Article

Inhibitory actions of electrolysed water on food spoilage fungi

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Chemical sanitisers are needed for controlling microbial contamination and growth in various settings, including healthcare, domestic settings and the food industry. One promising sanitiser with proposed applications in the food industry is the oxidising sanitiser electrolysed water (EW). For EW applications to be effective, a more in-depth understanding of EW mode-of-action is needed, together with the identification of limiting factors associated with the chemical matrices in relevant EW applications. This study investigated the reactivity of EW with different organic substances. For this purpose, the common food spoilage fungus Aspergillus niger was treated with EW in the presence or absence of the organic materials. The sanitiser retained partial fungicidal activity at high levels of added soil, commonly associated with freshly harvested produce. By narrowing down the reactivity of EW from complex matrices to specific organic molecules, proteins and amino acids were found to strongly suppress EW fungicidal activity. The potential implications of EW reactivity with proteins and amino acids within cells were investigated in the fungal model organism Saccharomyces cerevisiae. This capitalised on the advanced understanding of the uptake and metabolism of diverse compounds and the availability of convenient genetic tools in this model organism. Pre-culture with methionine but not with other tested amino acids increased yeast resistance to subsequent treatments (in the absence of methionine) with sanitisers (EW, sodium hypochlorite, ozonated water). Further tests suggested a direct role of the methionine molecule itself, as opposed to downstream products of methionine metabolism or methionine misincorporation in proteins, in increasing yeast EW resistance. Intracellular methionine oxidation can disturb FeS cluster proteins and this study found that EW treatment impairs FeS cluster protein activity. Because active species in EW can be inactivated by organic compounds, microorganisms may be exposed to low effective EW doses during EW treatments where organic matter is present. When low, sub-lethal EW doses were applied to A. niger, early germination events and colony growth post-treatment were delayed and there was increased variation in size among resultant colonies. The delay and increased variation were non-heritable and were observed with chlorine-containing sanitisers (EW, sodium hypochlorite) but not the chlorine-free oxidant ozonated water. The collective findings led to a hypothesis that chloramine formation within spores during EW treatment may contribute to the observed phenotypes. This study increases the understanding of limiting chemical factors for EW applications and sheds light onto the cellular mode-of-action of EW and the fungal response mechanisms to sanitiser treatments. Such insights can improve the rational development of EW application processes and contribute to understanding and prediction of antimicrobial efficacy in diverse settings.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
Article
Fungi produce millions of clonal asexual conidia (spores) that remain dormant until favourable conditions occur. Conidia contain abundant stable messenger RNAs but the mechanisms underlying the production of these transcripts and their composition and functions are unknown. Here, we report that the conidia of three filamentous fungal species (Aspergillus nidulans, Aspergillus fumigatus, Talaromyces marneffei) are transcriptionally active and can synthesize mRNAs. We find that transcription in fully developed conidia is modulated in response to changes in the environment until conidia leave the developmental structure. Environment-specific transcriptional responses can alter conidial content (mRNAs, proteins and secondary metabolites) and change gene expression when dormancy is broken. Conidial transcription affects the fitness and capabilities of fungal cells after germination, including stress and antifungal drug (azole) resistance, mycotoxin and secondary metabolite production and virulence. The transcriptional variation that we characterize in fungal conidia explains how genetically identical conidia mature into phenotypically variable conidia. We find that fungal conidia prepare for the future by synthesizing and storing transcripts according to environmental conditions present before dormancy. Chromatin immunoprecipitation followed by sequencing and RNA sequencing analyses reveal that the transcriptional activity of fungal conidia (spores) before dormancy contributes to conidia maturation and impacts fitness, drug resistance and virulence following germination.
Full-text available
Article
Aspergillus niger is an important filamentous fungus in industrial biotechnology for the production of citric acid and enzymes. In the late 1980s, the A. niger N400/NRRL3 strain was selected for both fundamental and applied studies in relation to several processes including gluconic acid and protein production. To facilitate handling of A. niger, the N400 wild-type strain was UV mutagenized in two consecutive rounds to generate N401 and N402. N402 was used as a reference laboratory strain and exhibits the phenotypes with reduced conidiophore stalk length and reduced radial growth. The conidiophore stalk length and radial growth of A. niger strain N400 were determined and compared to N401 and N402. The length of N400 conidiophore stalks (2.52 ± 0.40 mm) was reduced in N401 and N402 to 0.66 ± 0.14 mm and 0.34 ± 0.06 mm, respectively. Whereas N400 reached a colony diameter of 6.7 ± 0.2 cm after 7 days, N401 and N402 displayed reduced radial growth phenotype (4.3 ± 0.1 and 4.1 ± 0.1, respectively). To identify the mutations (dubbed cspA and cspB) responsible for the phenotypes of N401 and N402, the genomes were sequenced and compared to the N400 genome sequence. A parasexual cross was performed between N400 and N402 derivatives to isolate segregants which allowed cosegregation analysis of single nucleotide polymorphisms and insertions and deletions among the segregants. The shorter conidiophore stalk and reduced radial growth in N401 (cspA) was found to be caused by a 9-kb deletion on chromosome III and was further narrowed down to a truncation of NRRL3_03857 which encodes a kinesin-like protein homologous to the A. nidulans UncA protein. The mutation responsible for the further shortening of conidiophore stalks in N402 (cspB) was found to be caused by a missense mutation on chromosome V in a hitherto unstudied C2H2 transcription factor encoded by the gene NRRL3_06646. The importance of these two genes in relation to conidiophore stalk length and radial growth was confirmed by single and double gene deletion studies. The mutations in the laboratory strain N402 should be taken into consideration when studying phenotypes in the N402 background.
Full-text available
Article
Aligning short-read sequences is the foundational step to most genomic and transcriptomic analyses, but not all tools perform equally, and choosing among the growing body of available tools can be daunting. Here, in order to increase awareness in the research community, we discuss the merits of common algorithms and programs in a way that should be approachable to biologists with limited experience in bioinformatics. We will only in passing consider the effects of data cleanup, a precursor analysis to most alignment tools, and no consideration will be given to downstream processing of the aligned fragments. To compare aligners [Bowtie2, Burrows Wheeler Aligner (BWA), HISAT2, MUMmer4, STAR, and TopHat2], an RNA-seq dataset was used containing data from 48 geographically distinct samples of the grapevine powdery mildew fungus Erysiphe necator. Based on alignment rate and gene coverage, all aligners performed well with the exception of TopHat2, which HISAT2 superseded. BWA perhaps had the best performance in these metrics, except for longer transcripts (>500 bp) for which HISAT2 and STAR performed well. HISAT2 was ~3-fold faster than the next fastest aligner in runtime, which we consider a secondary factor in most alignments. At the end, this direct comparison of commonly used aligners illustrates key considerations when choosing which tool to use for the specific sequencing data and objectives. No single tool meets all needs for every user, and there are many quality aligners available.
Full-text available
Article
Photooxidation of methionine and tryptophan residues are common and major degradation pathways that often pose a serious threat to the success of therapeutic proteins. Oxidation impacts all steps of protein production, manufacturing, and shelf life. Prediction of oxidation liability as early as possible in development is important because many more candidate drugs are discovered than can be tested experimentally. Undetected oxidation liabilities necessitate expensive and time-consuming remediation strategies in development and may lead to good drugs reaching patients slowly. Conversely, sites mischaracterized as oxidation liabilities could result in overengineering and lead to good drugs never reaching patients. To our knowledge, no predictive model for photooxidation of methionine or tryptophan is currently available. We applied the random forest machine learning algorithm to in-house LC-MS/MS datasets (Met, n=421; Trp, n=342) of tryptic therapeutic protein peptides to create computational models for methionine and tryptophan photooxidation. We show that our machine learning models predict methionine and tryptophan photooxidation likelihood with 0.926 and 0.860 AUC, respectively, and Met photoxidation rate with Q²=0.511 and RMSE=10.9%. We further identify important physical, chemical, and formulation parameters that influence photooxidation. Improvement of biopharmaceutical liability predictions will result in better, more stable drugs, increasing development throughput, product quality, and likelihood of clinical success.
Full-text available
Article
Biofilms on food-contact surfaces can lead to recurrent contamination. This work aimed to study the biofilm formation process on stainless steel plates used in the dairy industry: 304 surface finish 2B and electropolished; and the effect of a cleaning and disinfection process using alkaline (AEW) and neutral (NEW) electrolyzed water. Milk fouling during heat processing can lead to type A or B deposits, which were analyzed for composition, surface energy, thickness, and roughness, while the role of raw milk microbiota on biofilm development was investigated. Bacteria, yeasts, and lactic acid bacteria were detected using EUB-338, PF2, and Str-493 probes, respectively, whereas Lis-637 probe detected Listeria sp. The genetic complexity and diversity of biofilms varied according to biofilm maturation day, as evaluated by 16S rRNA gene sequence, denaturing gradient gel electrophoresis, and fluorescence in situ hybridization microscopy. From analysis of the experimental designs, a cleaning stage of 50 mg/L NaOH of AEW at 30 °C for 10 min, followed by disinfection using 50 mg/L total available chlorine of NEW at 20 °C for 5 min is a sustainable alternative process to prevent biofilm formation. Fluorescence microscopy was used to visualize the effectiveness of this process.
Full-text available
Article
Asexuality was considered to be a common feature of a large part of fungi, including those of the genus Aspergillus. However, recent advances and the available genomic and genetic engineering technologies allowed to gather more and more indications of a hidden sexuality in fungi previously considered asexual. In parallel, the acquired knowledge of the most suitable conditions for crossings was shown to be crucial to effectively promote sexual reproduction in the laboratory. These discoveries not only have consequences on our knowledge of the biological processes ongoing in nature, questioning if truly asexual fungal species exist, but they also have important implications on other research areas. For instance, the presence of sexuality in certain fungi can have effects on their pathogenicity or on shaping the ecosystem that they normally colonize. For these reasons, further investigations of the sexual potential of Aspergillus species, such as the industrially important A. niger, will be carried on.
Full-text available
Article
The budding yeast, Saccharomyces cerevisiae, has served as a model for nearly a century to understand the principles of the eukaryotic life cycle. The canonical life cycle of S. cerevisiae comprises a regular alternation between haploid and diploid phases. Haploid gametes generated by sporulation are expected to quickly restore the diploid phase mainly through inbreeding via intratetrad mating or haploselfing, thereby promoting genome homozygotization. However, recent large population genomics data unveiled that heterozygosity and polyploidy are unexpectedly common. This raises the interesting paradox of a haplo‐diplobiontic species being well‐adapted to inbreeding and able to maintain high levels of heterozygosity and polyploidy, thereby suggesting an unanticipated complexity of the yeast life cycle. Here, we propose that unprogrammed mating type switching, heterothallism, reduced spore formation and viability, cell–cell fusion and dioecy could play key and uncharted contributions to generate and maintain heterozygosity through polyploidization. Take away • Heterozygosity and polyploidy are unexpectedly common in S. cerevisiae. • Heterozygosity level positively correlates with ploidy. • Heterozygosity could be generated through polyploidization during the life cycle.
Full-text available
Article
Background Barberry has long been used as an herbal remedy since ancient times which is found throughout temperate and subtropical regions of the world. Given the short harvesting season and limited shelf life of the barberry, we evaluated the possibility of using modified atmosphere packaging and oxygen-scavenger sachets to increase its storage period. For this purpose, the physicochemical characterization (antioxidant activity, anthocyanin, phenolic compounds, and ascorbic acid content, acidity, firmness, color, and decay incident) of fresh barberry samples packaged within different atmospheres was investigated over 4 weeks of storage at 4 and 25 °C. The barberries were packaged with low-density polyethylene/polyester (LDPE/PET) films under natural atmosphere (C), N2 gas (N), vacuum (V), or in the presence of an oxygen scavenger (OS). Results The results revealed that with increased storage period, the O2 and CO2 levels inside the packages decreased and increased, respectively. The antioxidant activity and amounts of anthocyanin, phenolic compounds, and ascorbic acid all decreased with increasing storage period. Among the studied atmospheres, the OS and, subsequently, V packages were most capable of maintaining the quality of fresh barberries, with the decay incidence being approximately 30 times lower inside these packages relative to the control. Increasing the storage temperature accelerated the intensity of chemical changes and decay across all samples. Conclusion The barberries inside the OS packages stored at 4 °C (and even at 25 °C) still had good sensory properties in terms of chemical properties, texture, and color after 4 weeks. Fortunately, it seems that this packaging technology makes the exportation and delayed consumption of the fresh barberry possible by maintaining its quality.
Full-text available
Article
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S pre-initiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidics device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Full-text available
Article
With the spread of drug resistance, new antimicrobials are urgently needed. Here, we set out to tackle this problem by high-throughput exploration for novel antifungal synergies among combinations of approved, nonantifungal drugs; a novel strategy exploiting the potential of alternative targets, low chemicals usage and low development risk. We screened the fungal pathogen Candida albicans by combining a small panel of nonantifungal drugs (all in current use for other clinical applications) with 1280 compounds from an approved drug library. Screens at sublethal concentrations of the antibiotic paromomycin (PM), the antimalarial primaquine (PQ), or the anti-inflammatory drug ibuprofen (IF) revealed a total of 17 potential strong, synergistic interactions with the library compounds. Susceptibility testing with the most promising combinations corroborated marked synergies [fractional inhibitory concentration (FIC) indices ≤0.5] between PM + β-escin, PQ + celecoxib, and IF + pentamidine, reducing the MICs of PM, PQ, and IF in C. albicans by >64-, 16-, and 8-fold, respectively. Paromomycin + β-escin and PQ + celecoxib were effective also against C. albicans biofilms, azole-resistant clinical isolates, and other fungal pathogens. Actions were specific, as no synergistic effect was observed in mammalian cells. Mode of action was investigated for one of the combinations, revealing that PM + β-escin synergistically increase the error-rate of mRNA translation and suggesting a different molecular target to current antifungals. The study unveils the potential of the described combinatorial strategy in enabling acceleration of drug-repurposing discovery for combatting fungal pathogens.
Full-text available
Article
Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation-resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ-irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein-intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties.
Full-text available
Article
In proteins, methionine (Met) can be oxidized into Met sulfoxide (MetO). The ubiquitous methionine sulfoxide reductases (Msr) A and B are thiol-oxidoreductases reducing MetO. Reversible Met oxidation has a wide range of consequences, from protection against oxidative stress to fine-tuned regulation of protein functions. Bacteria distinguish themselves by the production of molybdenum-containing enzymes reducing MetO, such as the periplasmic MsrP which protects proteins during acute oxidative stress. The versatile dimethyl sulfoxide (DMSO) reductases were shown to reduce the free amino acid MetO, but their ability to reduce MetO within proteins was never evaluated. Here, using model oxidized proteins and peptides, enzymatic and mass spectrometry approaches, we showed that the Rhodobacter sphaeroides periplasmic DorA-type DMSO reductase reduces protein bound MetO as efficiently as the free amino acid L-MetO and with catalytic values in the range of those described for the canonical Msrs. The identification of this fourth type of enzyme able to reduce MetO in proteins, conserved across proteobacteria and actinobacteria, suggests that organisms employ enzymatic systems yet undiscovered to regulate protein oxidation states.
Full-text available
Article
Contamination by spores is often the cause of fungal food spoilage. Some distinct strains of the food spoilage fungus Paecilomyces variotii are able to produce airborne conidia that are more heat-resistant than similar species. These ellipsoid asexual spores can vary in size between strains, but also within strains. Here, we compared four measurement techniques to measure conidia size and distribution of five heat-sensitive and five heat-resistant P. variotii strains. Light microscopy (LM), Scanning Electron Microscopy (SEM) and Coulter Counter (CC) were used to measure and compare the spherical equivalent diameter, while CC and flow cytometry were used to study spore size distributions. The flow cytometry data was useful to study spore size distributions, but only relative spore sizes were obtained. There was no statistic difference between the method used of spore size measurement between LM, SEM and CC, but spore size was significantly different between strains with a 2.4-fold volume difference between the extremes. Various size distribution and shape parameters were correlated with conidial heat resistance. We found significant correlations in mean spore size, aspect ratio, roundness and skewness in relation to heat resistance, which suggests that these parameters are indicative for the conidial heat resistance of a P. variotii strain.
Full-text available
Article
Differences in the structure of microbial communities are reported to exist between the inside and outside of soil aggregates, but the impacts of soil aggregation on microbial activity in soils, essential for soil health, have proven difficult to study in a controlled manner. We have developed a new method to manufacture soil macroaggregates in the laboratory with the ability to introduce microorganisms of choice to the endo- or exo-aggregate environments, offering new avenues for experimental research. X-ray Computed Tomography imaging confirmed the manufactured aggregates had similar overall porosity, pore size and pore connectivity to naturally-formed aggregates. We exploited this new approach to test the hypothesis that microorganisms within aggregates are protected from environmental stresses, in comparison to organisms located near aggregate surfaces. Soil isolates of yeasts introduced to the interior or exterior of manufactured soil aggregates showed no significant difference in the survival of metal- or anoxic-stresses, but organisms within aggregates were protected from heat stress in a time-dependent manner. The results indicate that microbial communities may be protected from particular environmental perturbations by the complex porous architecture that arises from the aggregated soil structure, and underscore the value of this new approach for improving our understanding of the interactions between the soil physical environment and the associated soil biology.
Full-text available
Article
Spoilage by yeasts and molds is a major contributor to food and drink waste, which undermines food security. Weak acid preservatives like sorbic acid help to stop spoilage, but some yeasts, commonly associated with spoilage, are resistant to sorbic acid. Different yeasts generate energy for growth by the processes of respiration and/or fermentation. Here, we show that sorbic acid targets the process of respiration, so fermenting yeasts are more resistant. Fermentative yeasts are also those usually found in spoilage incidents. This insight helps to explain the spoilage of sorbic acid-preserved foods by yeasts and can inform new strategies for effective control. This is timely as the sugar content of products like soft drinks is being lowered, which may favor respiration over fermentation in key spoilage yeasts.
Full-text available
Article
Penicillium roqueforti is a major cause of fungal food spoilage. Its conidia are the main dispersal structures of this fungus and therefore the main cause of food contamination. These stress resistant asexual spores can be killed by preservation methods such as heat treatment. Here, the effects of cultivation time and temperature on thermal resistance of P. roqueforti conidia were studied. To this end, cultures were grown for 3, 5, 7 and 10 days at 25 °C or for 7 days at 15, 25 and 30 °C. Conidia of 3- and 10-day-old cultures that had been grown at 25 °C had D56-values of 1.99 ± 0.15 minutes and 5.31 ± 1.04 minutes, respectively. The effect of cultivation temperature was most pronounced between P. roqueforti conidia cultured for 7 days at 15 °C and 30 °C, where D56-values of 1.12 ± 0.05 min and 4.19 ± 0.11 min were found, respectively. Notably, D56-values were not higher when increasing both cultivation time and temperature by growing for 10 days at 30 °C. A correlation was found between heat resistance of conidia and levels of trehalose and arabitol, while this was not found for glycerol, mannitol and erythritol. RNA-sequencing showed that the expression profiles of conidia of 3- to 10-day-old cultures that had been grown at 25 °C were distinct from conidia that had been formed at 15 °C and 30 °C for 7 days. Only 33 genes were upregulated at both prolonged incubation time and increased growth temperature. Their encoded proteins as well as trehalose and arabitol may form the core of heat resistance of P. roqueforti conidia.
Full-text available
Article
The fungus Aspergillus fumigatus can cause invasive lung diseases in immunocompromised patients resulting in high mortality. Treatment using antifungal compounds is often unsuccessful. Average population measurements hide what is happening at the individual cell level. We set out to test what impact individual differences between the cell walls of fungal conidia have on their behavior. We show that a population of cells having the same genetic background gives rise to subpopulations of cells that exhibit distinct behavior (phenotypic heterogeneity). This cell heterogeneity is dependent on the strain type, gene deletions, cell age, and environmental conditions. By looking at the individual cell level, we discovered subpopulations of cells that show differential fitness during antifungal treatment and uptake by immune cells.
Full-text available
Article
Food demand is increasing every year and, usually animal-derived products are generated far from consumer-places. New technologies are being developed to preserve quality characteristics during processing and transportation. One of them is electrolyzed water (EW) that helps to avoid or decrease the development of foodborne pathogens, or losses by related bacteria. Initially, EW was used in ready-to-eat foods such as spinach, lettuce, strawberries, among others; however, its application in other products is under study. Every product has unique characteristics that require an optimized application of EW. Different sanitizers have been developed; unfortunately, they could have undesirable effects like deterioration of quality or alterations in sensory properties. Therefore, EW is gaining popularity in the food industry due to its characteristics: easy application and storage, no corrosion of work surfaces, absence of mucosal membrane irritation in workers handling food, and it is considered environmentally friendly. This review highlights the advantages of using EW in animal products like chicken, pork, beef, eggs and fish to preserve their safety and quality.
Full-text available
Article
Healthy foods with fresh-like appearances are nowadays demanded by consumers. To satisfy these requirements, the research has been focused on unconventional non-thermal technologies; particularly, in this paper, oxidative technologies (ozone, cold plasma, and ionization) are reviewed. The principles underlying their mechanisms of working, generation methods, and antimicrobial activity are revised. Thanks to their ability to explain a very strong oxidative activity, the effect on microbial reduction has been resulted promising, representing a good starting point for the application in the food industry as alternative technologies for sanitization. Thus, an overview of the application of these technologies in the different food categories is done. Particularly, it has resulted that for the application of ionization technology on food, the research is still in the early stages.
Full-text available
Article
Recent multistate outbreaks and recalls of fresh apples due to Listeria monocytogenes contamination have increased consumer concerns regarding fresh and processed apple safety. This study aimed to evaluate the antimicrobial efficacy of two sanitizers, mineral oxychloride (JC9450) and neutral electrolyzed water (NEW), for inactivation of L. monocytogenes on fresh apples. A 2-min treatment of 0.125% (v/v) JC9450 with 100 ppm free available chlorine (FAC) or NEW with 110 ppm FAC caused 0.9–1.2 log10 CFU/apple reduction of L. monocytogenes on both Granny Smith and Fuji apples 24 h post-inoculation. Increasing JC9450 concentration to 0.25 and 0.50% significantly improved its bactericidal effect and reduced L. monocytogenes on Granny Smith apples by ~2.0 and 3.8 log10 CFU/apple, respectively, after a contact time of 2 min. At a shorter contact time of 30 sec, the inactivation efficacy of chlorine and 0.25–0.50% JC9450 against L. monocytogenes on apples was significantly reduced compared with the respective 2-min wash. Furthermore, no L. monocytogenes was recovered in deionized water prepared antimicrobial wash solution or on non-inoculated apples post-NEW with 110 ppm FAC or 0.125–0.5% JC9450 washes, indicating their ability to prevent cross-contamination. In addition, a 2-min exposure to NEW with 110 ppm FAC and 0.50% JC9450 reduced apple native microbiota including total plate count by 0.14 and 0.65 log10 CFU/apple, respectively, and yeast and mold counts by 0.55 and 1.63 log10 CFU/apple, respectively. In summary, L. monocytogenes attached on apples was difficult to eliminate. JC9450 and NEW demonstrated a dose-dependent reduction in L. monocytogenes on apples and successfully prevented cross-contamination, indicating their application potential in post-harvest washes of apples.
Full-text available
Article
Weak acids are widely used as food preservatives, as they are very effective at preventing the growth of most species of bacteria and fungi. However, some species of molds can survive and grow in the concentrations of weak acid employed in food and drink products, thereby causing spoilage with resultant risks for food security and health. Current knowledge of weak-acid resistance mechanisms in these fungi is limited, especially in comparison to that in yeasts. We characterized gene functions in the spoilage mold species Aspergillus niger which are important for survival and growth in the presence of weak-acid preservatives. Such identification of weak-acid resistance mechanisms in spoilage molds will help in the design of new strategies to reduce food spoilage in the future.
Full-text available
Article
There is increasing demand for safe and effective sanitizers for irrigation water disinfection to prevent transmission of foodborne pathogens to fresh produce. Here we compared the efficacy of pH-neutral electrolyzed oxidizing water (EOW), sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) against single and mixed populations of E. coli, Listeria and Salmonella under a range of pH and organic matter content. EOW treatment of the mixed bacterial suspension resulted in a dose-dependent (<1 mg/L free chlorine), rapid (<2 min) and effective (4–6 Log10) reduction of the microbial load in water devoid of organic matter under the range of pH conditions tested (pH, 6.0, 7.0, 8.4 and 9.2). The efficacy of EOW containing 5 mg/L free chlorine was unaffected by increasing organic matter, and compared favourably with equivalent concentrations of NaClO and ClO2. EOW at 20 mg/L free chlorine was more effective than NaClO and ClO2 in reducing bacterial populations in the presence of high (20–100 mg/L) dissolved organic carbon, and no regrowth or metabolic activity was observed for EOW-treated bacteria at this concentration upon reculturing in rich media. Thus, EOW is as effective or more effective than other common chlorine-based sanitizers for pathogen reduction in contaminated water. EOW’s other characteristics, such as neutral pH and ease of handling, indicate its suitability for fresh produce sanitation.
Full-text available
Article
Fungal keratitis caused by the species of Aspergillus is a common and leading problem in developing countries like India. In this study, a total of 135 isolates from Aspergillus keratitis were studied by sequence analyses of the internal transcribed spacer (ITS) region performed by nucleotide-nucleotide BLAST analysis followed by the initial identification of the isolates based on conidial and colony morphology. The sequence analysis revealed several unusual species which were never reported in eye infections such as A. tamrii, A. tubingensis, A. braslliensis, A. nomius, A. pseudonomius, A. sydowii, Eurotium amstelodami. The sequence analysis of the ITS region; the β-tubulin and calmodulin genes brought out the genetic diversity among the isolates as the study intended to locate a more sensitive target sequence to study genetic diversity among a set of test fungal isolates. The PCR amplified sequences of the test isolates of the study as well as sequences belonging to section Flavi obtained from Genbank database were compared and analyzed along with three standard isolates by phylogenetic tree (Neighbor-joining) as to find out a target region/gene that could produce a better resolution to differentiate the isolates. Accordingly, the calmodulin gene had provided better resolution compared to ITS and β-tubulin to study the diversity among the test Aspergillus species isolated from fungal corneal ulcer.
Full-text available
Article
Saprobic fungi, such as Aspergillus niger, grow as colonies consisting of a network of branching and fusing hyphae that are often considered to be relatively uniform entities in which nutrients can freely move through the hyphae. In nature, different parts of a colony are often exposed to different nutrients. We have investigated, using a multi‐omics approach, adaptation of A. niger colonies to spatially separated and compositionally different plant biomass substrates. This demonstrated a high level of intra‐colony differentiation, which closely matched the locally available substrate. The part of the colony exposed to pectin‐rich sugar beet pulp and to xylan‐rich wheat bran showed high pectinolytic and high xylanolytic transcript and protein levels, respectively. This study therefore exemplifies the high ability of fungal colonies to differentiate and adapt to local conditions, ensuring efficient use of the available nutrients, rather than maintaining a uniform physiology throughout the colony. This article is protected by copyright. All rights reserved.
Full-text available
Article
Cells employ a vast network of regulatory pathways to manage intracellular levels of reactive oxygen species (ROS). An effectual means used by cells to control these regulatory systems is sulfur-based redox switches, which consist of protein cysteine or methionine residues that become transiently oxidized when intracellular ROS levels increase. Here, we describe a methionine-based oxidation event involving the yeast cytoplasmic Hsp70 co-chaperone Fes1. We show that Fes1 undergoes reversible methionine oxidation during excessively oxidizing cellular conditions, and we map the site of this oxidation to a cluster of three methionine residues in the Fes1 core domain. Making use of recombinant proteins and a variety of in vitro assays, we establish that oxidation inhibits Fes1 activity and, correspondingly, alters Hsp70 activity. Moreover, we demonstrate in vitro and in cells that Fes1 oxidation is reversible and is regulated by the cytoplasmic methionine sulfoxide reductase Mxr1 (MsrA) and a previously unidentified cytoplasmic pool of the reductase Mxr2 (MsrB). We speculate that inactivation of Fes1 activity during excessively oxidizing conditions may help maintain protein-folding homeostasis in a suboptimal cellular folding environment. The characterization of Fes1 oxidation during cellular stress provides a new perspective as to how the activities of the cytoplasmic Hsp70 chaperones may be attuned by fluctuations in cellular ROS levels and provides further insight into how cells use methionine-based redox switches to sense and respond to oxidative stress.
Full-text available
Article
The oxidation of methionine is an important posttranslational modification of proteins with numerous roles in physiology and pathology. However, the quantitative analysis of methionine oxidation on a proteome-wide scale has been hampered by technical limitations. Methionine is readily oxidized in vitro during sample preparation and analysis. In addition, there is a lack of enrichment protocols for peptides that contain an oxidized methionine residue; making the accurate quantification of methionine oxidation difficult to achieve on a global scale. Herein, we report a methodology to circumvent these issues by isotopically labeling unoxidized methionines with 18O labeled hydrogen peroxide and quantifying the relative ratios of 18O and 16O oxidized methionines. We validate our methodology using artificially oxidized proteomes made to mimic varying degrees of methionine oxidation. Using this method, we identify and quantify a number of novel sites of in vivo methionine oxidation in an unstressed human cell line.
Full-text available
Article
Hyphae at the outer part of colonies of Aspergillus niger and Aspergillus oryzae are heterogeneous with respect to transcriptional and translational activity. This heterogeneity is maintained by Woronin body mediated closure of septal pores that block inter‐hyphal mixing of cytoplasm. Indeed, heterogeneity between hyphae is abolished in ΔhexA strains that lack Woronin bodies. The sub‐population of hyphae with high transcriptional and translational activity secretes enzymes that degrade the substrate resulting in breakdown products that serve as nutrients. The role of hyphae with low transcriptional and translational activity was not yet known. Here we show that this subpopulation is more resistant to environmental stress in A. oryzae, in particular to temperature stress, when compared to hyphae with high transcriptional and translational activity. In contrast, all hyphae of the ΔhexA strain of A. oryzae were sensitive to heat stress explained by the reduced heterogeneity in this strain. Together, we show that different subpopulations of hypha secrete proteins and resist heat stress showing the complexity of a fungal mycelium. This article is protected by copyright. All rights reserved.
Article
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Article
The most adverse outcome of increasing industrialization is contamination of the ecosystem with heavy metals. Toxic heavy metals possess a deleterious effect on all forms of biota; however, they affect the microbial system directly. These heavy metals form complexes with the microbial system by forming covalent and ionic bonds and affecting them at the cellular level and biochemical and molecular levels, ultimately leading to mutation affecting the microbial population. Microbes, in turn, have developed efficient resistance mechanisms to cope with metal toxicity. This review focuses on the vital tolerance mechanisms employed by the fungus to resist the toxicity caused by heavy metals. The tolerance mechanisms have been basically categorized into biosorption, bioaccumulation, biotransformation, and efflux of metal ions. The mechanisms of tolerance to some toxic metals as copper, arsenic, zinc, cadmium, and nickel have been discussed. The article summarizes and provides a detailed illustration of the tolerance means with specific examples in each case. Exposure of metals to fungal cells leads to a response that may lead to the formation of metal nanoparticles to overcome the toxicity by immobilization in less toxic forms. Therefore, fungal-mediated green synthesis of metal nanoparticles, their mechanism of synthesis, and applications have also been discussed. An understanding of how fungus resists metal toxicity can provide insights into the development of adaption techniques and methodologies for detoxification and removal of metals from the environment.
Article
The effects of breakpoint chlorination on formation and decay of inorganic chloramines and disinfection by-products (DBPs) in chlorinated brine solutions is investigated. A correlation was established between the decay and speciation of chloramines with the environmental factors such as pH, temperature, chlorine to ammonia ratio and natural organic matter dosage. Results showed that acidic pH and high chlorine to ammonia ratio favored the formation of trichloramine (NCl3), however neutral and high pH favored the formation of monochloramine (NH2Cl) and dichloramine (NHCl2) species. Further, the presence of natural organic matter (NOM) and higher pH enhanced the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in the chlorinated brine solution. Further, kinetics simulations were performed to study the chloramine formation and decay kinetics as a function of temperature using web-based application designed by US Environmental protection Agency (EPA). Based on comparisons between simulated and experimental datasets, a close similarity was observed between chloramine chemistry synthetic chlorine system and chlorinated brine solution. Moreover, the mechanism of chloramine formation and decay has been proposed based on the model simulations and N2, ammonia and NO3− being identified as the main products.
Article
Ochratoxin A (OTA) occurrence in grapes is caused by black Aspergilli (Aspergillus carbonarius followed by A. niger) vineyards contamination. It depends on climatic conditions, geographical regions, damage by insects, and grape varieties. Good agricultural practices, pesticides, and fungicides seem adequate to manage the problem during low OTA risk vintages, but the development of new strategies is always encouraged, especially when an extremely favourable condition occurs in the vineyard. Electrolysed oxidising water (EOW) has become an interesting alternative to chemicals in agriculture, mainly during the post-harvest phase. This study tested the fungicidal efficacy of EOW generated by potassium chloride, in vitro, on black Aspergilli conidia, and detached grape berries infected by A. carbonarius. Then, during field trials on Primitivo cv vineyard treated with EOW, A. carbonarius contamination, and OTA levels were compared with Switch® fungicide treatment (0.8 g/l). Black Aspergilli conidia were killed on plate assay after 2 min of treatment by EOW containing >0.4 g/l of active chlorine. EOW (0.6 g/l active chlorine) treatment reduced the rate of A. carbonarius infections in vitro of about 87–92% on detached berries and, more than half in the field trials, although Switch® showed better performance. A significant reduction in the OTA concentration was observed for the EOW and Switch® treatments in vitro (92% and 96%, respectively), while in the field trials, although the average decrease in OTA was recorded in the treated grapes, it was not statistically significant. These results highlighted that EOW could be considered effective, as a substitute for fungicides, to reduce the contamination of A. carbonarius and OTA on grapes.
Article
The aim of this study was to isolate Aspergillus section Nigri from onion samples bought in supermarkets and to analyze the fungal isolates by means of molecular data in order to differentiate A. niger and A. welwitschiae species from the other non-toxigenic species of black aspergilli, and detect genes involved in the biosynthesis of ochratoxin A and fumonisin B2. Aspergillus section Nigri were found in 98% (94/96) of the onion samples. Based on the results of multiplex PCR (performed on 500 randomly selected strains), 97.4% of the Aspergillus section Nigri strains were recognized as A. niger/A. welwitschiae. Around half of them were subjected to partial sequencing of the CaM gene to distinguish one from the other. A total of 97.9% of the isolates were identified as A. welwitschiae and only 2.1% as A. niger. The fum8 gene, involved in fumonisin B2 biosynthesis, was found in 36% of A. welwitschiae isolates, but radH and pks genes, involved in ochratoxin A biosynthesis, were found in only 2.8%. The presence/absence of fum8 gene in the A. welwitschiae genome is closely associated with ability/inability of the isolates to produce fumonisin in vitro. Based on these results, we suggest that in-depth studies are conducted to investigate the presence of fumonisins in onion bulbs.
Article
Paired electrolysis can take advantage of both anodic oxidation and cathodic reduction, and thus improve current efficiency for electrochemical wastewater treatment. In this work, differential control of anode/cathode potentials of paired electrolysis for simultaneous removal of chemical oxygen demand (COD) and total nitrogen (TN, including ammonia, nitrate, and nitrite) was studied. We first determined the optimal potentials for anodic oxidation of COD/NH4⁺ or cathodic reduction of NO3⁻/NO2⁻ (minimization of over-oxidation or over-reduction) by preliminary cyclic voltammetry and constant-potential electrolysis experiments, i.e., 1.6 V for anodic oxidation and −1.26 V for cathodic reduction in this case. The optimal working potential of the cathode was achieved at appropriate current density in the paired electrolysis system, the working potential of the anode was independently controlled by adjusting the ratio of its surface area to that of the cathode. In this way, both the cathode and anode could work under optimal potentials. At an optimized cathodic current density of 5.0 mA cm⁻² and cathode/anode surface area ratio of 2:1, the removal efficiencies of COD and TN from simulated wastewater reached 91.9% and 86.2%, respectively. Additionally, the developed paired electrolysis system was validated by treating an actual pharmaceutical wastewater, results for which showed that a total current efficiency of 84.8% was achieved, which was at least twice as high as that of traditional electrochemical processes.
Article
Recently the use of electrolyzed water (EW) attracted much attention as a high-performance, new technology for its potential use in the food industry. The aim of this work was to investigate the impact of grape EW treatments, applied at different time intervals prior to harvest, on the indigenous yeast populations of grape surface (Chenin blanc and Cabernet franc) and the occurrence of 2,4,6-trichloroanisole (TCA) in Cabernet franc wine. In addition, the evolution of inoculated and spontaneous fermentations on treated and non-treated grapes was also considered. The yeast population present on grape berries surface was influenced in a grape variety and EW treatment time-dependent way, since only Chenin blanc grapes treated with EW 7 days prior to harvest had significantly lower yeast population levels, compared to the respective control. Concerning the yeast diversity in the grape samples, a dominance of Aureobasidium pullulans was observed in treated grapes, independently of the grape variety. At the end of alcoholic fermentation, 2,4,6- trichloroanisole was detected in wine when the EW solution was applied at one or two weeks before harvest time. After wine storage, 2,4,6- trichloroanisole and chlorophenols contents generally exhibited a loss relative to initial values. The results showed that EW treatments tended to slightly increase the TCA concentration in final wine and did not affect the fermentation performances and chromatic properties of resulting wine. On the other hand, absorption or desorption phenomena by wine lees could be involved in the change of 2,4,6-trichloroanisole concentration in wine during storage time.
Article
Pre-harvest sanitation of irrigation water has potential for reducing pathogen contamination of fresh produce. We compared the sanitizing effects of irrigation water containing neutral electrolyzed oxidizing water (EOW) or sodium hypochlorite (NaClO) on pre-harvest lettuce and baby spinach leaves artificially contaminated with a mixture of Escherichia coli, Salmonella Enteritidis and Listeria innocua (∼1 × 10⁸ colony-forming units/mL each resuspended in water containing 100 mg/L dissolved organic carbon, simulating a splash-back scenario from contaminated soil/manure). The microbial load and leaf quality were assessed over 7 days, and post-harvest shelf life evaluated for 10 days. Irrigation with water containing EOW or NaClO at 50 mg/L free chlorine significantly reduced the inoculated bacterial load by ≥ 1.5 log10, whereas tap water irrigation reduced the inoculated bacterial load by an average of 0.5 log10, when compared with untreated leaves. There were no visual effects of EOW or tap water irrigation on baby spinach or lettuce leaf surfaces pre- or post-harvest, whereas there were obvious negative effects of NaClO irrigation on leaf appearance for both plants, including severe necrotic zones and yellowing/browning of leaves. Therefore, EOW could serve as a viable alternative to chemical-based sanitizers for pre-harvest disinfection of minimally processed vegetables.
Article
We developed a portable flow-through, electrochemical sanitizing unit to produce near neutral pH electrolyzed water (producing NEW). Two methods of redirecting cathode yields back to the anode chamber and redirecting anode yields the cathode chamber were used. The NEW yields were evaluated, including: free available chlorine (FAC), oxidation-reduction potential (ORP), and pH. The performances of 2 electrodes (RuO2 -IrO2 /TiO2 and IrO2 -Ta2 O5 /TiO2 ) were investigated. The unit produced NEW at pH 6.46 to 7.17, an ORP of 805.5 to 895.8 mV, and FAC of 3.7 to 82.0 mg/L. The NEW produced by redirecting cathode yields had stronger bactericidal effects than the NEW produced by redirecting anode yields or NEW produced by mixing the commercial unit's anode and cathode product (P < 0.05). Electron spin resonance results showed hydroxyl free radicals and superoxide anion free radicals were present in the NEW produced by developed unit. The NEW generator is a promising sanitizing unit for consumers and the food industry to control foodborne pathogens. Practical application: Current commercial NEW-producing units are quite large and are not convenient for family using. The developed portable flow-through, NEW-producing unit has great potential in a wide range of applications, such as organic farm, households, and small food industries. The examined sanitizing treatments showed effective control of Escherichia coli O157:H7 and Listeria monocytogenes.
Article
Alcohol-based disinfectant shortage is a serious concern in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Acidic electrolyzed water (EW) with a high concentration of free available chlorine (FAC) shows strong antimicrobial activity against bacteria, fungi, and viruses. Here, we assessed the SARS-CoV-2-inactivating efficacy of acidic EW for use as an alternative disinfectant. The quick virucidal effect of acidic EW depended on the concentrations of contained-FAC. The effect completely disappeared in acidic EW in which FAC was lost owing to long-time storage after generation. In addition, the virucidal activity increased proportionately with the volume of acidic EW mixed with the virus solution when the FAC concentration in EW was same. These findings suggest that the virucidal activity of acidic EW against SARS-CoV-2 depends on the amount of FAC contacting the virus.
Article
The presence of mycotoxin-producing fungi in food production environments is a cause of concern since they can contaminate food products, synthesizing toxic compounds in later steps. To avoid this, an effective hygiene and sanitation process of the environment and equipment should be adopted, using sanitizing agents with adequate antifungal efficacy. This work evaluated the effectiveness of different chemical sanitizers: benzalkonium chloride (0.3%, 1.2%, 2 %), biguanide (2%, 3.5%, 5%), iodine (0.2%, 0.6%, 1%), peracetic acid (0.3%, 0.6%, 1%), sodium hypochlorite (0.5%, 0.75%, 1%), besides a new non-polluting technology, the electrolyzed water, both the acid in the chlorine concentrations of 60, 85 and 121 ppm and the respective basic electrolyzed water formed against strains of toxigenic Aspergillus flavus, Aspergillus nomius, Aspergillus parasiticus, Aspergillus carbonarius, Aspergillus niger, Aspergillus ochraceus and Aspergillus westerdijkiae through the methodology recommended by the European Committee for Standardization. Benzalkonium chloride and iodine were the most effective sanitizers to eliminate Aspergillus from the Flavi and Nigri section. Peracetic acid showed the best elimination of the growth of Aspergillus from Circumdati section. Sodium hypochlorite, biguanide, and electrolyzed water agents were the least effective, reducing less than 3 logs from initial control, not being the most suitable agents for the control of toxigenic fungi in food industries.
Article
The use of reclaimed water for irrigation after disinfection can provide significant environmental, social and economic benefits and solve the problem of water scarcity. The occurrence of disinfection by-products (DBPs) as pollutants in irrigation water has been highlighted as a health risk of emerging concern since they can be uptaken by the plant and accumulated in the edible parts during crop production. Little attention has been paid to the occurrence of chlorate in reclaimed water when using chlorine as a tertiary disinfection treatment. This study aimed at evaluating if chlorine-treated reclaimed water from a Municipal Wastewater Treatment Plant resulted in the accumulation of chlorate in commercially grown romaine lettuce. The risk of accumulation in the edible parts of the head was also examined by comparing the internal, middle, and external leaves as well as the roots. The results showed that the irrigation with chlorinated reclaimed water resulted in the accumulation of chlorate in fresh lettuce (0.34–0.56 mg kg⁻¹), despite that the chlorate content in irrigation water was below the maximum residual level (MRL) allowed for potable water (0.25–0.49 vs. 0.70 mg L⁻¹, respectively). The chlorate content gradually increased from the inner leaves (younger) (0.21 mg kg⁻¹) to the outer leaves (oldest) (0.55 mg kg⁻¹), and the roots (0.56 mg kg⁻¹). This study shows that there was chlorate bioconcentration observed in fresh lettuce heads, although it did not exceed the current maximum residue levels for chlorate on leafy greens (0.7 mg kg⁻¹) established in the amended Regulation (EC) No 396/2005 (SANTE/10684/2015 Rev. 9) recently adopted. However, the use of chlorate-free disinfectants as antimicrobial agents for the irrigation of edible crops with a low level antimicrobial residual to protect water in distribution systems is recommended to reduce the chlorate intake by consumers.
Article
The growth of a yeast mixture, Candida sake, Hanseniaspora uvarum, Pichia fermentans, Metschnikowia pulcherrima, on fresh-cut apple (Royal gala), at 4 °C, was studied, as well as the reduction of yeasts using Ultraviolet-C (UV-C), acidic (AEW) and neutral (NEW) electrolyzed waters, and sodium hypochlorite (SH). Apple portions were contaminated then disinfected with UV-C (2.5-10kJ/m²), AEW, NEW and SH (100ppm). During 9 days at 4 °C, yeasts growth rate was 0.34 day⁻¹ and the stationary phase occurred after 6 days (7.42 LogCFU/g). The initial microbial reduction and the half-life time values, using the inverse hyperbola model, ranged from 1.72 to 1.81 LogCFU/g and 6.52 to 11.70 day (UV-C), or 0.91 to 1.96 LogCFU/g and 0.68 to 4.38 day (chemical treatments), where SH was the least efficient (0.92 LogCFU/g and 2.96 day). The most effective treatment was UV-C (7.5 and 10kJ/m²). The yeasts psychrotrophic profile highlights the importance of avoiding contamination/cross-contaminations in all processing.
Article
The objective of this work was to assess the efficacy of sodium hypochlorite and peracetic acid for sanitization of Brazil nuts. To evaluate the natural microbiota of the nuts, the total bacteria and fungi as well as the Aspergillus section Flavi were counted. The moisture, water activity and the presence of aflatoxins was quantified. The response surface method was used to determine the influence of exposure time and sanitizers concentration on the reduction of Aspergillus nomius inoculated on the nuts. Microbiological, sensory and quantification analyzes of aflatoxins were performed under optimum conditions The evaluation of the initial contamination of the nuts, despite presenting high microbiological contamination, humidity and water activity, was not detected aflatoxins in any samples. In artificially inoculated samples, the response surface and the desirability function were obtained to determine the optimal point of use for each sanitizer. The nuts had high microbiological contamination, moisture content and water activity. Aflatoxins were not detected in any samples. The response surface and desirability function indicated the optimal sanitization conditions were 250 mg/L and 8.5 min and 140 mg/L and 15 min for sodium hypochlorite and peracetic acid, respectively. Reductions greater than 2 log CFU/g were obtained with sodium hypochlorite and of 1 log CFU/g for peracetic acid. In the tests performed with new Brazil nuts samples under the optimized conditions, reductions of less than 2 log CFU/g were obtained. Aflatoxin B1 was detected in one untreated sample (1.51 μg/kg), one sample treated with sodium hypochlorite (0.60 μg/kg) and two samples treated with peracetic acid (0.64 and 0.72 μg/kg). Demonstrating that the sanitizers in the concentrations used had no action on aflatoxins, despite being efficient for fungal control. The treatments did not cause an unacceptable sensorial impact on the samples.
Article
Food contamination with heat‐resistant fungi (HRF), and their spores, is a major issue among fruit processors, being frequently found in fruit juices and concentrates, among other products, leading to considerable economic losses and food safety issues. Several strategies were developed to minimize the contamination with HRF, with improvements from harvesting to the final product, including sanitizers and new processing techniques. Considering consumers’ demands for minimally processed, fresh‐like food products, nonthermal food‐processing technologies, such as high‐pressure processing (HPP), among others, are emerging as alternatives to the conventional thermal processing techniques. As no heat is applied to foods, vitamins, proteins, aromas, and taste are better kept when compared to thermal processes. Nevertheless, HPP is only able to destroy pathogenic and spoilage vegetative microorganisms to levels of pertinence for food safety, while bacterial spores remain. Regarding HRF spores (both ascospores and conidiospores), these seem to be more pressure‐sensible than bacterial spores, despite a few cases, such as the ascospores of Byssochlamys spp., Neosartorya spp., and Talaromyces spp. that are resistant to high pressures and high temperatures, requiring the combination of both variables to be inactivated. This review aims to cover the literature available concerning the effects of HPP at room‐like temperatures, and its combination with high temperatures, and high‐pressure cycling, to inactivate fungi spores, including the main factors affecting spores’ resistance to high‐pressure, such as pH, water activity, nutritional composition of the food matrix and ascospore age, as well as the changes in the spore ultrastructure, and the parameters to consider regarding their inactivation by HPP.
Article
Neutral Electrolyzed Water (NEW) was tested in vitro and on artificially contaminated eggs against Salmonella enterica subsp. enterica or Escherichia coli. The antibacterial effect was measured 30 s after treatment. NEW microbicide activity results were compared against 2% citric acid and 0.9% saline solutions. NEW caused an in vitro decrease in Salmonella titers by ˃5.56 Log10 CFU mL-1 and in artificially contaminated eggs by ˃1.45 Log10 CFU/egg. When it was tested against E. coli, it decreased in vitro bacterial titers by ˃3.28 Log10 CFU mL-1 and on artificially contaminated eggs by ˃6.39 Log10 CFU/egg. The 2% citric acid solution caused an in vitro decrease of 0.4 Log10 CFU mL-1 of Salmonella and E. coli and on eggs artificially contaminated with E. coli or Salmonella there was a decrease of 0.06 and 0.62 Log10 CFU/egg respectively. We evaluated egg cuticle integrity by scanning electron microscopy after treatments with evaluated solutions; the 2% citric acid solution caused damage to the cuticle and exposed eggshell pores and no interaction of NEW or NaCl with the cuticle was observed. NEW treatment showed a fast-bactericidal effect in vitro and table eggs.
Article
Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone–mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein–mediated maturation of mitochondrial Fe/S proteins and the importance for human disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 89 is June 22, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
The access to methionine sulfoxide [Met(O)]-containing proteins is particularly valuable for studying this important type of post-translational modification (PTM). However, the lack of selective in vitro-oxidation methods makes it difficult to obtain homogeneous proteins with accurate and controllable incorporation of Met(O), particularly the ones with multiple methionines. Here we report a chemical approach to synthesize methionine-oxidized human chemokine CXCL14 in a site-selective manner. The in vitro chemotaxis activities of synthetic proteins have also been evaluated.
Article
Ozonated and electrolyzed water have been reported to have bactericidal activities against most pathogenic and spoilage microorganisms associated with fresh meat and contact surfaces in meat processing facilities at room temperature. However, antimicrobial effects of these two treatments combined are not known. Therefore, the objective of this study was to evaluate the effectiveness of ozonated and electrolyzed water in combination for inactivating Escherichia coli K12 on goat meat. The combination of ozonated water and alkaline electrolyzed water resulted in higher log reductions (1.03 CFU/ml) compared to ozonated water alone (0.53 CFU/ml). Regression analysis performed using the GInaFiT tool showed that nonlinear Weibull models were more effective than log‐linear models for describing the inactivation kinetics of E. coli K12 on goat meat.
Article
Concentrated leachate (CL) is commonly featured with high salt and dissolved organic matters (DOM). In this study, molecular transformation of DOM was revealed to identify the reactive mechanisms with (non-) radical reactive species in ozonation, electrolysis and E+-ozonation processes. Chlorine ions were efficiently activated into non-radical reactive chlorine species (RCS) with 245.7 mg/L, which was more dominant in electrolysis. Compared to ozonation, C•OH was increased from 2.6 × 10-4 mg/L into 5.8 × 10-4 mg/L and the generation of Cl•/ClO• could be concluded according to the decline of non-radical RCS in E+-ozonation process. For chromophoric and fluorescent DOM, aromatic compounds and polymerization degree dramatically decreased in E+-ozonation. Lipid-like and CRAM/lignin-like compounds were substantially degraded, as •OH and ClO•/Cl• shows an affinity towards oxygen-containing organic compounds via single electron transfer by attracting OH bonds. Especially, carbon/hydrogen/oxygen (CHO-containing) compounds were readily to be degraded with the removal efficiency of 92.5 %, 97.0 % and 98.4 % in electrolysis, ozonation and E+-ozonation, respectively. Moreover, nitrogen atoms have a negative effect on DOM degradation, and thus, carbon/hydrogen/nitrogen and carbon/hydrogen/nitrogen/sulfur (CHN- and CHNS-containing) compounds were considered as refractory compounds. This paper is expected to shed light on the synergetic effect in E+-ozonation and transformation of refractory DOM in CL treatment.