62(18):5375-5380.
89. Krishna CM, Sockalingum GD, Venteo L, et al. Evaluation of the
suitability of ex vivo handled ovarian tissues for optical diagnosis by
Raman microspectroscopy. Biopolymers. 2005;79(5):269-276.
https://doi.org/10.1002/bip.20346
90. Devpura S, Thakur JS, Sarkar FH, Sakr WA, Naik VM, Naik R. Detection
of benign epithelia, prostatic intraepithelial neoplasia, and cancer
regions in radical prostatectomy tissues using Raman spectroscopy. Vib
Spectrosc. 2010;53(2):227-232. https://doi.org/10.1016/
j.vibspec.2010.03.009
91. Jermyn M, Desroches J, Aubertin K, et al. A review of Raman
spectroscopy advances with an emphasis on clinical translation
challenges in oncology. Phys Med Biol. 2016;61(23):R370-R400.
https://doi.org/10.1088/0031-9155/61/23/R370
92. Jermyn M, Desroches J, Mercier J, et al. Neural networks improve
brain cancer detection with Raman spectroscopy in the presence of
operating room light artifacts. J Biomed Opt. 2016;21(9):094002.
https://doi.org/10.1117/1.JBO.21.9.094002
93. Desroches J, Laurence A, Jermyn M, et al. Raman spectroscopy in
microsurgery: impact of operating microscope illumination sources on
data quality and tissue classification. Analyst. 2017;142(8):1185-1191.
https://doi.org/10.1039/C6AN02061E
94. Bury D, Morais C, Ashton K, Dawson T, Martin F. Ex Vivo Raman
Spectrochemical Analysis Using a Handheld Probe Demonstrates High
Predictive Capability of Brain Tumour Status. Biosensors. 2019;9(2):49.
https://doi.org/10.3390/bios9020049
95. Dallaire F, Picot F, Tremblay J-P, et al. Quantitative spectral quality
assessment technique validated using intraoperative in vivo Raman
spectroscopy measurements. J Biomed Opt. 2020;25(4):1-8.
https://doi.org/10.1117/1.JBO.25.4.040501
96. Zhao J, Short MA, Braun TA, M.D. HL, M.D. DIM, Zeng H. Clinical
Raman measurements under special ambient lighting illumination. J
Biomed Opt. 2014;19(11):1-4. https://doi.org/10.1117/
1.JBO.19.11.111609
97. Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J. Sample size
planning for classification models. Anal Chim Acta. 2013;760:25-33.
https://doi.org/10.1016/j.aca.2012.11.007
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 20 of 32
98. Zhang L, Henson MJ. A Practical Algorithm to Remove Cosmic Spikes
in Raman Imaging Data for Pharmaceutical Applications. Appl Spectrosc.
2007;61(9):1015-1020. http://opg.optica.org/as/abstract.cfm?URI=as-
61-9-1015.
99. Barton SJ, Hennelly BM. An Algorithm for the Removal of Cosmic Ray
Artifacts in Spectral Data Sets. Appl Spectrosc. 2019;73(8):893-901.
https://doi.org/10.1177/0003702819839098
100. Bowie BT, Chase DB, Lewis IR, Griffiths PR. Anomalies and Artifacts
in Raman Spectroscopy. In: Handbook of Vibrational Spectroscopy. In:
Griffiths PR, ed. Handbook of Vibrational Spectroscopy. Chichester, S.
2355-2378: John Wiley & Sons; 2006:2355-2378. https://doi.org/
10.1002/9780470027325.s3103
101. Zhao J, Lui H, McLean DI, Zeng H. Automated autofluorescence
background subtraction algorithm for biomedical Raman spectroscopy.
Appl Spectrosc. 2007;61(11):1225-1232. https://doi.org/10.1366/
000370207782597003
102. Cao A, Pandya AK, Serhatkulu GK, et al. A robust method for
automated background subtraction of tissue fluorescence. J Raman
Spectrosc. 2007;38(9):1199-1205. https://doi.org/10.1002/jrs.1753
103. Smith ZJ, Huser TR, Wachsmann-Hogiu S. Raman scattering in
pathology. Anal Cell Pathol. 2012;35(3):145-163. https://doi.org/
10.3233/ACP-2011-0048
104. Lieber CA, Mahadevan-Jansen A. Automated method for
subtraction of fluorescence from biological Raman spectra. Appl
Spectrosc. 2003;57(11):1363-1367. https://doi.org/10.1366/
000370203322554518
105. Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL.
Extracting biological information with computational analysis of Fourier-
transform infrared (FTIR) biospectroscopy datasets: current practices to
future perspectives. Analyst. 2012;137(14):3202-3215. https://doi.org/
10.1039/C2AN16300D
106. Savitzky A, Golay MJE. Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Anal Chem. 1964;36(8):1627-1639.
https://doi.org/10.1021/ac60214a047
107. Lasch P. Spectral pre-processing for biomedical vibrational
spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst.
2012;117:100-114. https://doi.org/10.1016/j.chemolab.2012.03.011
108. Menges F. “Spectragryph - optical spectroscopy software”, Version
1.2.14, 2020, http://www.effemm2.de/spectragryph/.
109. Jollife IT, Cadima J. Principal component analysis: A review and
recent developments. Philos Trans R Soc A Math Phys Eng Sci.
2016;374(2065). https://doi.org/10.1098/rsta.2015.0202
110. Olson RS, Cava W La, Mustahsan Z, Varik A, Moore JH. Data-driven
advice for applying machine learning to bioinformatics problems. Pac
Symp Biocomput. 2018;23:192-203. https://pubmed.ncbi.nlm.nih.gov/
29218881.
111. Meza Ramirez CA, Greenop M, Ashton L, Rehman I ur. Applications
of machine learning in spectroscopy. Appl Spectrosc Rev. 2021;56(8-
10):733-763. https://doi.org/10.1080/05704928.2020.1859525
112. Ralbovsky NM, Lednev IK. Towards development of a novel
universal medical diagnostic method: Raman spectroscopy and machine
learning. Chem Soc Rev. 2020;49(20):7428-7453. https://doi.org/
10.1039/D0CS01019G
113. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve
Analysis for Medical Diagnostic Test Evaluation. Casp J Intern Med.
2013;4(2):627-635. https://pubmed.ncbi.nlm.nih.gov/24009950.
114. Zhang Lei, Shealey P, Hayden L, Xie C, Li Y-Q. Study of brain cells by
near infrared Raman spectoscropy. J North Carolina Acad Sci.
2005;121(1):41-44. http://www.jstor.org/stable/24336004.
115. Banerjee H nath, Zhang L. Deciphering the finger Prints of Brain
Cancer Astrocytoma in comparison to Astrocytes by using near infrared
Raman Spectroscopy. Mol Cell Biochem. 2007;295(1):237-240.
https://doi.org/10.1007/s11010-006-9278-4
116. Hollon T, Orringer DA. Label-free brain tumor imaging using
Raman-based methods. J Neurooncol. 2021;151(3):393-402.
https://doi.org/10.1007/s11060-019-03380-z
117. Santos IP, Barroso EM, Bakker Schut TC, et al. Raman spectroscopy
for cancer detection and cancer surgery guidance: translation to the
clinics. Analyst. 2017;142(17):3025-3047. https://doi.org/10.1039/
C7AN00957G
118. Iturrioz-Rodríguez N, De Pasquale D, Fiaschi P, Ciofani G.
Discrimination of glioma patient-derived cells from healthy astrocytes
by exploiting Raman spectroscopy. Spectrochim Acta A Mol Biomol
Spectrosc. 2022;269:120773. https://doi.org/10.1016/j.saa.2021.
120773
119. Aguiar RP, Silveira LJ, Falcão ET, Pacheco MTT, Zângaro RA,
Pasqualucci CA. Discriminating neoplastic and normal brain tissues in
vitro through Raman spectroscopy: a principal components analysis
classification model. Photomed Laser Surg. 2013;31(12):595-604.
https://doi.org/10.1089/pho.2012.3460
120. DePaoli D, Lemoine É, Ember K, et al. Rise of Raman spectroscopy
in neurosurgery: a review. J Biomed Opt. 2020;25(05):050901.
https://doi.org/10.1117/1.JBO.25.5.050901
121. Broadbent B, Tseng J, Kast R, et al. Shining light on neurosurgery
diagnostics using Raman spectroscopy. J Neurooncol. 2016;130(1):1-9.
https://doi.org/10.1007/s11060-016-2223-9
122. Brusatori M, Auner G, Noh T, Scarpace L, Broadbent B, Kalkanis SN.
Intraoperative Raman Spectroscopy. Neurosurg Clin N Am.
2017;28(4):633-652. https://doi.org/10.1016/j.nec.2017.05.014
123. Shu C, Zheng W, Wang Z, Yu C, Huang Z. Development and
characterization of a disposable submillimeter fiber optic Raman needle
probe for enhancing real-time in vivo deep tissue and biofluids Raman
measurements. Opt Lett. 2021;46(20):5197-5200. https://doi.org/
10.1364/OL.438713
124. Brahimaj BC, Kochanski RB, Pearce JJ, et al. Structural and
Functional Imaging in Glioma Management. Neurosurgery.
2021;88(2):211-221. https://doi.org/10.1093/neuros/nyaa360
125. Hollon T, Stummer W, Orringer D, Suero Molina E. Surgical Adjuncts
to Increase the Extent of Resection: Intraoperative MRI, Fluorescence,
and Raman Histology. Neurosurg Clin N Am. 2019;30(1):65-74.
https://doi.org/10.1016/j.nec.2018.08.012
126. Luther E, Matus A, Eichberg DG, Shah AH, Ivan M. Stimulated
Raman Histology for Intraoperative Guidance in the Resection of a
Recurrent Atypical Spheno-orbital Meningioma: A Case Report and
Review of Literature. Cureus. 2019;11(10):e5905. https://doi.org/
10.7759/cureus.5905
127. Yuan Y, Shah N, Almohaisin MI, Saha S, Lu F. Assessing fatty acid-
induced lipotoxicity and its therapeutic potential in glioblastoma using
stimulated Raman microscopy. Sci Rep. 2021;11(1):7422.
https://doi.org/10.1038/s41598-021-86789-9
128. Ricci M, Ragonese F, Gironi B, et al. Glioblastoma single-cell
microRaman analysis under stress treatments. Sci Rep. 2018;8(1):7979.
https://doi.org/10.1038/s41598-018-26356-x
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 21 of 32
129. Kopec M, Imiela A, Abramczyk H. Monitoring glycosylation
metabolism in brain and breast cancer by Raman imaging. Sci Rep.
2019;9(1):166. https://doi.org/10.1038/s41598-018-36622-7
130. Abramczyk H, Surmacki JM, Brozek-Pluska B, Kopec M. Revision of
Commonly Accepted Warburg Mechanism of Cancer Development:
Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers
by Raman Imaging. Cancers (Basel). 2021;13(11). https://doi.org/
10.3390/cancers13112599
131. Hollon T, Lewis S, Freudiger CW, Sunney Xie X, Orringer DA.
Improving the accuracy of brain tumor surgery via Raman-based
technology. Neurosurg Focus FOC. 2016;40(3):E9. https://doi.org/
10.3171/2015.12.FOCUS15557
132. Soltani S, Guang Z, Zhang Z, Olson J, Robles F. Label-free detection
of brain tumors in a 9L gliosarcoma rat model using stimulated Raman
scattering-spectroscopic optical coherence tomography. J Biomed Opt.
2021;26(7). https://doi.org/10.1117/1.JBO.26.7.076004
133. Ji M, Orringer DA, Freudiger CW, et al. Rapid, Label-Free Detection
of Brain Tumors with Stimulated Raman Scattering Microscopy. Sci
Transl Med. 2013;5(201):201ra119-201ra119. https://doi.org/10.1126/
scitranslmed.3005954
134. Pope I, Masia F, Ewan K, et al. Identifying subpopulations in
multicellular systems by quantitative chemical imaging using label-free
hyperspectral CARS microscopy. Analyst. 2021;146(7):2277-2291.
https://doi.org/10.1039/d0an02381g
135. Gao X, Yue Q, Liu Z, et al. Guiding Brain-Tumor Surgery via Blood-
Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered
MRI/SERRS Signals. Adv Mater. 2017;29(21). https://doi.org/
10.1002/adma.201603917
136. Han L, Duan W, Li X, et al. Surface-Enhanced Resonance Raman
Scattering-Guided Brain Tumor Surgery Showing Prognostic Benefit in
Rat Models. ACS Appl Mater Interfaces. 2019;11(17):15241-15250.
https://doi.org/10.1021/acsami.9b00227
137. Uckermann O, Galli R, Tamosaityte S, et al. Label-Free Delineation
of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy
in an Orthotopic Mouse Model and Human Glioblastoma. PLoS One.
2014;9(9):e107115. https://doi.org/10.1371/journal.pone.0107115.
138. Kast R, Auner G, Yurgelevic S, et al. Identification of regions of
normal grey matter and white matter from pathologic glioblastoma and
necrosis in frozen sections using Raman imaging. J Neurooncol.
2015;125(2):287-295. https://doi.org/10.1007/s11060-015-1929-4
139. Kalkanis SN, Kast RE, Rosenblum ML, et al. Raman spectroscopy to
distinguish grey matter, necrosis, and glioblastoma multiforme in frozen
tissue sections. J Neurooncol. 2014;116(3):477-485. https://doi.org/
10.1007/s11060-013-1326-9
140. Koljenović S, Schut TCB, Wolthuis R, et al. Raman spectroscopic
characterization of porcine brain tissue using a single fiber-optic probe.
Anal Chem. 2007;79(2):557-564. https://doi.org/10.1021/ac0616512
PM - 17222020 M4 Citavi
141. DePaoli DT, Lapointe N, Messaddeq Y, Parent M, Côté DC. Intact
primate brain tissue identification using a completely fibered coherent
Raman spectroscopy system. Neurophotonics. 2018;5(3):35005.
https://doi.org/10.1117/1.NPh.5.3.035005
142. Buttolph ML, Mejooli MA, Sidorenko P, Eom C-Y, Schaffer CB, Wise
FW. Synchronously pumped Raman laser for simultaneous degenerate
and nondegenerate two-photon microscopy. Biomed Opt Express.
2021;12(4):2496-2507. https://doi.org/10.1364/BOE.421647
143. Daković M, Stojiljković AS, Bajuk-Bogdanović D, et al. Profiling
differences in chemical composition of brain structures using Raman
spectroscopy. Talanta. 2013;117:133-138. https://doi.org/10.1016/
j.talanta.2013.08.058
144. Santos LF, Wolthuis R, Koljenović S, Almeida RM, Puppels GJ. Fiber-
Optic Probes for in Vivo Raman Spectroscopy in the High-Wavenumber
Region. Anal Chem. 2005;77(20):6747-6752. https://doi.org/
10.1021/ac0505730
145. Sajid J, Elhaddaoui A, Turrell S. Fourier Transform Vibrational
Spectroscopic Analysis of Human Cerebral Tissue. J Raman Spectrosc.
1997;28(2-3):165-169. https://doi.org/10.1002/(SICI)1097-
4555(199702) 28:2/3<165::AID-JRS76>3.0.CO;2-K
146. Zięba-Palus J, Wesełucha-Birczyńska A, Sacharz J, et al. 2D
correlation Raman microspectroscopy of chosen parts of rat’s brain
tissue. J Mol Struct. 2017;1147:310-316. https://doi.org/10.1016/
j.molstruc.2017.06.117
147. Meyer T, Bergner N, Bielecki C, et al. Nonlinear microscopy,
infrared, and Raman microspectroscopy for brain tumor analysis. J
Biomed Opt. 2011;16(2):21113. https://doi.org/10.1117/1.3533268
148. Guo T, Ding F, Li D, Zhang W, Cao L, Liu Z. Full-Scale Label-Free
Surface-Enhanced Raman Scattering Analysis of Mouse Brain Using a
Black Phosphorus-Based Two-Dimensional Nanoprobe. Appl Sci.
2019;9(3). https://doi.org/10.3390/app9030398
149. Riva M, Sciortino T, Secoli R, et al. Glioma biopsies classification
using raman spectroscopy and machine learning models on fresh tissue
samples. Cancers (Basel). 2021;13(5):1-14. https://doi.org/10.3390/
cancers13051073
150. Depciuch J, Tołpa B, Witek P, et al. Raman and FTIR spectroscopy in
determining the chemical changes in healthy brain tissues and
glioblastoma tumor tissues. Spectrochim Acta - Part A Mol Biomol
Spectrosc. 2020. https://doi.org/10.1016/j.saa.2019.117526
151. Baria E, Pracucci E, Pillai V, Pavone FS, Ratto GM, Cicchi R. In vivo
detection of murine glioblastoma through Raman and reflectance fiber-
probe spectroscopies. Neurophotonics. 2020;7(4):45010.
https://doi.org/10.1117/1.NPh.7.4.045010
152. Kowalska AA, Berus S, Szleszkowski Ł, et al. Brain tumour
homogenates analysed by surface-enhanced Raman spectroscopy:
Discrimination among healthy and cancer cells. Spectrochim Acta Part A
Mol Biomol Spectrosc. 2020;231:117769. https://doi.org/10.1016/
j.saa.2019.117769
153. Köhler M, Machill S, Salzer R, Krafft C. Characterization of lipid
extracts from brain tissue and tumors using Raman spectroscopy and
mass spectrometry. Anal Bioanal Chem. 2009;393(5):1513-1520.
https://doi.org/10.1007/s00216-008-2592-9
154. Jelke F, Mirizzi G, Borgmann FK, et al. Intraoperative discrimination
of native meningioma and dura mater by Raman spectroscopy. Sci Rep.
2021;11(1):23583. https://doi.org/10.1038/s41598-021-02977-7
155. Koljenović S, Schut TB, Vincent A, Kros JM, Puppels GJ. Detection of
Meningioma in Dura Mater by Raman Spectroscopy. Anal Chem.
2005;77(24):7958-7965. https://doi.org/10.1021/ac0512599
156. Di L, Eichberg DG, Park YJ, et al. Rapid Intraoperative Diagnosis of
Meningiomas using Stimulated Raman Histology. World Neurosurg.
2021;150:108-116. https://doi.org/10.1016/j.wneu.2021.02.097
157. Aydin O, Altaş M, Kahraman M, Bayrak OF, Culha M. Differentiation
of healthy brain tissue and tumors using surface-enhanced Raman
scattering. Appl Spectrosc. 2009;63(10):1095-1100. https://doi.org/
10.1366/000370209789553219
158. Leslie DG, Kast RE, Poulik JM, et al. Identification of Pediatric Brain
Neoplasms Using Raman Spectroscopy. Pediatr Neurosurg.
2012;48(2):109-117. https://doi.org/10.1159/000343285
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 22 of 32
159. Gajjar K, Heppenstall LD, Pang W, et al. Diagnostic segregation of
human brain tumours using Fourier-transform infrared and/or Raman
spectroscopy coupled with discriminant analysis. Anal Methods.
2013;5(1):89-102. https://doi.org/10.1039/C2AY25544H
160. Galli R, Meinhardt M, Koch E, et al. Rapid Label-Free Analysis of
Brain Tumor Biopsies by Near Infrared Raman and Fluorescence
SpectroscopyA Study of 209 Patients. Front Oncol. 2019;9:1165.
https://doi.org/10.3389/fonc.2019.01165
161. Krafft C, Sobottka SB, Schackert G, Salzer R. Near infrared Raman
spectroscopic mapping of native brain tissue and intracranial tumors.
Analyst. 2005;130(7):1070-1077. https://doi.org/10.1039/B419232J
162. Aguiar RP, Falcão ET, Pasqualucci CA, Silveira L. Use of Raman
spectroscopy to evaluate the biochemical composition of normal and
tumoral human brain tissues for diagnosis. Lasers Med Sci. 2020.
https://doi.org/10.1007/s10103-020-03173-1
163. Zhou Y, Liu C-H, Sun Y, et al. Human brain cancer studied by
resonance Raman spectroscopy. J Biomed Opt. 2012;17(11):116021.
https://doi.org/10.1117/1.JBO.17.11.116021
164. Kopec M, Błaszczyk M, Radek M, Abramczyk H. Raman imaging and
statistical methods for analysis various type of human brain tumors and
breast cancers. Spectrochim Acta Part A Mol Biomol Spectrosc.
2021;262:120091. https://doi.org/10.1016/j.saa.2021.120091
165. Anna I, Bartosz P, Lech P, Halina A. Novel strategies of Raman
imaging for brain tumor research. Oncotarget. 2017;8(49):85290-
85310. https://doi.org/10.18632/oncotarget.19668
166. Bury D, Morais CLM, Martin FL, et al. Discrimination of fresh frozen
non-tumour and tumour brain tissue using spectrochemical analyses
and a classification model. Br J Neurosurg. 2020;34(1):40-45.
https://doi.org/10.1080/02688697.2019.1679352
167. Bergner N, Bocklitz T, Romeike BFM, et al. Identification of primary
tumors of brain metastases by Raman imaging and support vector
machines. Chemom Intell Lab Syst. 2012;117:224-232. https://doi.org
/10.1016/j.chemolab.2012.02.008
168. Bergner N, Romeike BFM, Reichart R, Kalff R, Krafft C, Popp J.
Raman and FTIR Microspectroscopy for Detection of Brain Metastasis.
In: Clinical and Biomedical Spectroscopy and Imaging II. Optical Society
of America; 2011:80870X. https://doi.org/10.1364/ECBO.2011.80870X
169. Krafft C, Sobottka SB, Schackert G, Salzer R. Raman and infrared
spectroscopic mapping of human primary intracranial tumors: a
comparative study. J Raman Spectrosc. 2006;37(1-3):367-375.
https://doi.org/10.1002/jrs.1450
170. Zhang Q, Yun KK, Wang H, Yoon SW, Lu F, Won D. Automatic cell
counting from stimulated Raman imaging using deep learning. PLoS
One. 2021;16(7):e0254586. https://doi.org/10.1371/journal.pone.
0254586.
171. Koljenović S, Choo-Smith L-P, Bakker Schut TC, Kros JM, van den
Berge HJ, Puppels GJ. Discriminating vital tumor from necrotic tissue in
human glioblastoma tissue samples by Raman spectroscopy. Lab Invest.
2002;82(10):1265-1277. https://doi.org/10.1097/01.lab.0000032545.
96931.b8
172. Krafft C, Belay B, Bergner N, et al. Advances in optical biopsy--
correlation of malignancy and cell density of primary brain tumors using
Raman microspectroscopic imaging. Analyst. 2012;137(23):5533-5537.
https://doi.org/10.1039/c2an36083g PM - 23050263 M4 - Citavi
173. Kast RE, Auner GW, Rosenblum ML, et al. Raman molecular imaging
of brain frozen tissue sections. J Neurooncol. 2014;120(1):55-62.
https://doi.org/10.1007/s11060-014-1536-9
174. Amharref N, Beljebbar A, Dukic S, et al. Discriminating healthy from
tumor and necrosis tissue in rat brain tissue samples by Raman spectral
imaging. Biochim Biophys Acta - Biomembr. 2007;1768(10):2605-2615.
https://doi.org/10.1016/j.bbamem.2007.06.032
175. Bae K, Xin L, Zheng W, Tang C, Ang B-T, Huang Z. Mapping the
Intratumoral Heterogeneity in Glioblastomas with Hyperspectral
Stimulated Raman Scattering Microscopy. Anal Chem. 2021;93(4):2377-
2384. https://doi.org/10.1021/acs.analchem.0c04262
176. Eichberg DG, Shah AH, Di L, et al. Stimulated Raman histology for
rapid and accurate intraoperative diagnosis of CNS tumors: Prospective
blinded study. J Neurosurg. 2021;134(1):137-143. https://doi.org/
10.3171/2019.9.JNS192075
177. Neidert N, Straehle J, Erny D, et al. Stimulated Raman histology in
the neurosurgical workflow of a major European neurosurgical center
part A. Neurosurg Rev. 2021. https://doi.org/10.1007/s10143-021-
01712-0
178. Yang Y, Chen L, Ji M. Stimulated Raman scattering microscopy for
rapid brain tumor histology. J Innov Opt Health Sci.
2017;10(05):1730010. https://doi.org/10.1142/S1793545817300105
179. Lee M, Herrington CS, Ravindra M, et al. Recent advances in the use
of stimulated Raman scattering in histopathology. Analyst.
2021;146(3):789-802. https://doi.org/10.1039/D0AN01972K
180. Hollon TC, Lewis S, Pandian B, et al. Rapid Intraoperative Diagnosis
of Pediatric Brain Tumors Using Stimulated Raman Histology. Cancer
Res. 2018;78(1):278-289. https://doi.org/10.1158/0008-5472.CAN-17-
1974
181. Orringer DA, Pandian B, Niknafs YS, et al. Rapid intraoperative
histology of unprocessed surgical specimens via fibre-laser-based
stimulated Raman scattering microscopy. Nat Biomed Eng. 2017.
https://doi.org/10.1038/s41551-016-0027
182. Jiang C, Bhattacharya A, Linzey JR, et al. Rapid Automated Analysis
of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and
Artificial Intelligence. Neurosurgery. 2022;90(6).
https://journals.lww.com/neurosurgery/Fulltext/2022/06000/Rapid_A
utomated_Analysis_of_Skull_Base_Tumor.14.aspx.
183. Straehle J, Erny D, Neidert N, et al. Neuropathological
interpretation of stimulated Raman histology images of brain and spine
tumors: part B. Neurosurg Rev. December 2021. https://doi.org/
10.1007/s10143-021-01711-1
184. Di L, Eichberg DG, Huang K, et al. Stimulated Raman Histology for
Rapid Intraoperative Diagnosis of Gliomas. World Neurosurg.
2021;150:e135-e143. https://doi.org/10.1016/j.wneu.2021.02.122
185. Shin KS, Francis AT, Hill AH, et al. Intraoperative assessment of skull
base tumors using stimulated Raman scattering microscopy. Sci Rep.
2019;9(1):20392. https://doi.org/10.1038/s41598-019-56932-8
186. Wolthuis R, van Aken M, Fountas K, Robinson, Bruining HA, Puppels
GJ. Determination of Water Concentration in Brain Tissue by Raman
Spectroscopy. Anal Chem. 2001;73(16):3915-3920. https://doi.org/
10.1021/ac0101306
187. Hollon TC, Pandian B, Urias E, et al. Rapid, label-free detection of
diffuse glioma recurrence using intraoperative stimulated Raman
histology and deep neural networks. Neuro Oncol. 2021;23(1):144-155.
https://doi.org/10.1093/neuonc/noaa162
188. Kircher MF, de la Zerda A, Jokerst J V, et al. A brain tumor molecular
imaging strategy using a new triple-modality MRI-photoacoustic-Raman
nanoparticle. Nat Med. 2012;18(5):829-834. https://doi.org/10.1038/
nm.2721
189. Hubbard TJE, Shore A, Stone N. Raman spectroscopy for rapid intra-
operative margin analysis of surgically excised tumour specimens.
Analyst. 2019;144(22):6479-6496. https://doi.org/10.1039/
C9AN01163C
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 23 of 32
190. Daoust F, Nguyen T, Orsini P, et al. Handheld macroscopic Raman
spectroscopy imaging instrument for machine-learning-based
molecular tissue margins characterization. J Biomed Opt. 2021;26(2).
https://doi.org/10.1117/1.JBO.26.2.022911
191. Pekmezci M, Morshed RA, Chunduru P, et al. Detection of glioma
infiltration at the tumor margin using quantitative stimulated Raman
scattering histology. Sci Rep. 2021;11(1):12162. https://doi.org/
10.1038/s41598-021-91648-8
192. Neuschmelting V, Harmsen S, Beziere N, et al. Dual-Modality
Surface-Enhanced Resonance Raman Scattering and Multispectral
Optoacoustic Tomography Nanoparticle Approach for Brain Tumor
Delineation. Small. 2018;14(23):e1800740. https://doi.org/10.1002/
smll.201800740
193. Duan W, Yue Q, Liu Y, et al. A pH ratiometrically responsive surface
enhanced resonance Raman scattering probe for tumor acidic margin
delineation and image-guided surgery. Chem Sci. 2020;11(17):4397-
4402. https://doi.org/10.1039/D0SC00844C
194. Jin Z, Yue Q, Duan W, et al. Intelligent SERS Navigation System
Guiding Brain Tumor Surgery by Intraoperatively Delineating the
Metabolic Acidosis. Adv Sci (Weinheim, Baden-Wurttemberg, Ger.
January 2022:e2104935. https://doi.org/10.1002/advs.202104935
195. Galli R, Uckermann O, Temme A, et al. Assessing the efficacy of
coherent anti-Stokes Raman scattering microscopy for the detection of
infiltrating glioblastoma in fresh brain samples. J Biophotonics.
2017;10(3):404-414. https://doi.org/10.1002/jbio.201500323
196. Ji M, Lewis S, Camelo-Piragua S, et al. Detection of human brain
tumor infiltration with quantitative stimulated Raman scattering
microscopy. Sci Transl Med. 2015;7(309):309ra163-309ra163.
https://doi.org/10.1126/scitranslmed.aab0195
197. Tanahashi K, Natsume A, Ohka F, et al. Assessment of tumor cells
in a mouse model of diffuse infiltrative glioma by Raman spectroscopy.
Biomed Res Int. 2014;2014:860241. https://doi.org/10.1155/
2014/860241
198. Jermyn M, Desroches J, Mercier J, et al. Raman spectroscopy
detects distant invasive brain cancer cells centimeters beyond MRI
capability in humans. Biomed Opt Express. 2016;7(12):5129-5137.
https://doi.org/10.1364/boe.7.005129
199. Beljebbar A, Dukic S, Amharref N, Manfait M. Ex vivo and in vivo
diagnosis of C6 glioblastoma development by Raman spectroscopy
coupled to a microprobe. Anal Bioanal Chem. 2010;398(1):477-487.
https://doi.org/10.1007/s00216-010-3910-6
200. Bae K, Zheng W, Lin K, et al. Epi-Detected Hyperspectral Stimulated
Raman Scattering Microscopy for Label-Free Molecular Subtyping of
Glioblastomas. Anal Chem. 2018;90(17):10249-10255. https://doi.org/
10.1021/acs.analchem.8b01677
201. Lemoine É, Dallaire F, Yadav R, et al. Feature engineering applied
to intraoperative in vivo Raman spectroscopy sheds light on molecular
processes in brain cancer: a retrospective study of 65 patients. Analyst.
2019;144(22):6517-6532. https://doi.org/10.1039/c9an01144g
202. Livermore LJ, Isabelle M, Bell IM, et al. Raman spectroscopy to
differentiate between fresh tissue samples of glioma and normal brain:
A comparison with 5-ALA-induced fluorescence-guided surgery. J
Neurosurg. 2021;135(2):469-479. https://doi.org/10.3171/
2020.5.JNS20376
203. Kairdolf BA, Bouras A, Kaluzova M, et al. Intraoperative
Spectroscopy with Ultrahigh Sensitivity for Image-Guided Surgery of
Malignant Brain Tumors. Anal Chem. 2016;88(1):858-867.
https://doi.org/10.1021/acs.analchem.5b03453
204. Livermore LJ, Isabelle M, Bell I Mac, et al. Rapid intraoperative
molecular genetic classification of gliomas using Raman spectroscopy.
Neuro-Oncology Adv. 2019;1(1):vdz008. https://doi.org/10.1093/
noajnl/vdz008
205. Sciortino T, Secoli R, D’amico E, et al. Raman spectroscopy and
machine learning for idh genotyping of unprocessed glioma biopsies.
Cancers (Basel). 2021;13(16):1-13. https://doi.org/10.3390/
cancers13164196
206. Uckermann O, Yao W, Juratli TA, et al. IDH1 mutation in human
glioma induces chemical alterations that are amenable to optical Raman
spectroscopy. J Neurooncol. 2018;139(2):261-268. https://doi.org/
10.1007/s11060-018-2883-8
207. Bukva M, Dobra G, Gomez-Perez J, et al. Raman Spectral Signatures
of Serum-Derived Extracellular Vesicle-Enriched Isolates May Support
the Diagnosis of CNS Tumors. Cancers . 2021;13(6).
https://doi.org/10.3390/cancers13061407
208. Abramczyk H, Brozek-Pluska B, Kopec M, Surmacki J, Błaszczyk M,
Radek M. Redox Imbalance and Biochemical Changes in Cancer by
Probing Redox-Sensitive Mitochondrial Cytochromes in Label-Free
Visible Resonance Raman Imaging. Cancers (Basel). 2021;13(5).
https://doi.org/10.3390/cancers13050960
209. Giardina G, Micko A, Bovenkamp D, et al. Morpho-Molecular
Metabolic Analysis and Classification of Human Pituitary Gland and
Adenoma Biopsies Based on Multimodal Optical Imaging. Cancers
(Basel). 2021;13(13). https://doi.org/10.3390/cancers13133234
210. Abramczyk H, Imiela A, Surmacki J. Novel strategies of Raman
imaging for monitoring intracellular retinoid metabolism in cancer cells.
J Mol Liq. 2021;334:116033. https://doi.org/10.1016/j.molliq.
2021.116033
211. Nair JB, Mohapatra S, Joseph MM, et al. Tracking the Footprints of
Paclitaxel Delivery and Mechanistic Action via SERS Trajectory in
Glioblastoma Cells. ACS Biomater Sci Eng. 2020;6(9):5254-5263.
https://doi.org/10.1021/acsbiomaterials.0c00717
212. Manciu FS, Guerrero J, Bennet KE, et al. Assessing
Nordihydroguaiaretic Acid Therapeutic Effect for Glioblastoma
Multiforme. Sensors (Basel). 2022;22(7). https://doi.org/10.3390/
s22072643
213. Li J, Wang C, Yao Y, et al. Label-free discrimination of glioma brain
tumors in different stages by surface enhanced Raman scattering.
Talanta. 2020;216:120983. https://doi.org/10.1016/j.talanta.2020.
120983
214. Zhou Y, Liu C-H, Wu B, et al. Optical biopsy identification and
grading of gliomas using label-free visible resonance Raman
spectroscopy. J Biomed Opt. 2019;24(09):095001. https://doi.org/
10.1117/1.JBO.24.9.095001
215. Morais CLM, Lilo T, Ashton KM, et al. Determination of meningioma
brain tumour grades using Raman microspectroscopy imaging. Analyst.
2019;144(23):7024-7031. https://doi.org/10.1039/C9AN01551E
216. Lilo T, Morais CLM, Ashton KM, et al. Raman hyperspectral imaging
coupled to three-dimensional discriminant analysis: Classification of
meningiomas brain tumour grades. Spectrochim Acta Part A Mol Biomol
Spectrosc. 2022;273:121018. https://doi.org/10.1016/j.saa.2022.
121018
217. Zhang L, Zhou Y, Wu B, et al. Intraoperative detection of human
meningioma using a handheld visible resonance Raman analyzer. Lasers
Med Sci. 2021. https://doi.org/10.1007/s10103-021-03390-2
218. Banerjee HN, Banerji A, Banerjee AN, et al. Deciphering the Finger
Prints of Brain Cancer Glioblastoma Multiforme from Four Different
Patients by Using Near Infrared Raman Spectroscopy. J Cancer Sci Ther.
2015;7(2):44-47. https://doi.org/10.4172/1948-5956.1000323
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 24 of 32
219. Bergner N, Medyukhina A, Geiger KD, et al. Hyperspectral unmixing
of Raman micro-images for assessment of morphological and chemical
parameters in non-dried brain tumor specimens. Anal Bioanal Chem.
2013;405(27):8719-8728. https://doi.org/10.1007/s00216-013-7257-7
220. Bergner N, Krafft C, Geiger KD, Kirsch M, Schackert G, Popp J.
Unsupervised unmixing of Raman microspectroscopic images for
morphochemical analysis of non-dried brain tumor specimens. Anal
Bioanal Chem. 2012;403(3):719-725. https://doi.org/10.1007/s00216-
012-5858-1
221. Zhang J, Fan Y, He M, et al. Accuracy of Raman spectroscopy in
differentiating brain tumor from normal brain tissue. Oncotarget.
2017;8(22):36824-36831. https://doi.org/10.18632/oncotarget.15975
222. Wills H, Kast R, Stewart C, et al. Raman spectroscopy detects and
distinguishes neuroblastoma and related tissues in fresh and (banked)
frozen specimens. J Pediatr Surg. 2009;44(2):386-391.
https://doi.org/10.1016/j.jpedsurg.2008.10.095
223. Rabah R, Weber R, Serhatkulu GK, et al. Diagnosis of
neuroblastoma and ganglioneuroma using Raman spectroscopy. J
Pediatr Surg. 2008;43(1):171-176. https://doi.org/10.1016/j.jpedsurg.
2007.09.040
224. Ricciardi V, Perna G, Lasalvia M, et al. Raman micro-spectroscopy
investigation on the effects of X-rays and polyphenols in human
neuroblastoma cells. In: Clinical and Preclinical Optical Diagnostics II.
Optical Society of America; 2019:11073_35. https://doi.org/10.1117/
12.2526590
225. Polis B, Imiela A, Polis L, Abramczyk H. Raman spectroscopy for
medulloblastoma. Childs Nerv Syst. 2018;34(12):2425-2430.
https://doi.org/10.1007/s00381-018-3906-7
226. Bovenkamp D, Micko A, Püls J, et al. Line Scan Raman
Microspectroscopy for Label-Free Diagnosis of Human Pituitary
Biopsies. Molecules. 2019;24(19). https://doi.org/10.3390/molecules
24193577
227. Das D, Bhattacharjee K, Barman MJ, et al. Pathologic evidence of
retinoblastoma seeds supported by field emission scanning electron
microscopy and Raman spectroscopy. Indian J Ophthalmol.
2021;69(12):3612-3617. https://doi.org/10.4103/ijo.IJO_436_21
228. Kirsch M, Schackert G, Salzer R, Krafft C. Raman spectroscopic
imaging for in vivo detection of cerebral brain metastases. Anal Bioanal
Chem. 2010;398(4):1707-1713. https://doi.org/10.1007/s00216-010-
4116-7
229. Klamminger GG, Klein K, Mombaerts L, et al. Differentiation of
primary CNS lymphoma and glioblastoma using Raman spectroscopy
and machine learning algorithms. Free Neuropathol. 2021;2(SE-Original
Papers):26. https://doi.org/10.17879/freeneuropathology-2021-3458
230. Doran CE, Frank CB, McGrath S, Packer RA. Use of Handheld Raman
Spectroscopy for Intraoperative Differentiation of Normal Brain Tissue
From Intracranial Neoplasms in Dogs. Front Vet Sci. 2022;8.
https://doi.org/10.3389/fvets.2021.819200
231. Jermyn M, Mercier J, Aubertin K, et al. Highly Accurate Detection
of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical
Spectroscopy. Cancer Res. 2017;77(14):3942-3950. https://doi.org/
10.1158/0008-5472.CAN-17-0668
232. Desroches J, Jermyn M, Pinto M, et al. A new method using Raman
spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep.
2018;8(1):1792. https://doi.org/10.1038/s41598-018-20233-3
233. Lakomkin N, Hadjipanayis CG. The Use of Spectroscopy Handheld
Tools in Brain Tumor Surgery: Current Evidence and Techniques. Front
Surg. 2019;6:30. https://doi.org/10.3389/fsurg.2019.00030
234. Desroches J, Jermyn M, Mok K, et al. Characterization of a Raman
spectroscopy probe system for intraoperative brain tissue classification.
Biomed Opt Express. 2015;6(7):2380-2397. https://doi.org/10.1364/
BOE.6.002380
235. Karabeber H, Huang R, Iacono P, et al. Guiding brain tumor
resection using surface-enhanced Raman scattering nanoparticles and a
hand-held Raman scanner. ACS Nano. 2014;8(10):9755-9766.
https://doi.org/10.1021/nn503948b
236. Stevens OAC, Hutchings J, Gray W, Day JC. A low background
Raman probe for optical biopsy of brain tissue. In: Proc.SPIE. Vol 8939. ;
2014. https://doi.org/10.1117/12.2044139
237. Desroches J, Lemoine É, Pinto M, et al. Development and first in-
human use of a Raman spectroscopy guidance system integrated with a
brain biopsy needle. J Biophotonics. 2019;12(3):1-7. https://doi.org/
10.1002/jbio.201800396
238. Stables R, Clemens G, Butler HJ, et al. Feature driven classification
of Raman spectra for real-time spectral brain tumour diagnosis using
sound. Analyst. 2017;142(1):98-109. https://doi.org/10.1039/
C6AN01583B
239. Nicolson F, Andreiuk B, Andreou C, Hsu H-T, Rudder S, Kircher MF.
Non-invasive In Vivo Imaging of Cancer Using Surface-Enhanced
Spatially Offset Raman Spectroscopy (SESORS). Theranostics.
2019;9(20):5899-5913. https://doi.org/10.7150/thno.36321
240. Devpura S, Thakur JS, Poulik JM, Rabah R, Naik VM, Naik R. Raman
spectroscopic investigation of frozen and deparaffinized tissue sections
of pediatric tumors: neuroblastoma and ganglioneuroma. J Raman
Spectrosc. 2013;44(3):370-376. https://doi.org/10.1002/jrs.4223
241. Fullwood LM, Clemens G, Griffiths D, et al. Investigating the use of
Raman and immersion Raman spectroscopy for spectral histopathology
of metastatic brain cancer and primary sites of origin. Anal Methods.
2014;6(12):3948-3961. https://doi.org/10.1039/c3ay42190b
242. Klamminger GG, Gérardy J-J, Jelke F, et al. Application of Raman
spectroscopy for detection of histologically distinct areas in formalin-
fixed paraffin-embedded glioblastoma. Neuro-Oncology Adv.
2021;3(1):vdab077. https://doi.org/10.1093/noajnl/vdab077
243. Mehta K, Atak A, Sahu A, Srivastava S, C MK. An early investigative
serum Raman spectroscopy study of meningioma. Analyst.
2018;143(8):1916-1923. https://doi.org/10.1039/C8AN00224J
244. Chen C, Wu W, Chen C, et al. Rapid diagnosis of lung cancer and
glioma based on serum Raman spectroscopy combined with deep
learning. J Raman Spectrosc. 2021;52(11):1798-1809. https://doi.org/
10.1002/jrs.6224
245. Le Reste P, Pilalis E, Aubry M, et al. Integration of Raman spectra
with transcriptome data in glioblastoma multiforme defines tumour
subtypes and predicts patient outcome. J Cell Mol Med.
2021;(August):10846-10856. https://doi.org/10.1111/jcmm.16902
246. Selkoe DJ. Folding proteins in fatal ways. Nature.
2003;426(6968):900-904. https://doi.org/10.1038/nature02264
247. Chiti F, Dobson CM. Protein Misfolding, Functional Amyloid, and
Human Disease. Annu Rev Biochem. 2006;75(1):333-366.
https://doi.org/10.1146/annurev.biochem.75.101304.123901
248. Paul TJ, John H, H. FK. Toxic Proteins in Neurodegenerative Disease.
Science (80- ). 2002;296(5575):1991-1995. https://doi.org/10.1126/
science.1067122
249. Miller LM. Chapter 5 - Infrared spectroscopy and imaging for
understanding neurodegenerative protein-misfolding diseases. In:
Ozaki Y, Baranska M, Lednev IK, Wood BRBT-VS in PR, eds. Academic
Press; 2020:121-142. https://doi.org/10.1016/B978-0-12-818610-
7.00005-0
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 25 of 32
250. Paraskevaidi M, Martin-Hirsch PL, Martin FL. Vibrational
spectroscopy: a promising approach to discriminate neurodegenerative
disorders. Mol Neurodegener. 2018;13(1):20. https://doi.org/
10.1186/s13024-018-0252-x
251. Paraskevaidi M, Martin-Hirsch PL, Martin FL. Progress and
Challenges in the Diagnosis of Dementia: A Critical Review. ACS Chem
Neurosci. 2018;9(3):446-461. https://doi.org/10.1021/acschemneuro.
8b00007
252. Mitchell AL, Gajjar KB, Theophilou G, Martin FL, Martin-Hirsch PL.
Vibrational spectroscopy of biofluids for disease screening or diagnosis:
Translation from the laboratory to a clinical setting. J Biophotonics.
2014;7(3-4):153-165. https://doi.org/10.1002/jbio.201400018
253. Lopes J, Correia M, Martins I, et al. FTIR and Raman Spectroscopy
Applied to Dementia Diagnosis Through Analysis of Biological Fluids. J
Alzheimers Dis. 2016;52(3):801-812. https://doi.org/10.3233/JAD-
151163
254. Paraskevaidi M, Morais CLM, Lima KMG, et al. Differential diagnosis
of Alzheimer’s disease using spectrochemical analysis of blood. Proc
Natl Acad Sci U S A. 2017;114(38):E7929-E7938. https://doi.org/
10.1073/pnas.1701517114
255. Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV
Resonance Raman Investigations of Peptide and Protein Structure and
Dynamics. Chem Rev. 2012;112(5):2604-2628. https://doi.org/
10.1021/cr200198a
256. Lednev IK, Ermolenkov V V, He W, Xu M. Deep-UV Raman
spectrometer tunable between 193 and 205 nm for structural
characterization of proteins. Anal Bioanal Chem. 2005;381(2):431-437.
https://doi.org/10.1007/s00216-004-2991-5
257. Barron LD, Hecht L, Blanch EW, Bell AF. Solution structure and
dynamics of biomolecules from Raman optical activity. Prog Biophys Mol
Biol. 2000;73(1):1-49. https://doi.org/10.1016/S0079-6107(99)00017-6
258. Barron LD, Buckingham AD. Rayleigh and Raman scattering from
optically active molecules. Mol Phys. 1971;20(6):1111-1119.
https://doi.org/10.1080/00268977100101091
259. Martial B, Lefèvre T, Auger M. Understanding amyloid fibril
formation using protein fragments: structural investigations via
vibrational spectroscopy and solid-state NMR. Biophys Rev.
2018;10(4):1133-1149. https://doi.org/10.1007/s12551-018-0427-2
260. Summers KL, Fimognari N, Hollings A, et al. A Multimodal
Spectroscopic Imaging Method To Characterize the Metal and
Macromolecular Content of Proteinaceous Aggregates (“Amyloid
Plaques”). Biochemistry. 2017;56(32):4107-4116. https://doi.org/
10.1021/acs.biochem.7b00262
261. Luo Z, Xu H, Liu L, Ohulchanskyy TY, Qu J. Optical Imaging of Beta-
Amyloid Plaques in Alzheimer’s Disease. Biosensors. 2021;11(8):255.
https://doi.org/10.3390/bios11080255
262. Ghosh C, Pramanik D, Mukherjee S, Dey A, Dey SG. Interaction of
NO with Cu and Heme-Bound Aβ Peptides Associated with Alzheimer’s
Disease. Inorg Chem. 2013;52(1):362-368. https://doi.org/
10.1021/ic302131n
263. Moran SD, Zanni MT. How to Get Insight into Amyloid Structure and
Formation from Infrared Spectroscopy. J Phys Chem Lett.
2014;5(11):1984-1993. https://doi.org/10.1021/jz500794d
264. Li H, Lantz R, Du D. Vibrational Approach to the Dynamics and
Structure of Protein Amyloids. Molecules. 2019;24(1).
https://doi.org/10.3390/molecules24010186
265. Ma J, Pazos IM, Zhang W, Culik RM, Gai F. Site-Specific Infrared
Probes of Proteins. Annu Rev Phys Chem. 2015;66(1):357-377.
https://doi.org/10.1146/annurev-physchem-040214-121802
266. Bloem R, Koziol K, Waldauer SA, et al. Ligand Binding Studied by 2D
IR Spectroscopy Using the Azidohomoalanine Label. J Phys Chem B.
2012;116(46):13705-13712. https://doi.org/10.1021/jp3095209
267. Wang Z, Ye J, Zhang K, et al. Rapid Biomarker Screening of
Alzheimer’s Disease by Interpretable Machine Learning and Graphene-
Assisted Raman Spectroscopy. ACS Nano. 2022;16(4):6426-6436.
https://doi.org/10.1021/acsnano.2c00538
268. Hanlon EB, Manoharan R, Koo TW, et al. Prospects for in vivo
Raman spectroscopy. Phys Med Biol. 2000;45(2):R1-59.
https://doi.org/10.1088/0031-9155/45/2/201
269. Dong J, Atwood CS, Anderson VE, et al. Metal Binding and Oxidation
of Amyloid-β within Isolated Senile Plaque Cores:  Raman Microscopic
Evidence. Biochemistry. 2003;42(10):2768-2773. https://doi.org/
10.1021/bi0272151
270. Sudworth CD, M.D. NK. Raman spectroscopy of Alzheimer’s
diseased tissue. In: Proc.SPIE. Vol 5321. ; 2004. https://doi.org/
10.1117/12.552869
271. Chen P, Shen A, Zhao W, Baek S-J, Yuan H, Hu J. Raman signature
from brain hippocampus could aid Alzheimer’s disease diagnosis. Appl
Opt. 2009;48(24):4743-4748. https://doi.org/10.1364/ao.48.004743
272. Paul TJ, Hoffmann Z, Wang C, et al. Structural and Mechanical
Properties of Amyloid Beta Fibrils: A Combined Experimental and
Theoretical Approach. J Phys Chem Lett. 2016;7(14):2758-2764.
https://doi.org/10.1021/acs.jpclett.6b01066
273. Xiong J, JiJi RD. Insights into the aggregation mechanism of Aβ(25-
40). Biophys Chem. 2017;220:42-48. https://doi.org/10.1016/
j.bpc.2016.11.003
274. Popova LA, Kodali R, Wetzel R, Lednev IK. Structural Variations in
the Cross-β Core of Amyloid β Fibrils Revealed by Deep UV Resonance
Raman Spectroscopy. J Am Chem Soc. 2010;132(18):6324-6328.
https://doi.org/10.1021/ja909074j
275. Xiong J, Roach CA, Oshokoya OO, et al. Role of Bilayer
Characteristics on the Structural Fate of Aβ(1–40) and Aβ(25–40).
Biochemistry. 2014;53(18):3004-3011. https://doi.org/10.1021/
bi4016296
276. Cunha R, Lafeta L, Fonseca EA, et al. Nonlinear and vibrational
microscopy for label-free characterization of amyloid-β plaques in
Alzheimer’s disease model. Analyst. 2021;146(9):2945-2954.
https://doi.org/10.1039/d1an00074h
277. Buividas R, Dzingelevičius N, Kubiliūtė R, et al. Statistically
quantified measurement of an Alzheimer’s marker by surface-enhanced
Raman scattering. J Biophotonics. 2015;8(7):567-574. https://doi.org/
10.1002/jbio.201400017
278. Park HJ, Cho S, Kim M, Jung YS. Carboxylic Acid-Functionalized,
Graphitic Layer-Coated Three-Dimensional SERS Substrate for Label-
Free Analysis of Alzheimer’s Disease Biomarkers. Nano Lett.
2020;20(4):2576-2584. https://doi.org/10.1021/acs.nanolett.0c00048
279. Xia Y, Padmanabhan P, Sarangapani S, Gulyás B, Vadakke Matham
M. Bifunctional Fluorescent/Raman Nanoprobe for the Early Detection
of Amyloid. Sci Rep. 2019;9(1):8497. https://doi.org/10.1038/s41598-
019-43288-2
280. Zhou Y, Liu J, Zheng T, Tian Y. Label-Free SERS Strategy for In Situ
Monitoring and Real-Time Imaging of Aggregation Process in Live
Neurons and Brain Tissues. Anal Chem. 2020;92(8):5910-5920.
https://doi.org/10.1021/acs.analchem.9b05837
281. Yu X, Hayden EY, Xia M, et al. Surface enhanced Raman
spectroscopy distinguishes amyloid Β-protein isoforms and
conformational states. Protein Sci. 2018;27(8):1427-1438.
https://doi.org/10.1002/pro.3434
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 26 of 32
282. Bonhommeau S, Talaga D, Hunel J, Cullin C, Lecomte S. Tip-
Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from
Aβ(1-42) Fibrils at the Nanometer Scale. Angew Chem Int Ed Engl.
2017;56(7):1771-1774. https://doi.org/10.1002/anie.201610399
283. D’Andrea C, Foti A, Cottat M, et al. Nanoscale Discrimination
between Toxic and Nontoxic Protein Misfolded Oligomers with Tip-
Enhanced Raman Spectroscopy. Small. 2018;14(36):e1800890.
https://doi.org/10.1002/smll.201800890
284. Michael R, Lenferink A, Vrensen GFJM, Gelpi E, Barraquer RI, Otto
C. Hyperspectral Raman imaging of neuritic plaques and neurofibrillary
tangles in brain tissue from Alzheimer’s disease patients. Sci Rep.
2017;7(1):15603. https://doi.org/10.1038/s41598-017-16002-3
285. Lochocki B, Morrema THJ, Ariese F, Hoozemans JJM, de Boer JF.
The search for a unique Raman signature of amyloid-beta plaques in
human brain tissue from Alzheimer{’}s disease patients. Analyst.
2020;145(5):1724-1736. https://doi.org/10.1039/C9AN02087J
286. El Khoury Y, Schirer A, Patte-Mensah C, et al. Raman Imaging
Reveals Accumulation of Hemoproteins in Plaques from Alzheimer’s
Diseased Tissues. ACS Chem Neurosci. 2021;12(15):2940-2945.
https://doi.org/10.1021/acschemneuro.1c00289
287. Röhr D, Boon BDC, Schuler M, et al. Label-free vibrational imaging
of different plaque types in Alzheimer’s disease reveals sequential
events in plaque development. Acta Neuropathol Commun.
2020;8(1):222. https://doi.org/10.1186/s40478-020-01091-5
288. Palombo F, Tamagnini F, Jeynes JCG, et al. Detection of Aβ plaque-
associated astrogliosis in Alzheimer’s disease brain by spectroscopic
imaging and immunohistochemistry. Analyst. 2018;143(4):850-857.
https://doi.org/10.1039/c7an01747b
289. Kiskis J, Fink H, Nyberg L, Thyr J, Li J-Y, Enejder A. Plaque-associated
lipids in Alzheimer’s diseased brain tissue visualized by nonlinear
microscopy. Sci Rep. 2015;5(1):13489. https://doi.org/10.1038/
srep13489
290. Li S, Luo Z, Zhang R, et al. Distinguishing Amyloid β-Protein in a
Mouse Model of Alzheimer’s Disease by Label-Free Vibrational Imaging.
Biosensors. 2021;11(10):365. https://doi.org/10.3390/bios11100365
291. Fonseca EA, Lafe L, Cunha R, et al. A fingerprint of amyloid
plaques in a bitransgenic animal model of Alzheimer{’}s disease
obtained by statistical unmixing analysis of hyperspectral Raman data.
Analyst. 2019;144(23):7049-7056. https://doi.org/10.1039/
C9AN01631G
292. Lochocki B, Boon BDC, Verheul SR, et al. Multimodal, label-free
fluorescence and Raman imaging of amyloid deposits in snap-frozen
Alzheimer’s disease human brain tissue. Commun Biol. 2021;4(1):474.
https://doi.org/10.1038/s42003-021-01981-x
293. Tabatabaei M, Caetano FA, Pashee F, Ferguson SSG, Lagugné-
Labarthet F. Tip-enhanced Raman spectroscopy of amyloid β at
neuronal spines. Analyst. 2017;142(23):4415-4421. https://doi.org/
10.1039/C7AN00744B
294. Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of
Label-Free Optical Imaging in Alzheimer’s Disease Screening and
Diagnosis. Front Aging Neurosci. 2021;13:455. https://doi.org/10.3389/
fnagi.2021.699024
295. Ji M, Arbel M, Zhang L, et al. Label-free imaging of amyloid plaques
in Alzheimer’s disease with stimulated Raman scattering microscopy. Sci
Adv. 2018;4(11):eaat7715. https://doi.org/10.1126/sciadv.aat7715
296. Michael R, Otto C, Lenferink A, et al. Absence of amyloid-beta in
lenses of Alzheimer patients: A confocal Raman microspectroscopic
study. Exp Eye Res. 2014;119:44-53. https://doi.org/10.1016/
j.exer.2013.11.016
297. Fonseca EA, Lafeta L, Luiz Campos J, et al. Micro-Raman
spectroscopy of lipid halo and dense-core amyloid plaques: aging
process characterization in the Alzheimer{’}s disease APPswePS1ΔE9
mouse model. Analyst. 2021;146(19):6014-6025. https://doi.org/
10.1039/D1AN01078F
298. Lee JH, Kim DH, Song WK, Oh M-K, Ko D-K. Label-free imaging and
quantitative chemical analysis of Alzheimer’s disease brain samples with
multimodal multiphoton nonlinear optical microspectroscopy. J Biomed
Opt. 2015;20(5):1-7. https://doi.org/10.1117/1.JBO.20.5.056013
299. Huang C-C, Isidoro C. Raman Spectrometric Detection Methods for
Early and Non-Invasive Diagnosis of Alzheimer’s Disease. J Alzheimers
Dis. 2017;57(4):1145-1156. https://doi.org/10.3233/JAD-161238
300. Hrubešová K, Fousková M, Habartová L, et al. Search for biomarkers
of Alzheimer’s disease: Recent insights, current challenges and future
prospects. Clin Biochem. 2019;72:39-51. https://doi.org/10.1016/
j.clinbiochem.2019.04.002
301. Eravuchira PJ, Banchelli M, D’Andrea C, Angelis M De, Matteini P,
Gannot I. Hollow core photonic crystal fiber-assisted Raman
spectroscopy as a tool for the detection of Alzheimer’s disease
biomarkers. J Biomed Opt. 2020;25(7):1-10. https://doi.org/10.1117/
1.JBO.25.7.077001
302. Oyarzún MP, Tapia-Arellano A, Cabrera P, Jara-Guajardo P, Kogan
MJ. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection
of Alzheimer’s Disease. Sensors (Basel). 2021;21(6). https://doi.org/
10.3390/s21062067
303. Cennamo G, Montorio D, Morra VB, et al. Surface-enhanced Raman
spectroscopy of tears: toward a diagnostic tool for neurodegenerative
disease identification. J Biomed Opt. 2020;25(8):1-12. https://doi.org/
10.1117/1.JBO.25.8.087002
304. Ralbovsky NM, Halámková L, Wall K, Anderson-Hanley C, Lednev IK.
Screening for Alzheimer’s Disease Using Saliva: A New Approach Based
on Machine Learning and Raman Hyperspectroscopy. J Alzheimers Dis.
2019;71(4):1351-1359. https://doi.org/10.3233/JAD-190675
305. Ryzhikova E, Ralbovsky NM, Sikirzhytski V, et al. Raman
spectroscopy and machine learning for biomedical applications:
Alzheimer’s disease diagnosis based on the analysis of cerebrospinal
fluid. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;248:119188.
https://doi.org/10.1016/j.saa.2020.119188
306. Chou I-H, Benford M, Beier HT, et al. Nanofluidic Biosensing for β-
Amyloid Detection Using Surface Enhanced Raman Spectroscopy. Nano
Lett. 2008;8(6):1729-1735. https://doi.org/10.1021/nl0808132
307. Stiebing C, Jahn IJ, Schmitt M, et al. Biochemical Characterization
of Mouse Retina of an Alzheimer’s Disease Model by Raman
Spectroscopy. ACS Chem Neurosci. 2020;11(20):3301-3308.
https://doi.org/10.1021/acschemneuro.0c00420
308. Carmona P, Molina M, Calero M, Bermejo-Pareja F, Martínez-
Martín P, Toledano A. Discrimination analysis of blood plasma
associated with Alzheimer’s disease using vibrational spectroscopy. J
Alzheimers Dis. 2013;34(4):911-920. https://doi.org/10.3233/JAD-
122041
309. Carmona P, Molina M, López-Tobar E, Toledano A. Vibrational
spectroscopic analysis of peripheral blood plasma of patients with
Alzheimer’s disease. Anal Bioanal Chem. 2015;407(25):7747-7756.
https://doi.org/10.1007/s00216-015-8940-7
310. Paraskevaidi M, Morais CLM, Halliwell DE, et al. Raman
Spectroscopy to Diagnose Alzheimer’s Disease and Dementia with Lewy
Bodies in Blood. ACS Chem Neurosci. 2018;9(11):2786-2794.
https://doi.org/10.1021/acschemneuro.8b00198
311. Habartová L, Hrubešová K, Syslová K, et al. Blood-based molecular
signature of Alzheimer’s disease via spectroscopy and metabolomics.
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 27 of 32
Clin Biochem. 2019;72:58-63. https://doi.org/10.1016/j.clinbiochem.
2019.04.004
312. Ralbovsky NM, Fitzgerald GS, McNay EC, Lednev IK. Towards
development of a novel screening method for identifying Alzheimer’s
disease risk: Raman spectroscopy of blood serum and machine learning.
Spectrochim Acta A Mol Biomol Spectrosc. 2021;254:119603.
https://doi.org/10.1016/j.saa.2021.119603
313. Demeritte T, Viraka Nellore BP, Kanchanapally R, et al. Hybrid
Graphene Oxide Based Plasmonic-Magnetic Multifunctional
Nanoplatform for Selective Separation and Label-Free Identification of
Alzheimer’s Disease Biomarkers. ACS Appl Mater Interfaces.
2015;7(24):13693-13700. https://doi.org/10.1021/acsami.5b03619
314. Yang J-K, Hwang I-J, Cha MG, et al. Reaction Kinetics-Mediated
Control over Silver Nanogap Shells as Surface-Enhanced Raman
Scattering Nanoprobes for Detection of Alzheimer’s Disease
Biomarkers. Small. 2019;15(19):e1900613. https://doi.org/10.1002/
smll.201900613
315. Yu D, Yin Q, Wang J, et al. SERS-Based Immunoassay Enhanced with
Silver Probe for Selective Separation and Detection of Alzheimer’s
Disease Biomarkers. Int J Nanomedicine. 2021;16:1901-1911.
https://doi.org/10.2147/IJN.S293042
316. Ryzhikova E, Kazakov O, Halamkova L, et al. Raman spectroscopy of
blood serum for Alzheimer’s disease diagnostics: specificity relative to
other types of dementia. J Biophotonics. 2015;8(7):584-596.
https://doi.org/10.1002/jbio.201400060
317. Hao N, Wang Z, Liu P, et al. Acoustofluidic multimodal diagnostic
system for Alzheimer’s disease. Biosens Bioelectron. 2022;196:113730.
https://doi.org/10.1016/j.bios.2021.113730
318. Carlomagno C, Cabinio M, Picciolini S, Gualerzi A, Baglio F, Bedoni
M. SERS-based biosensor for Alzheimer disease evaluation through the
fast analysis of human serum. J Biophotonics. 2020;13(3):e201960033.
https://doi.org/10.1002/jbio.201960033
319. Chen P, Tian Q, Baek SJ, et al. Laser Raman detection of platelet as
a non-invasive approach for early and differential diagnosis of
Alzheimer’s disease. Laser Phys Lett. 2011;8(7):547-552.
https://doi.org/10.1002/lapl.201110016
320. Monfared AMT, Tiwari VS, Trudeau VL, Anis H. Surface-enhanced
raman scattering spectroscopy for the detection of glutamate and γ-
Aminobutyric acid in serum by partial least squares analysis. IEEE
Photonics J. 2015;7(3). https://doi.org/10.1109/JPHOT.2015.2423284
321. Ardini M, Huang J-A, Sánchez CS, et al. Live Intracellular
Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy using
Alkyne-Silver Nanoparticles Clusters. Sci Rep. 2018;8(1):12652.
https://doi.org/10.1038/s41598-018-31165-3
322. Lee W, Kang B-H, Yang H, et al. Spread spectrum SERS allows label-
free detection of attomolar neurotransmitters. Nat Commun.
2021;12(1):159. https://doi.org/10.1038/s41467-020-20413-8
323. Moody AS, Sharma B. Multi-metal, Multi-wavelength Surface-
Enhanced Raman Spectroscopy Detection of Neurotransmitters. ACS
Chem Neurosci. 2018;9(6):1380-1387. https://doi.org/10.1021/
acschemneuro.8b00020
324. Moody AS, Baghernejad PC, Webb KR, Sharma B. Surface Enhanced
Spatially Offset Raman Spectroscopy Detection of Neurochemicals
Through the Skull. Anal Chem. 2017;89(11):5688-5692. https://doi.org/
10.1021/acs.analchem.7b00985
325. Moody AS, Payne TD, Barth BA, Sharma B. Surface-enhanced
spatially-offset Raman spectroscopy (SESORS) for detection of
neurochemicals through the skull at physiologically relevant
concentrations. Analyst. 2020;145(5):1885-1893. https://doi.org/
10.1039/C9AN01708A
326. Cao X, Qin M, Li P, et al. Probing catecholamine neurotransmitters
based on iron-coordination surface-enhanced resonance Raman
spectroscopy label. Sensors Actuators B Chem. 2018;268:350-358.
https://doi.org/10.1016/j.snb.2018.04.117
327. Zhou B, Li X, Tang X, Li P, Yang L, Liu J. Highly Selective and
Repeatable Surface-Enhanced Resonance Raman Scattering Detection
for Epinephrine in Serum Based on Interface Self-Assembled 2D
Nanoparticles Arrays. ACS Appl Mater Interfaces. 2017;9(8):7772-7779.
https://doi.org/10.1021/acsami.6b15205
328. Ciubuc JD, Bennet KE, Qiu C, Alonzo M, Durrer WG, Manciu FS.
Raman Computational and Experimental Studies of Dopamine
Detection. Biosensors. 2017;7(4). https://doi.org/10.3390/bios7040043
329. Silwal AP, Yadav R, Sprague JE, Lu HP. Raman Spectroscopic
Signature Markers of DopamineHuman Dopamine Transporter
Interaction in Living Cells. ACS Chem Neurosci. 2017;8(7):1510-1518.
https://doi.org/10.1021/acschemneuro.7b00048
330. Manciu FS, Manciu M, Ciubuc JD, et al. Simultaneous Detection of
Dopamine and Serotonin-A Comparative Experimental and Theoretical
Study of Neurotransmitter Interactions. Biosensors. 2018;9(1).
https://doi.org/10.3390/bios9010003
331. Shi L, Liu M, Zhang L, Tian Y. A Liquid Interfacial SERS Platform on a
Nanoparticle Array Stabilized by Rigid Probes for the Quantification of
Norepinephrine in Rat Brain Microdialysates. Angew Chem Int Ed Engl.
March 2022:e202117125. https://doi.org/10.1002/anie.202117125
332. Miura T, Suzuki K, Kohata N, Takeuchi H. Metal Binding Modes of
Alzheimer’s Amyloid β-Peptide in Insoluble Aggregates and Soluble
Complexes. Biochemistry. 2000;39(23):7024-7031.
https://doi.org/10.1021/bi0002479
333. Miura T, Suzuki K, Takeuchi H. Binding of iron(III) to the single
tyrosine residue of amyloid β-peptide probed by Raman spectroscopy. J
Mol Struct. 2001;598:79-84. https://doi.org/10.1016/S0022-
2860(01)00807-9
334. Yugay D, Goronzy DP, Kawakami LM, et al. Copper Ion Binding Site
in β-Amyloid Peptide. Nano Lett. 2016;16(10):6282-6289.
https://doi.org/10.1021/acs.nanolett.6b02590
335. Ren H, Zhang Y, Guo S, et al. Identifying Cu(ii)amyloid peptide
binding intermediates in the early stages of aggregation by resonance
Raman spectroscopy: a simulation study. Phys Chem Chem Phys.
2017;19(46):31103-31112. https://doi.org/10.1039/C7CP06206K
336. Suzuki K, Miura T, Takeuchi H. Inhibitory effect of copper(II) on
zinc(II)-induced aggregation of amyloid beta-peptide. Biochem Biophys
Res Commun. 2001;285(4):991-996. https://doi.org/10.1006/
bbrc.2001.5263
337. Miura T, Mitani S, Takanashi C, Mochizuki N. Copper selectively
triggers β-sheet assembly of an N-terminally truncated amyloid β-
peptide beginning with Glu3. J Inorg Biochem. 2004;98(1):10-14.
https://doi.org/10.1016/j.jinorgbio.2003.10.008
338. Syme CD, Blanch EW, Holt C, et al. A Raman optical activity study of
rheomorphism in caseins, synucleins and tau. New insight into the
structure and behaviour of natively unfolded proteins. Eur J Biochem.
2002;269(1):148-156. https://doi.org/10.1046/j.0014-
2956.2001.02633.x
339. Ramachandran G, Milán-Garcés EA, Udgaonkar JB, Puranik M.
Resonance Raman Spectroscopic Measurements Delineate the
Structural Changes that Occur during Tau Fibril Formation. Biochemistry.
2014;53(41):6550-6565. https://doi.org/10.1021/bi500528x
340. Zengin A, Tamer U, Caykara T. A SERS-based sandwich assay for
ultrasensitive and selective detection of Alzheimer’s tau protein.
Biomacromolecules. 2013;14(9):3001-3009. https://doi.org/10.1021/
bm400968x
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 28 of 32
341. Maurer V, Frank C, Porsiel JC, Zellmer S, Garnweitner G, Stosch R.
Step‐by‐step monitoring of a magnetic and SERS‐active immunosensor
assembly for purification and detection of tau protein. J Biophotonics.
2020;13(3). https://doi.org/10.1002/jbio.201960090
342. Sereda V, Lednev IK. Polarized Raman Spectroscopy of Aligned
Insulin Fibrils. J Raman Spectrosc. 2014;45(8):665-671. https://doi.org/
10.1002/jrs.4523
343. Deckert-Gaudig T, Kurouski D, Hedegaard MAB, Singh P, Lednev IK,
Deckert V. Spatially resolved spectroscopic differentiation of hydrophilic
and hydrophobic domains on individual insulin amyloid fibrils. Sci Rep.
2016;6(1):33575. https://doi.org/10.1038/srep33575
344. Kurouski D, Deckert-Gaudig T, Deckert V, Lednev IK. Surface
characterization of insulin protofilaments and fibril polymorphs using
tip-enhanced Raman spectroscopy (TERS). Biophys J. 2014;106(1):263-
271. https://doi.org/10.1016/j.bpj.2013.10.040
345. Kurouski D, Sorci M, Postiglione T, Belfort G, Lednev IK. Detection
and structural characterization of insulin prefibrilar oligomers using
surface enhanced Raman spectroscopy. Biotechnol Prog.
2014;30(2):488-495. https://doi.org/10.1002/btpr.1852
346. Rivas-Arancibia S, Rodríguez-Martínez E, Badillo-Ramírez I, pez-
González U, Saniger JM. Structural Changes of Amyloid Beta in
Hippocampus of Rats Exposed to Ozone: A Raman Spectroscopy Study.
Front Mol Neurosci. 2017;10:137. https://doi.org/10.3389/fnmol.
2017.00137
347. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE. Raman
Spectroscopic Characterization of Secondary Structure in Natively
Unfolded Proteins:  α-Synuclein. J Am Chem Soc. 2004;126(8):2399-
2408. https://doi.org/10.1021/ja0356176
348. Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE.
Secondary Structure of α-Synuclein Oligomers: Characterization by
Raman and Atomic Force Microscopy. J Mol Biol. 2006;355(1):63-71.
https://doi.org/10.1016/j.jmb.2005.10.071
349. Flynn JD, McGlinchey RP, Walker RL 3rd, Lee JC. Structural features
of α-synuclein amyloid fibrils revealed by Raman spectroscopy. J Biol
Chem. 2018;293(3):767-776. https://doi.org/10.1074/jbc.M117.812388
350. Sevgi F, Brauchle EM, Carvajal Berrio DA, et al. Imaging of α-
Synuclein Aggregates in a Rat Model of Parkinson’s Disease Using
Raman Microspectroscopy. Front cell Dev Biol. 2021;9:664365.
https://doi.org/10.3389/fcell.2021.664365
351. Mensch C, Konijnenberg A, Van Elzen R, Lambeir AM, Sobott F,
Johannessen C. Raman optical activity of human α-synuclein in
intrinsically disordered, micelle-bound α-helical, molten globule and
oligomeric β-sheet state. J Raman Spectrosc. 2017;48(7):910-918.
https://doi.org/10.1002/jrs.5149
352. Freitas A, Aroso M, Barros A, et al. Characterization of the Striatal
Extracellular Matrix in a Mouse Model of Parkinson’s Disease.
Antioxidants (Basel, Switzerland). 2021;10(7). https://doi.org/10.3390/
antiox10071095
353. Palanisamy S, Yan L, Zhang X, He T. Surface enhanced Raman
scattering-active worm-like Ag clusters for sensitive and selective
detection of dopamine. Anal Methods. 2015;7(8):3438-3447.
https://doi.org/10.1039/C4AY03061C
354. Lim JW, Kang IJ. Fabrication of chitosan-gold nanocomposites
combined with optical fiber as SERS substrates to detect dopamine
molecules. Bull Korean Chem Soc. 2014;35(1):25-29. https://doi.org/
10.5012/bkcs.2014.35.1.25
355. An J-H, El-Said WA, Yea C-H, Kim T-H, Choi J-W. Surface-enhanced
Raman scattering of dopamine on self-assembled gold nanoparticles. J
Nanosci Nanotechnol. 2011;11(5):4424-4429. https://doi.org/10.1166/
jnn.2011.3688
356. Ranc V, Markova Z, Hajduch M, et al. Magnetically Assisted Surface-
Enhanced Raman Scattering Selective Determination of Dopamine in an
Artificial Cerebrospinal Fluid and a Mouse Striatum Using Fe3O4/Ag
Nanocomposite. Anal Chem. 2014;86(6):2939-2946.
https://doi.org/10.1021/ac500394g
357. Phung V-D, Jung W-S, Nguyen T-A, Kim J-H, Lee S-W. Reliable and
quantitative SERS detection of dopamine levels in human blood plasma
using a plasmonic Au/Ag nanocluster substrate. Nanoscale.
2018;10(47):22493-22503. https://doi.org/10.1039/C8NR06444J
358. Sharma A, Müller J, Schuetze K, et al. Comprehensive Profiling of
Blood Coagulation and Fibrinolysis Marker Reveals Elevated Plasmin-
Antiplasmin Complexes in Parkinson’s Disease. Biology (Basel).
2021;10(8). https://doi.org/10.3390/biology10080716
359. Carlomagno C, Bertazioli D, Gualerzi A, et al. Identification of the
Raman Salivary Fingerprint of Parkinson’s Disease Through the
Spectroscopic- Computational Combinatory Approach. Front Neurosci.
2021;15:704963. https://doi.org/10.3389/fnins.2021.704963
360. Schipper HM, Kwok CS, Rosendahl SM, et al. Spectroscopy of
human plasma for diagnosis of idiopathic Parkinson’s disease. Biomark
Med. 2008;2(3):229-238. https://doi.org/10.2217/17520363.2.3.229
361. Mammadova N, Summers CM, Kokemuller RD, et al. Accelerated
accumulation of retinal α-synuclein (pSer129) and tau,
neuroinflammation, and autophagic dysregulation in a seeded mouse
model of Parkinson’s disease. Neurobiol Dis. 2019;121:1-16.
https://doi.org/10.1016/j.nbd.2018.09.013
362. Tian F, Yang W, Mordes DA, et al. Monitoring peripheral nerve
degeneration in ALS by label-free stimulated Raman scattering imaging.
Nat Commun. 2016;7(1):13283. https://doi.org/10.1038/ncomms13283
363. Picardi G, Spalloni A, Generosi A, et al. Tissue degeneration in ALS
affected spinal cord evaluated by Raman spectroscopy. Sci Rep.
2018;8(1):13110. https://doi.org/10.1038/s41598-018-31469-4
364. Zhang Q-J, Chen Y, Zou X-H, et al. Prognostic analysis of
amyotrophic lateral sclerosis based on clinical features and plasma
surface-enhanced Raman spectroscopy. J Biophotonics.
2019;12(8):e201900012. https://doi.org/10.1002/jbio.201900012
365. Zhang QJ, Chen Y, Zou XH, et al. Promoting identification of
amyotrophic lateral sclerosis based on label-free plasma spectroscopy.
Ann Clin Transl Neurol. 2020;7(10):2010-2018. https://doi.org/10.1002/
acn3.51194
366. Morasso CF, Sproviero D, Mimmi MC, et al. Raman spectroscopy
reveals biochemical differences in plasma derived extracellular vesicles
from sporadic Amyotrophic Lateral Sclerosis patients. Nanomedicine
Nanotechnology, Biol Med. 2020;29:102249. https://doi.org/
10.1016/j.nano.2020.102249
367. Carlomagno C, Banfi PI, Gualerzi A, et al. Human salivary Raman
fingerprint as biomarker for the diagnosis of Amyotrophic Lateral
Sclerosis. Sci Rep. 2020;10(1):10175. https://doi.org/10.1038/s41598-
020-67138-8
368. Miao K, Wei L. Live-Cell Imaging and Quantification of PolyQ
Aggregates by Stimulated Raman Scattering of Selective Deuterium
Labeling. ACS Cent Sci. 2020;6(4):478-486. https://doi.org/
10.1021/acscentsci.9b01196
369. Xiong K, Punihaole D, Asher SA. UV resonance Raman spectroscopy
monitors polyglutamine backbone and side chain hydrogen bonding and
fibrillization. Biochemistry. 2012;51(29):5822-5830. https://doi.org/
10.1021/bi300551b
370. Perney NM, Braddick L, Jurna M, et al. Polyglutamine Aggregate
Structure In Vitro and In Vivo; New Avenues for Coherent Anti-Stokes
Raman Scattering Microscopy. PLoS One. 2012;7(7):e40536.
https://doi.org/10.1371/journal.pone.0040536.
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 29 of 32
371. Huefner A, Kuan W-L, Mason SL, Mahajan S, Barker RA. Serum
Raman spectroscopy as a diagnostic tool in patients with Huntingtons
disease. Chem Sci. 2020;11(2):525-533. https://doi.org/10.1039/
C9SC03711J
372. Muratore M. Raman spectroscopy and partial least squares analysis
in discrimination of peripheral cells affected by Huntington’s disease.
Anal Chim Acta. 2013;793:1-10. https://doi.org/10.1016/
j.aca.2013.06.012
373. Shashilov V, Xu M, Makarava N, Savtchenko R, Baskakov I V, Lednev
IK. Dissecting Structure of Prion Amyloid Fibrils by HydrogenDeuterium
Exchange Ultraviolet Raman Spectroscopy. J Phys Chem B.
2012;116(27):7926-7930. https://doi.org/10.1021/jp2122455
374. McColl IH, Blanch EW, Gill AC, et al. A New Perspective on β-Sheet
Structures Using Vibrational Raman Optical Activity:  From Poly(l-lysine)
to the Prion Protein. J Am Chem Soc. 2003;125(33):10019-10026.
https://doi.org/10.1021/ja021464v
375. Zhu F, Davies P, Thompsett AR, et al. Raman Optical Activity and
Circular Dichroism Reveal Dramatic Differences in the Influence of
Divalent Copper and Manganese Ions on Prion Protein Folding.
Biochemistry. 2008;47(8):2510-2517. https://doi.org/10.1021/
bi7022893
376. Miura T, Hori-i A, Mototani H, Takeuchi H. Raman Spectroscopic
Study on the Copper(II) Binding Mode of Prion Octapeptide and Its pH
Dependence. Biochemistry. 1999;38(35):11560-11569. https://doi.org/
10.1021/bi9909389
377. Miura T, Hori-i A, Takeuchi H. Metal-dependent α-helix formation
promoted by the glycine-rich octapeptide region of prion protein. FEBS
Lett. 1996;396(2-3):248-252. https://doi.org/10.1016/0014-
5793(96)01104-0
378. Krasnoslobodtsev A V, Portillo AM, Deckert-Gaudig T, Deckert V,
Lyubchenko YL. Nanoimaging for prion related diseases. Prion.
2010;4(4):265-274. https://doi.org/10.4161/pri.4.4.13125
379. Carmona P, Monleón E, Monzón M, Badiola JJ, Monreal J. Raman
Analysis of Prion Protein in Blood Cell Membranes from Naturally
Affected Scrapie Sheep. Chem Biol. 2004;11(6):759-764.
https://doi.org/10.1016/j.chembiol.2004.04.005
380. Pezzotti G, Adachi T, Miyamoto N, et al. Raman Probes for In Situ
Molecular Analyses of Peripheral Nerve Myelination. ACS Chem
Neurosci. 2020;11(15):2327-2339. https://doi.org/10.1021/
acschemneuro.0c00284
381. Carmona P, Ramos JM, De Cózar M, Monreal J. Conformational
features of lipids and proteins in myelin membranes using Raman and
infrared spectroscopy. J Raman Spectrosc. 1987;18(7):473-476.
https://doi.org/10.1002/jrs.1250180704
382. Hu C-R, Zhang D, Slipchenko MN, Cheng J, Hu B. Label-free real-
time imaging of myelination in the Xenopus laevis tadpole by in vivo
stimulated Raman scattering microscopy. J Biomed Opt.
2014;19(8):086005. https://doi.org/10.1117/1.jbo.19.8.086005
383. Turcotte R, Rutledge DJ, Bélanger E, Dill D, Macklin WB, Côté DC.
Intravital assessment of myelin molecular order with polarimetric
multiphoton microscopy. Sci Rep. 2016;6(1):31685. https://doi.org/
10.1038/srep31685
384. Huang J-R, Cheng Y-C, Huang HJ, Chiang H-P. Confocal mapping of
myelin figures with micro-Raman spectroscopy. Appl Phys A.
2017;124(1):58. https://doi.org/10.1007/s00339-017-1450-z
385. Wang H, Fu Y, Zickmund P, Shi R, Cheng J-X. Coherent Anti-Stokes
Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues.
Biophys J. 2005;89(1):581-591. https://doi.org/10.1529/
biophysj.105.061911
386. Fu Y, Huff TB, Wang H-W, Wang H, Cheng J-X. Ex vivo and in vivo
imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman
scattering microscopy. Opt Express. 2008;16(24):19396-19409.
https://doi.org/10.1364/OE.16.019396
387. Lucas A, Poleg S, Klug A, McCullagh EA. Myelination Deficits in the
Auditory Brainstem of a Mouse Model of Fragile X Syndrome. Front
Neurosci. 2021;15:772943. https://doi.org/10.3389/fnins.2021.772943
388. Poulen G, Gerber YN, Perez J-C, et al. Coherent Anti-Stokes Raman
Scattering Microscopy: A Label-Free Method to Compare Spinal Cord
Myelin in Different Species. Front Phys. 2021;9:438.
https://doi.org/10.3389/fphy.2021.665650
389. Ramos IR, Lyng FM, Rehman IU, Sharrack B, Woodroofe MN. The
use of vibrational spectroscopy to study the pathogenesis multiple
sclerosis and other neurological conditions. Appl Spectrosc Rev.
2017;52(10):868-882.
https://doi.org/10.1080/05704928.2017.1336450
390. Ozsvár A, Szipőcs R, Ozsvár Z, et al. Quantitative analysis of lipid
debris accumulation caused by cuprizone induced myelin degradation in
different CNS areas. Brain Res Bull. 2018;137:277-284.
https://doi.org/10.1016/j.brainresbull.2018.01.003
391. Poon KWC, Brideau C, Klaver R, Schenk GJ, Geurts JJ, Stys PK. Lipid
biochemical changes detected in normal appearing white matter of
chronic multiple sclerosis by spectral coherent Raman imaging. Chem
Sci. 2018;9(6):1586-1595. https://doi.org/10.1039/C7SC03992A
392. Poon KW, Brideau C, Schenk GJ, et al. Quantitative biochemical
investigation of various neuropathologies using high-resolution spectral
CARS microscopy. In: Proc.SPIE. Vol 9305. ; 2015. https://doi.org/
10.1117/12.2076654
393. Poon KW, Brideau C, Teo W, et al. Investigation of human multiple
sclerosis lesions using high resolution spectrally unmixed CARS
microscopy. In: Proc.SPIE. Vol 8565. ; 2013. https://doi.org/
10.1117/12.2005504
394. Imitola J, Côté D, Rasmussen S, et al. Multimodal coherent anti-
Stokes Raman scattering microscopy reveals microglia-associated
myelin and axonal dysfunction in multiple sclerosis-like lesions in mice.
J Biomed Opt. 2011;16(2):21109. https://doi.org/10.1117/1.3533312
395. Dessai CVP, Pliss A, Kuzmin AN, Furlani EP, Prasad PN. Coherent
Raman spectroscopic imaging to characterize microglia activation
pathway. J Biophotonics. 2019;12(5):e201800133. https://doi.org/
10.1002/jbio.201800133
396. Fu Y, Frederick TJ, Huff TB, Goings GE, Miller SD, Cheng J-X.
Paranodal myelin retraction in relapsing experimental autoimmune
encephalomyelitis visualized by coherent anti-Stokes Raman scattering
microscopy. J Biomed Opt. 2011;16(10):106006. https://doi.org/
10.1117/1.3638180
397. Gasecka P, Jaouen A, Bioud F-Z, et al. Lipid Order Degradation in
Autoimmune Demyelination Probed by Polarized Coherent Raman
Microscopy. Biophys J. 2017;113(7):1520-1530. https://doi.org/
10.1016/j.bpj.2017.07.033
398. Alba-Arbalat S, Andorra M, Sanchez-Dalmau B, et al. In Vivo
Molecular Changes in the Retina of Patients With Multiple Sclerosis.
Invest Ophthalmol Vis Sci. 2021;62(6):11. https://doi.org/
10.1167/iovs.62.6.11
399. Stiebing C, Schie IW, Knorr F, et al. Nonresonant Raman
spectroscopy of isolated human retina samples complying with laser
safety regulations for in vivo measurements. Neurophotonics.
2019;6(4):41106. https://doi.org/10.1117/1.NPh.6.4.041106
400. Rodionova NN, Allakhverdiev ES, Maksimov G V. Study of myelin
structure changes during the nerve fibers demyelination. PLoS One.
2017;12(9):1-12. https://doi.org/10.1371/journal.pone.0185170
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 30 of 32
401. Hajjar H, Boukhaddaoui H, Rizgui A, et al. Label-free non-linear
microscopy to measure myelin outcome in a rodent model of Charcot-
Marie-Tooth diseases. J Biophotonics. 2018;11(12):e201800186.
https://doi.org/10.1002/jbio.201800186
402. Canta A, Chiorazzi A, Carozzi VA, et al. Age-related changes in the
function and structure of the peripheral sensory pathway in mice.
Neurobiol Aging. 2016;45:136-148. https://doi.org/10.1016/
j.neurobiolaging.2016.05.014
403. Shi Y, Zhang D, Huff TB, et al. Longitudinal in vivo coherent anti-
Stokes Raman scattering imaging of demyelination and remyelination in
injured spinal cord. J Biomed Opt. 2011;16(10):106012.
https://doi.org/10.1117/1.3641988
404. Bélanger E, Henry FP, Vallée R, et al. In vivo evaluation of
demyelination and remyelination in a nerve crush injury model. Biomed
Opt Express. 2011;2(9):2698-2708. https://doi.org/10.1364/
BOE.2.002698
405. Morisaki S, Ota C, Matsuda K, et al. Application of Raman
spectroscopy for visualizing biochemical changes during peripheral
nerve injury in vitro and in vivo. J Biomed Opt. 2013;18(11):1-9.
https://doi.org/10.1117/1.JBO.18.11.116011
406. Bae K, Zheng W, Huang Z. Quantitative assessment of spinal cord
injury using circularly polarized coherent anti-Stokes Raman scattering
microscopy. Appl Phys Lett. 2017;111(6):63704. https://doi.org/
10.1063/1.4991792
407. Boissonnas A, Louboutin F, Laviron M, et al. Imaging resident and
recruited macrophage contribution to Wallerian degeneration. J Exp
Med. 2020;217(11). https://doi.org/10.1084/jem.20200471
408. Blat A, Dybas J, Chrabaszcz K, et al. FTIR, Raman and AFM
characterization of the clinically valid biochemical parameters of the
thrombi in acute ischemic stroke. Sci Rep. 2019;9(1):15475.
https://doi.org/10.1038/s41598-019-51932-0
409. Matthäus C, Dochow S, Bergner G, et al. In Vivo Characterization of
Atherosclerotic Plaque Depositions by Raman-Probe Spectroscopy and
in Vitro Coherent Anti-Stokes Raman Scattering Microscopic Imaging on
a Rabbit Model. Anal Chem. 2012;84(18):7845-7851. https://doi.org/
10.1021/ac301522d
410. Lattermann A, Matthäus C, Bergner N, et al. Characterization of
atherosclerotic plaque depositions by Raman and FTIR imaging. J
Biophotonics. 2013;6(1):110-121. https://doi.org/10.1002
/jbio.201200146
411. Qin Z, Chon CH, Lam AKN, Kwok JCK, Yuen MMF, Lam DCC.
Feasibility examination of isolated zonal thrombolysis using Raman
spectroscopy. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol
Soc Annu Int Conf. 2015;2015:1353-1356. https://doi.org/
10.1109/EMBC.2015.7318619
412. Jiménez-Altayó F, Marzi J, Galan M, et al. Arachnoid membrane as
a source of sphingosine-1-phosphate that regulates mouse middle
cerebral artery tone. J Cereb blood flow Metab Off J Int Soc Cereb Blood
Flow Metab. September 2021:271678X211033362. https://doi.org/
10.1177/0271678X211033362
413. Jung GB, Kang SW, Lee G-J, Kim D. Biochemical Characterization of
the Brain Hippocampal Areas after Cerebral Ischemia-Reperfusion Using
Raman Spectroscopy. Appl Spectrosc. 2018;72(10):1479-1486.
https://doi.org/10.1177/0003702818776627
414. Liu J, Liu Z, Wang W, Tian Y. Real-time Tracking and Sensing of Cu(+)
and Cu(2+) with a Single SERS Probe in the Live Brain: Toward
Understanding Why Copper Ions Were Increased upon Ischemia. Angew
Chem Int Ed Engl. 2021;60(39):21351-21359. https://doi.org/
10.1002/anie.202106193
415. Russo V, Candeloro P, Malara N, et al. Key Role of Cytochrome C for
Apoptosis Detection Using Raman Microimaging in an Animal Model of
Brain Ischemia with Insulin Treatment. Appl Spectrosc.
2019;73(10):1208-1217. https://doi.org/10.1177/0003702819858671
416. Yamazoe S, Naya M, Shiota M, et al. Large-Area Surface-Enhanced
Raman Spectroscopy Imaging of Brain Ischemia by Gold Nanoparticles
Grown on Random Nanoarrays of Transparent Boehmite. ACS Nano.
2014;8(6):5622-5632. https://doi.org/10.1021/nn4065692
417. Caine S, Hackett MJ, Hou H, et al. A novel multi-modal platform to
image molecular and elemental alterations in ischemic stroke. Neurobiol
Dis. 2016;91:132-142. https://doi.org/10.1016/j.nbd.2016.03.006
418. Fan Y, Chen C, Xie X, et al. Rapid noninvasive screening of cerebral
ischemia and cerebral infarction based on tear Raman spectroscopy
combined with multiple machine learning algorithms. Lasers Med Sci.
2022;37(1):417-424. https://doi.org/10.1007/s10103-021-03273-6
419. Lee B-R, Joo K-I, Choi ES, Jahng J, Kim H, Kim E. Evans blue dye-
enhanced imaging of the brain microvessels using spectral focusing
coherent anti-Stokes Raman scattering microscopy. PLoS One.
2017;12(10):e0185519. https://doi.org/10.1371/journal.pone.0185519
420. Brazhe NA, Thomsen K, nstrup M, et al. Monitoring of blood
oxygenation in brain by resonance Raman spectroscopy. J Biophotonics.
2018;11(6):e201700311. https://doi.org/10.1002/jbio.201700311
421. Williamson MR, Dietrich K, Hackett MJ, et al. Rehabilitation
Augments Hematoma Clearance and Attenuates Oxidative Injury and
Ion Dyshomeostasis After Brain Hemorrhage. Stroke. 2017;48(1):195-
203. https://doi.org/10.1161/STROKEAHA.116.015404
422. Zhao P, Sun J, Zhao S, et al. SERS-based immunoassay based on gold
nanostars modified with 5,5’-dithiobis-2-nitrobenzoic acid for
determination of glial fibrillary acidic protein. Mikrochim Acta.
2021;188(12):428. https://doi.org/10.1007/s00604-021-05081-9
423. Kim W, Lee SH, Ahn YJ, et al. A label-free cellulose SERS biosensor
chip with improvement of nanoparticle-enhanced LSPR effects for early
diagnosis of subarachnoid hemorrhage-induced complications. Biosens
Bioelectron. 2018;111:59-65. https://doi.org/10.1016/
j.bios.2018.04.003
424. Kawon K, Setkowicz Z, Drozdz A, Janeczko K, Chwiej J. The methods
of vibrational microspectroscopy reveals long-term biochemical
anomalies within the region of mechanical injury within the rat brain.
Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;263:120214.
https://doi.org/10.1016/j.saa.2021.120214
425. Saxena T, Deng B, Hasenwinkel JM, Stelzner D, Chaiken J. Raman
spectroscopic investigation of spinal cord injury in a rat model. J Biomed
Opt. 2011;16(2):1-14. https://doi.org/10.1117/1.3549700
426. Saxena T, Deng B, Lewis-Clark E, et al. Near infrared Raman
spectroscopic study of reactive gliosis and the glial scar in injured rat
spinal cords. In: Biomedical Vibrational Spectroscopy IV: Advances in
Research and Industry. Vol 7560. ; 2010:75600I. https://doi.org/
10.1117/12.846897
427. Banbury C, Styles I, Eisenstein N, et al. Spectroscopic detection of
traumatic brain injury severity and biochemistry from the retina.
Biomed Opt Express. 2020;11(11):6249-6261. https://doi.org/10.1364/
BOE.399473
428. Surmacki JM, Ansel-Bollepalli L, Pischiutta F, Zanier ER, Ercole A,
Bohndiek SE. Label-free monitoring of tissue biochemistry following
traumatic brain injury using Raman spectroscopy. Analyst.
2017;142(1):132-139. https://doi.org/10.1039/C6AN02238C
429. Khalenkow D, Donche S, Braeckman K, Vanhove C, Skirtach AG.
Added Value of Microscale Raman Chemical Analysis in Mild Traumatic
Brain Injury (TBI): A Comparison with Macroscale MRI. ACS Omega.
2018;3(12):16806-16811. https://doi.org/10.1021/acsomega.8b02404
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 31 of 32
430. Tay L-L, Tremblay RG, Hulse J, Zurakowski B, Thompson M, Bani-
Yaghoub M. Detection of acute brain injury by Raman spectral signature.
Analyst. 2011;136(8):1620-1626. https://doi.org/10.1039/C0AN00897D
431. Li D, Yang M, Li H, Mao L, Wang Y, Sun B. SERS based protocol using
flow glass-hemostix for detection of neuron-specific enolase in blood
plasma. New J Chem. 2019;43(15):5925-5931. https://doi.org/10.1039/
C8NJ02561D
432. Gao X, Zheng P, Kasani S, et al. Paper-Based Surface-Enhanced
Raman Scattering Lateral Flow Strip for Detection of Neuron-Specific
Enolase in Blood Plasma. Anal Chem. 2017;89(18):10104-10110.
https://doi.org/10.1021/acs.analchem.7b03015
433. Rickard JJS, Di-Pietro V, Smith DJ, Davies DJ, Belli A, Oppenheimer
PG. Rapid optofluidic detection of biomarkers for traumatic brain injury
via surface-enhanced Raman spectroscopy. Nat Biomed Eng.
2020;4(6):610-623. https://doi.org/10.1038/s41551-019-0510-4
434. Gao X, Boryczka J, Zheng P, et al. A “hot Spot”-Enhanced paper
lateral flow assay for ultrasensitive detection of traumatic brain injury
biomarker S-100β in blood plasma. Biosens Bioelectron.
2021;177:112967. https://doi.org/10.1016/j.bios.2021.112967
435. Wang Y, Zhao P, Mao L, Hou Y, Li D. Determination of brain injury
biomarkers by surface-enhanced Raman scattering using hollow gold
nanospheres. RSC Adv. 2018;8(6):3143-3150. https://doi.org/10.1039/
C7RA12410D
436. Mowbray M, Banbury C, Rickard JJS, Davies DJ, Goldberg
Oppenheimer P. Development and Characterization of a Probe Device
toward Intracranial Spectroscopy of Traumatic Brain Injury. ACS
Biomater Sci Eng. 2021;7(3):1252-1262. https://doi.org/10.1021/
acsbiomaterials.0c01156
437. Kočović DM, Bajuk-Bogdanović D, Pećinar I, Nedeljković BB,
Daković M, Andjus PR. Assessment of cellular and molecular changes in
the rat brain after gamma radiation and radioprotection by anisomycin.
J Radiat Res. 2021;62(5):793-803. https://doi.org/10.1093/jrr/rrab045
438. Stevens AR, Stickland CA, Harris G, et al. Raman Spectroscopy as a
Neuromonitoring Tool in Traumatic Brain Injury: A Systematic Review
and Clinical Perspectives. Cells. 2022;11(7). https://doi.org/
10.3390/cells11071227
439. Niedieker D, GrosserÜschkamp F, Schreiner A, et al. Label-free
identification of myopathological features with coherent anti-Stokes
Raman scattering. Muscle Nerve. 2018;58(3):456-459. https://doi.org/
10.1002/mus.26140
440. Alix JJP, Plesia M, Lloyd GR, et al. Rapid identification of human
muscle disease with fibre optic Raman spectroscopy. Analyst. 2022.
https://doi.org/10.1039/D1AN01932E
441. Gautam R, Vanga S, Madan A, Gayathri N, Nongthomba U,
Umapathy S. Raman Spectroscopic Studies on Screening of Myopathies.
Anal Chem. 2015;87(4):2187-2194. https://doi.org/10.1021/ac503647x
442. Plesia M, Stevens OA, Lloyd GR, et al. In Vivo Fiber Optic Raman
Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral
Sclerosis and Duchenne Muscular Dystrophy. ACS Chem Neurosci.
2021;12(10):1768-1776.
https://doi.org/10.1021/acschemneuro.0c00794
443. Hentschel A, Czech A, Münchberg U, et al. Protein signature of
human skin fibroblasts allows the study of the molecular etiology of rare
neurological diseases. Orphanet J Rare Dis. 2021;16(1):73.
https://doi.org/10.1186/s13023-020-01669-1
444. Ralbovsky NM, Dey P, Galfano A, Dey BK, Lednev IK. Diagnosis of a
model of Duchenne muscular dystrophy in blood serum of mdx mice
using Raman hyperspectroscopy. Sci Rep. 2020;10(1):11734.
https://doi.org/10.1038/s41598-020-68598-8
445. Wallach DF, Verma SP, Singer WE. A protein anomaly in erythrocyte
membranes of patients with Duchenne muscular dystrophy. J Exp Med.
1983;157(6):2017-2028. https://doi.org/10.1084/jem.157.6.2017
446. Driskell JD, Zhu Y, Kirkwood CD, Zhao Y, Dluhy RA, Tripp RA. Rapid
and Sensitive Detection of Rotavirus Molecular Signatures Using Surface
Enhanced Raman Spectroscopy. PLoS One. 2010;5(4):e10222.
https://doi.org/10.1371/journal.pone.0010222.
447. Palchaudhuri S, Rehse SJ, Hamasha K, et al. Raman spectroscopy of
xylitol uptake and metabolism in Gram-positive and Gram-negative
bacteria. Appl Environ Microbiol. 2011;77(1):131-137. https://doi.org/
10.1128/AEM.01458-10
448. Harz M, Kiehntopf M, Stöckel S, et al. Direct analysis of clinical
relevant single bacterial cells from cerebrospinal fluid during bacterial
meningitis by means of micro-Raman spectroscopy. J Biophotonics.
2009;2(1-2):70-80. https://doi.org/10.1002/jbio.200810068
449. Gracie K, Correa E, Mabbott S, et al. Simultaneous detection and
quantification of three bacterial meningitis pathogens by SERS. Chem
Sci. 2014;5(3):1030-1040. https://doi.org/10.1039/C3SC52875H
450. Sathyavathi R, Dingari NC, Barman I, et al. Raman spectroscopy
provides a powerful, rapid diagnostic tool for the detection of
tuberculous meningitis in ex vivo cerebrospinal fluid samples. J
Biophotonics. 2013;6(8):567-572. https://doi.org/10.1002/
jbio.201200110
451. Kamińska A, Witkowska E, Kowalska A, et al. Highly efficient SERS-
based detection of cerebrospinal fluid neopterin as a diagnostic marker
of bacterial infection. Anal Bioanal Chem. 2016;408(16):4319-4327.
https://doi.org/10.1007/s00216-016-9535-7
452. Harz M, Kiehntopf M, Stöckel S, Rösch P, Deufel T, Popp J. Analysis
of single blood cells for CSF diagnostics via a combination of
fluorescence staining and micro-Raman spectroscopy. Analyst.
2008;133(10):1416-1423. https://doi.org/10.1039/B716132H
453. Steelman Z, Meng Z, Traverso AJ, Yakovlev V V. Brillouin
spectroscopy as a new method of screening for increased CSF total
protein during bacterial meningitis. J Biophotonics. 2015;8(5):408-414.
https://doi.org/10.1002/jbio.201400047
454. Ladiwala U, Bankapur A, Barkur S, Thakur B, Santhosh C, Mathur D.
Raman spectroscopic detection of rapid, reversible, early-stage
inflammatory cytokine-induced apoptosis of adult hippocampal
progenitors/stem cells: A preliminary study. Proc Indian Natl Sci Acad.
2015;81(5):1223-1236. https://doi.org/10.16943/ptinsa/2015/
v81i5/48343
455. Tanuma M, Kasai A, Bando K, et al. Direct visualization of an
antidepressant analog using surface-enhanced Raman scattering in the
brain. JCI insight. 2020;5(6):e133348. https://doi.org/10.1172/
jci.insight.133348
456. Pogocki D, Kisała J, Cebulski J. Depression as is Seen by Molecular
Spectroscopy. Phospholipid- Protein Balance in Affective Disorders and
Dementia. Curr Mol Med. 2020;20(6):484-487. https://doi.org/10.2174/
1566524020666191219102746
457. Depciuch J, Sowa-Kućma M, Nowak G, et al. Phospholipid-protein
balance in affective disorders: Analysis of human blood serum using
Raman and FTIR spectroscopy. A pilot study. J Pharm Biomed Anal.
2016;131:287-296. https://doi.org/10.1016/j.jpba.2016.08.037
458. Depciuch J, Parlinska-Wojtan M. Comparing dried and liquid blood
serum samples of depressed patients: An analysis by Raman and
infrared spectroscopy methods. J Pharm Biomed Anal. 2018;150:80-86.
https://doi.org/10.1016/j.jpba.2017.11.074
Free Neuropathology 3:19 (2022) Klamminger et al
doi: https://doi.org/10.17879/freeneuropathology-2022-4210 page 32 of 32
459. Chaichi A, Hasan SMA, Mehta N, et al. Label-free lipidome study of
paraventricular thalamic nucleus (PVT) of rat brain with post-traumatic
stress injury by Raman imaging. Analyst. 2021;146(1):170-183.
https://doi.org/10.1039/d0an01615b
460. Xu J, Potter M, Tomas C, et al. A new approach to find biomarkers
in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by
single-cell Raman micro-spectroscopy. Analyst. 2019;144(3):913-920.
https://doi.org/10.1039/C8AN01437J
461. González-Cebrián A, Almenar-Pérez E, Xu J, et al. Diagnosis of
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome With Partial Least
Squares Discriminant Analysis: Relevance of Blood Extracellular Vesicles.
Front Med. 2022;9:842991. https://doi.org/10.3389/fmed.2022.842991
462. Guo S, Popp J, Bocklitz T. Chemometric analysis in Raman
spectroscopy from experimental design to machine learningbased
modeling. Nat Protoc. 2021;16(12):5426-5459. https://doi.org/
10.1038/s41596-021-00620-3
463. Wang W, McGregor H, Short M, Zeng H. Clinical utility of Raman
spectroscopy: current applications and ongoing developments. Adv Heal
Care Technol. June 2016:13. https://doi.org/10.2147/AHCT.S96486
464. Li Z, Sun W, Duan W, et al. Guiding Epilepsy Surgery with an LRP1-
Targeted SPECT/SERRS Dual-Mode Imaging Probe. ACS Appl Mater
Interfaces. May 2022. https://doi.org/10.1021/acsami.2c02540
465. Mosca S, Conti C, Stone N, Matousek P. Spatially offset Raman
spectroscopy. Nat Rev Methods Prim. 2021;1(1):21. https://doi.org/
10.1038/s43586-021-00019-0
466. Liao C-S, Wang P, Huang CY, et al. In Vivo and in Situ Spectroscopic
Imaging by a Handheld Stimulated Raman Scattering Microscope. ACS
Photonics. 2018;5(3):947-954. https://doi.org/10.1021/
acsphotonics.7b01214
467. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification
of Tumors of the Central Nervous System: a summary. Neuro Oncol.
2021;23(8):1231-1251. https://doi.org/10.1093/neuonc/noab106
468. Cicerone MT, Camp CH. Histological coherent Raman imaging: a
prognostic review. Analyst. 2018;143(1):33-59. https://doi.org/
10.1039/C7AN01266G
469. Stevens O, Iping Petterson IE, Day JCC, Stone N. Developing fibre
optic Raman probes for applications in clinical spectroscopy. Chem Soc
Rev. 2016;45(7):1919-1934. https://doi.org/10.1039/C5CS00850F
470. Baker MJ, Byrne HJ, Chalmers J, et al. Clinical applications of
infrared and Raman spectroscopy: state of play and future challenges.
Analyst. 2018;143(8):1735-1757. https://doi.org/10.1039/C7AN01871A
471. Bassan P, Mellor J, Shapiro J, Williams KJ, Lisanti MP, Gardner P.
Transmission FT-IR Chemical Imaging on Glass Substrates: Applications
in Infrared Spectral Histopathology. Anal Chem. 2014;86(3):1648-1653.
https://doi.org/10.1021/ac403412n
472. Ibrahim O, Maguire A, Meade AD, et al. Improved protocols for pre-
processing Raman spectra of formalin fixed paraffin preserved tissue
sections. Anal Methods. 2017;9(32):4709-4717. https://doi.org/
10.1039/C6AY03308C
473. V F. Optical scanners for melanoma detection [Issues in emerging
health technologies, Issue 123]. Ottawa: Canadian Agency for Drugs and
Technologies in Health; 2014.
474. CBC News. Skin cancer detector approved | CBC News.
https://www.cbc.ca/news/health/skin-cancer-detector-approved-
1.1121389. Published 2011. Accessed March 25, 2022.
475. Sulukan E, Baran A, Şenol O, et al. The synergic toxicity of
temperature increases and nanopolystrene on zebrafish brain implies
that global warming may worsen the current risk based on plastic debris.
Sci Total Environ. 2021;808:152092. https://doi.org/10.1016/
j.scitotenv.2021.152092
476. Li S, Li Y, Yi R, Liu L, Qu J. Coherent Anti-Stokes Raman Scattering
Microscopy and Its Applications . Front Phys . 2020;8.
https://www.frontiersin.org/article/10.3389/fphy.2020.598420.
477. Robert B. Resonance Raman spectroscopy. Photosynth Res.
2009;101(2-3):147-155. https://doi.org/10.1007/s11120-009-9440-4
478. Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-
enhanced Raman spectroscopy (SERS) substrates for lipid and protein
characterization: sensing and beyond. Analyst. 2018;143(17):3990-
4008. https://doi.org/10.1039/C8AN00606G
479. Campion A, Kambhampati P. Surface-enhanced Raman scattering.
Chem Soc Rev. 1998;27(4):241-250. https://doi.org/10.1039/A827241Z
480. Muehlethaler C, Leona M, Lombardi JR. Review of Surface
Enhanced Raman Scattering Applications in Forensic Science. Anal
Chem. 2016;88(1):152-169. https://doi.org/10.1021/
acs.analchem.5b04131
481. Mirsadeghi S, Dinarvand R, Ghahremani MH, et al. Protein corona
composition of gold nanoparticles/nanorods affects amyloid beta
fibrillation process. Nanoscale. 2015;7(11):5004-5013. https://doi.org/
10.1039/C4NR06009A
482. Nandakumar P, Kovalev A, Volkmer A. Vibrational imaging Based
on stimulated Raman scattering microscopy. New J Phys. 2009;11.
https://doi.org/10.1088/1367-2630/11/3/033026
483. Lin H, Lee HJ, Tague N, et al. Microsecond fingerprint stimulated
Raman spectroscopic imaging by ultrafast tuning and spatial-spectral
learning. Nat Commun. 2021;12(1):3052. https://doi.org/10.1038/
s41467-021-23202-z
484. W. FC, Wei M, G. SB, et al. Label-Free Biomedical Imaging with High
Sensitivity by Stimulated Raman Scattering Microscopy. Science (80- ).
2008;322(5909):1857-1861. https://doi.org/10.1126/science.1165758
485. Topp MR. Pulsed Laser Spectroscopy. Appl Spectrosc Rev.
1978;14(1):1-100. https://doi.org/10.1080/05704927808060389
486. Zumbusch A, Holtom GR, Xie XS. Three-Dimensional Vibrational
Imaging by Coherent Anti-Stokes Raman Scattering. Phys Rev Lett.
1999;82(20):4142-4145. https://doi.org/10.1103/PhysRevLett.82.4142
487. Potma EO, Xie XS. CARS Microscopy for Biology and Medicine. Opt
Photon News. 2004;15(11):40-45. https://doi.org/10.1364/
OPN.15.11.000040
... Five markers or liquid biopsy approaches, including "cfDNA", "miRNA", "EV's", "seroreactivity", and "spectroscopy", were chosen for analysis based on reviews and research papers about liquid biopsy in brain tumors [16][17][18][25][26][27][28]. The marker or liquid biopsy approach was searched in Google Scholar and PubMed according to the search strategies outlined in Supplementary Table S1 (Table S1) between 21 September 2023 and 20 March 2024. ...
Article
Full-text available
Meningiomas are tumors of the central nervous system that vary in their presentation, ranging from benign and slow-growing to highly aggressive. The standard method for diagnosing and classifying meningiomas involves invasive surgery and can fail to provide accurate prognostic information. Liquid biopsy methods, which exploit circulating tumor biomarkers such as DNA, extracellular vesicles, micro-RNA, proteins, and more, offer a non-invasive and dynamic approach for tumor classification, prognostication, and evaluating treatment response. Currently, a clinically approved liquid biopsy test for meningiomas does not exist. This review provides a discussion of current research and the challenges of implementing liquid biopsy techniques for advancing meningioma patient care.
... With the aim of providing an unbiased approach to brain tumor diagnosis, Raman spectroscopy (RS) has been progressively developed and advanced in recent years to potentially add to the ever-expanding diagnostic toolbox for the detection and diagnosis of neuro-oncological lesions alongside existing diagnostic methods to date, namely radiological imaging, histomorphology, immunohistochemistry, genetic and epigenetic analysis [1][2][3]. As a vibrational spectroscopic technique, RS allows us to detect changes in the virtual vibrational level of the molecule or tissue of interest-the interaction of light and matter results in the emission of photons of different frequency and energy (inelastic scattering, Raman scattering). ...
Article
Full-text available
Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas-vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%-but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.
... With the aim of providing an unbiased approach to brain tumor diagnosis, Raman spectroscopy (RS) has been progressively evolved and advanced in recent years [1][2][3][4] . The applications of this vibrational spectroscopic technique, which is physically based on inelastically scattered photons and subsequent generation of a molecular ngerprint, range from intra-/perioperative use in neurosurgery to employment of this method in diagnostic pathology 5,6 . ...
Preprint
Full-text available
Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman Spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas - vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76% - but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will serve valuable especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.
Article
Objective The feasibility of the RS for the clinical diagnosis of thyroid tumours was explored. Methods The tumour specimens from 30 benign patients and 30 malignant patients were collected. The collected specimens were subjected to RS and histopathological analysis. The Raman peak intensities of all the specimens were calculated, and the data were analysed using discriminant analysis. Results (1) The prevalence rate of malignant tumours in females was as high as 76.7%. Central lymph node metastasis of malignant thyroid tumours accounted for 33.3% of cases, and lateral cervical lymph node metastasis accounted for only 6.7%. (2) The spectral intensity of malignant thyroid tumours was significantly greater than benign thyroid tumours at 1309 cm⁻¹, which should be the characteristic peak of thyroid cancer. The accuracy, sensitivity, and specificity of the RS for differentiating benign from malignant thyroid tumours were 95%, 83.3% and 89.2%. Conclusion RS is feasible for the diagnosis of thyroid tumours. This study provides experimental and clinical support for the wider application of RS in the evaluation of thyroid tissue. Levels of evidence : Levels 4.
Article
Full-text available
Raman spectroscopy (RS) is used increasingly for disease detection, including diseases of the nervous system (CNS). This Perspective presents RS basics and how it has been applied to disease detection. Research that focused on using a novel Raman-based technology—Rametrix® Molecular Urinalysis (RMU)—for systemic disease detection is presented, demonstrated by an example of how the RS/RMU technology could be used for detection and management of diseases of the CNS in companion animals.
Article
Full-text available
Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.
Article
Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed. The new light on this problem may be shed by the analysis of biochemical anomalies of tissues affected by tumor growth. Therefore, in the present work, we applied the Fourier transform infrared (FTIR) and Raman microspectroscopy to evaluate changes in the distribution and structure of biomolecules appearing in the rat brain as a result of glioblastoma development. In turn, synchrotron X-ray fluorescence microscopy was utilized to determine the elemental anomalies appearing in the nervous tissue. To achieve the assumed goals of the study animal models of GBM were used. The rats were subjected to the intracranial implantation of glioma cells with different degree of invasiveness. For spectroscopic investigation brain slices taken from the area of cancer cells administration were used. The obtained results revealed, among others, the decrease content of lipids and compounds containing carbonyl groups, compositional and structural changes of proteins as well as abnormalities in the distribution of low atomic number elements within the region of tumor.
Article
This article presents some of the author's neuropathological highlights in the field on neuro-oncology research encountered in 2022. Major advances were made in the development of more precise, faster, easier, less invasive and unbiased diagnostic tools ranging from immunohistochemical prediction of 1p/19q loss in diffuse glioma, methylation analyses in CSF samples, molecular profiling for CNS lymphoma, proteomic analyses of recurrent glioblastoma, integrated molecular diagnostics for better stratification in meningioma, intraoperative profiling making use of Raman effect or methylation analysis, to finally, the assessment of histological slides by means of machine learning for the prediction of molecular tumor features. In addition, as the discovery of a new tumor entity may also be a highlight for the neuropathology community, the newly described high-grade glioma with pleomorphic and pseudopapillary features (HPAP) has been selected for this article. Regarding new innovative treatment approaches, a drug screening platform for brain metastasis is presented. Although diagnostic speed and precision is steadily increasing, clinical prognosis for patients with malignant tumors affecting the nervous system remains largely unchanged over the last decade, therefore future neuro-oncological research focus should be put on how the amazing developments presented in this article can be more sustainably applied to positively impact patient prognosis.
Article
Full-text available
Despite the wide range of proposed biomarkers for Parkinson’s disease (PD), there are no specific molecules or signals able to early and uniquely identify the pathology onset, progression and stratification. Saliva is a complex biofluid, containing a wide range of biological molecules shared with blood and cerebrospinal fluid. By means of an optimized Raman spectroscopy procedure, the salivary Raman signature of PD can be characterized and used to create a classification model. Raman analysis was applied to collect the global signal from the saliva of 23 PD patients and related pathological and healthy controls. The acquired spectra were computed using machine and deep learning approaches. The Raman database was used to create a classification model able to discriminate each spectrum to the correct belonging group, with accuracy, specificity, and sensitivity of more than 97% for the single spectra attribution. Similarly, each patient was correctly assigned with discriminatory power of more than 90%. Moreover, the extracted data were significantly correlated with clinical data used nowadays for the PD diagnosis and monitoring. The preliminary data reported highlight the potentialities of the proposed methodology that, once validated in larger cohorts and with multi-centered studies, could represent an innovative minimally invasive and accurate procedure to determine the PD onset, progression and to monitor therapies and rehabilitation efficacy.
Article
Full-text available
The diagnosis of muscle disorders (“myopathies”) can be challenging and new biomarkers of disease are required to enhance clinical practice and research. Despite advances in areas such as imaging and genomic medicine, muscle biopsy remains an important but time consuming investigation. Raman spectroscopy is a vibrational spectroscopy application that could provide a rapid analysis of muscle tissue, as it requires no sample preparation and is simple to perform. Here, we investigated the feasibility of using a miniaturised, portable fibre optic Raman system for the rapid identification of muscle disease. Samples were assessed from 29 patients with a final clinico-pathological diagnosis of a myopathy and 17 patients in whom investigations and clinical follow-up excluded myopathy. Multivariate classification techniques achieved accuracies ranging between 71-80%. To explore the potential of Raman spectroscopy to identify different myopathies, patients were subdivided into mitochondrial and non-mitochondrial myopathy groups. Classification accuracies were between 78 – 89%. Observed spectral changes were related to changes in protein structure. These data indicate fibre optic Raman spectroscopy is a promising technique for the rapid identification of muscle disease that could provide real time diagnostic information. The application of fibre optic Raman technology raises the prospect of in vivo bedside testing for muscle diseases which would significantly streamline the diagnostic pathway of these disorders.
Article
Full-text available
Traumatic brain injury (TBI) is a significant global health problem, for which no disease-modifying therapeutics are currently available to improve survival and outcomes. Current neuromonitoring modalities are unable to reflect the complex and changing pathophysiological processes of the acute changes that occur after TBI. Raman spectroscopy (RS) is a powerful, label-free, optical tool which can provide detailed biochemical data in vivo. A systematic review of the literature is presented of available evidence for the use of RS in TBI. Seven research studies met the inclusion/exclusion criteria with all studies being performed in pre-clinical models. None of the studies reported the in vivo application of RS, with spectral acquisition performed ex vivo and one performed in vitro. Four further studies were included that related to the use of RS in analogous brain injury models, and a further five utilised RS in ex vivo biofluid studies for diagnosis or monitoring of TBI. RS is identified as a potential means to identify injury severity and metabolic dysfunction which may hold translational value. In relation to the available evidence, the translational potentials and barriers are discussed. This systematic review supports the further translational development of RS in TBI to fully ascertain its potential for enhancing patient care.
Article
Full-text available
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic disease characterized by long-lasting persistent debilitating widespread fatigue and post-exertional malaise, remains diagnosed by clinical criteria. Our group and others have identified differentially expressed miRNA profiles in the blood of patients. However, their diagnostic power individually or in combinations seems limited. A Partial Least Squares-Discriminant Analysis (PLS-DA) model initially based on 817 variables: two demographic, 34 blood analytic, 136 PBMC miRNAs, 639 Extracellular Vesicle (EV) miRNAs, and six EV features, selected an optimal number of five components, and a subset of 32 regressors showing statistically significant discriminant power. The presence of four EV-features (size and z-values of EVs prepared with or without proteinase K treatment) among the 32 regressors, suggested that blood vesicles carry relevant disease information. To further explore the features of ME/CFS EVs, we subjected them to Raman micro-spectroscopic analysis, identifying carotenoid peaks as ME/CFS fingerprints, possibly due to erythrocyte deficiencies. Although PLS-DA analysis showed limited capacity of Raman fingerprints for diagnosis (AUC = 0.7067), Raman data served to refine the number of PBMC miRNAs from our previous model still ensuring a perfect classification of subjects (AUC=1). Further investigations to evaluate model performance in extended cohorts of patients, to identify the precise ME/CFS EV components detected by Raman and to reveal their functional significance in the disease are warranted.
Article
Full-text available
In this study, we demonstrate that Raman microscopy combined with computational analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ malignant tumors. The current analysis of NDGA’s impact on GBM human cells demonstrates a reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA. A novel outcome presented here is the use of phenylalanine as a biomarker for differentiating between samples and assessing drug efficacy. Treatment with a low NDGA dose shows a decline in abnormal lipid-protein metabolism, which is inferred by the formation of lipid droplets and a decrease in altered protein content. A very high dose results in cell structural and membrane damage that favors transformed protein overexpression. The information gained through this work is of substantial value for understanding NDGA’s beneficial as well as detrimental bio-effects as a potential therapeutic drug for brain cancer.
Article
Full-text available
For the reliable determination of trace chemicals in the brain, we created a SERS platform based on a functionalized AuNPs array formed at a liquid/liquid interface in a uniform fashion over a large substrate area through ternary regulations for real‐time quantification of trace norepinephrine (NE). The rigid molecule, 4‐(thiophen‐3‐ylethynyl)‐benzaldehyde (RP1) was designed and co‐assembled at AuNPs with 4‐mercaptophenylboronic acid (MPBA) to chemically define NE via dual recognition. Meanwhile, the rigid structure assembly of RP1 and MPBA efficiently fixed the interparticle gap, guaranteeing reproducible SERS analysis. Furthermore, the Raman peak of C≡C group in the silent region was taken as a response element to further improve the accuracy. Combined with microdialysis, this SERS platform was developed for in‐the‐field testing of NE in rat brain microdialysates following anxiety.
Article
Full-text available
The aim of this study was to assess feasibility and accuracy of a hand-held, intraoperative Raman spectroscopy device as a neuronavigation aid to accurately detect neoplastic tissue from adjacent normal gray and white matter. Although Raman spectra are complicated fingerprints of cell signature, the relative shift corresponding to lipid and protein content (2,845 and 2,930 cm⁻¹, respectively), can provide a rapid assessment of whether tissue is normal white or gray matter vs. neoplasia for real-time guidance of tumor resection. Thirteen client-owned dogs were initially enrolled in the study. Two were excluded from final analysis due to incomplete data acquisition or lack of neoplastic disease. The diagnoses of the remaining 11 dogs included six meningiomas, two histiocytic sarcomas, and three gliomas. Intraoperatively, interrogated tissues included normal gray and/or white matter and tumor. A total of five Raman spectra readings were recorded from the interrogated tissues, and samples were submitted for confirmation of Raman spectra by histopathology. A resultant total of 24 samples, 13 from neoplastic tissue and 11 from normal gray or white matter, were used to calculate sensitivity and specificity of Raman spectra compared to histopathology. The handheld Raman spectroscopy device had sensitivity of 85.7% and specificity of 90% with a positive predictive value of 92.3% and negative predictive value of 81.6%. The Raman device was feasible to use intraoperatively with rapid interpretation of spectra. Raman spectroscopy may be useful for intraoperative guidance of tumor resection.
Article
Accurate identification of the resectable epileptic lesion is a precondition of operative intervention to drug-resistant epilepsy (DRE) patients. However, even when multiple diagnostic modalities are combined, epileptic foci cannot be accurately identified in ∼30% of DRE patients. Inflammation-associated low-density lipoprotein receptor-related protein-1 (LRP1) has been validated to be a surrogate target for imaging epileptic foci. Here, we reported an LRP1-targeted dual-mode probe that is capable of providing comprehensive epilepsy information preoperatively with SPECT imaging while intraoperatively delineating epileptic margins in a sensitive high-contrast manner with surface-enhanced resonance Raman scattering (SERRS) imaging. Notably, a novel and universal strategy for constructing self-assembled monolayer (SAM)-based Raman reporters was proposed for boosting the sensitivity, stability, reproducibility, and quantifiability of the SERRS signal. The probe showed high efficacy to penetrate the blood-brain barrier. SPECT imaging showed the probe could delineate the epileptic foci clearly with a high target-to-background ratio (4.11 ± 0.71, 2 h). Further, with the assistance of the probe, attenuated seizure frequency in the epileptic mouse models was achieved by using SPECT together with Raman images before and during operation, respectively. Overall, this work highlights a new strategy to develop a SPECT/SERRS dual-mode probe for comprehensive epilepsy surgery that can overcome the brain shift by the co-registration of preoperative SPECT and SERRS intraoperative images.
Article
Background: Accurate specimen analysis of skull base tumors is essential for providing personalized surgical treatment strategies. Intraoperative specimen interpretation can be challenging because of the wide range of skull base pathologies and lack of intraoperative pathology resources. Objective: To develop an independent and parallel intraoperative workflow that can provide rapid and accurate skull base tumor specimen analysis using label-free optical imaging and artificial intelligence. Methods: We used a fiber laser-based, label-free, nonconsumptive, high-resolution microscopy method (<60 seconds per 1 × 1 mm2), called stimulated Raman histology (SRH), to image a consecutive, multicenter cohort of patients with skull base tumor. SRH images were then used to train a convolutional neural network model using 3 representation learning strategies: cross-entropy, self-supervised contrastive learning, and supervised contrastive learning. Our trained convolutional neural network models were tested on a held-out, multicenter SRH data set. Results: SRH was able to image the diagnostic features of both benign and malignant skull base tumors. Of the 3 representation learning strategies, supervised contrastive learning most effectively learned the distinctive and diagnostic SRH image features for each of the skull base tumor types. In our multicenter testing set, cross-entropy achieved an overall diagnostic accuracy of 91.5%, self-supervised contrastive learning 83.9%, and supervised contrastive learning 96.6%. Our trained model was able to segment tumor-normal margins and detect regions of microscopic tumor infiltration in meningioma SRH images. Conclusion: SRH with trained artificial intelligence models can provide rapid and accurate intraoperative analysis of skull base tumor specimens to inform surgical decision-making.