Content uploaded by Alex Protasov
Author content
All content in this area was uploaded by Alex Protasov on Jul 31, 2022
Content may be subject to copyright.
71
תתומתב הפילק תוישופיח לש תוברועמה
לארשיב עוטנה רעיב ןרוא יצע
4 לדנמ יבצ | 4 בוסטורפ סכלא | 1 ןורלא רואמ | 3 ,2 סאיטא םתר | 1 ןלוג רמוע
* 2 ץרוש-דוד תפקר
" , 1
– , 2
, , , 3
– , 4
rakefetd@agri.gov.il *
ריצקת
, ,
Scolytinae
.
Orthotomicus
.Tomicus destruens
-
Pityogenes calcaratus
,erosus
,
.
,
,
.
.
,
.
.
O. erosus
- .
,
.
,
.
T. destruens
-
P. calcaratus
,
O. erosus
,
,
, .
P. calcarartu
s
. , ,
T. destruens
-
,
,
,
,
.
חתפמ תולימ
תדוכלמ יצע ,םילשורי ןרוא ,היטורב ןרוא
2022 ילוי | 22 ןויליג | רעי
72
Coleoptera: -
Curculionidae, Scolytinae
.
,
Lieutier et al., 2016
1,000 .
,
.
Orthotomicus erosus, Pityogenes
,
Tomicus destruens
-
calcaratus
15- .
-
Halperin ,
Dendroctonus
.and Holzschuh, 1984
,Lieutier et al., 2016; Seybold et al., 2016
,
Mendel et al.,
,1992
.
O. erosus
.Balachowsky, 1949
2004- Geertsema, 1979 1968-
.Seybold et al., 2016
.
,
Pinus halepensis
:
P. brutia
ssp.
brutia
." 3.5–2.5- .
P. pinaster
O. erosus
, ,
,
Carle, 1975; Mendel et al., 1985;
.Özkazanç et al., 1985; Ghaioule et al., 1998
36°C
O. erosus
.Mendel and Halperin, 1982
,
,
.1
,
.(Carle, 1975; Seybold et al., 2016)
,
O. erosus
,
Mendel et al., ,
.1985; Mendel et al., 2016
,
P. calcaratus
O. erosus
-
,
.Mazur et al., 2020
,
, ,
.
P. canariensis
P. pinea
." 2.6–2.0
,
6–4 ,
P. calcaratus
.
," 3.5–1.0
.1
, ,
.Mendel et al., 2016
,
T. destruens
.Faccoli, 2007 ,
,
.
.Lieutier et al., 2016
,
Branco et al., 2010; Lieutier
, , .et al., 2016
–
.Halperin, 1978
, , ,
.
T. destruens
,
, .
.
." 4.8–4.0
,Hylesinini
T. destruens
,
, .
73
O. erosus
Ipini
, .
P. calcaratus
-
T. destruens
,
.Davi et al., 2020
P. calcaratus
-
O. erosus
,
T. destruens
.Lieutier et al., 2016
T. destruens
;
,
.1
,
O. erosus
,
P. calcaratus
, .
,
O. erosus ,P. calcaratus
T.
O. erosus
.
destruens
P. calcaratus
.
.
,
,Leptographium
-
Ophiostoma
Kirisits, 2004; Dori-Bachash
.et al., 2015
.
1
;
Orthotomicus erosus
. .Mendel et al., 1985; Mendel, 2000
.1985
Mendel , .
Tomicus destruens
. ;
Pityogenes calcaratus
.
2022 ילוי | 22 ןויליג | רעי
74
, .
.
.
P. calcaratus
,
O. erosus
-
,
, .
P.
-
O. erosus
,
,
T. destruens
calcaratus
.
Lieutier et
.al., 2016
"
,Raa et al., 1993 "
,
.
.Gaylord et al., 2010
,
.
, ,
.
, .Lieutier et al., 2016
30–10
T. destruens
,
P. calcaratus
-
O. erosus
,
, .2 Mendel et al., 1985
Matsucoccus
"
josephi
.Mendel, 2000
P. calcaratus
"
.
,17-
2
2017
:
75
,
Ips typographus
. Gmelin, 1787
Klutsch et al.,
20- .2017
, .
Smith et al., 1986, El-Sayed et al., 2006; Borden et
.al., 2008; Seybold et al., 2018
,
.
.
.
; .
.
. ,
P. calcaratus
-
O. erosus
.
.
.
,
200–100
. 70- 50 .
. ,
, 10–4
,
3
.
, 140–90
.
:
8 .
Talstar®
Bifenthrin 7.9%, Luxembourg Industries, Tel 2%
Ipsowit ® .Aviv
,Standard, Witasek Co, Austria
,
P.
-
O. erosus
.(Mendel, 1988)
calcaratus
3
2022 ילוי | 22 ןויליג | רעי
76
. 2.5
5 ,2018
.2018
6
, , 120
.
- 2018
.
.
. 15%-
.
50 ,
.4
Synergy
.Semiochemicals LTD, British Columbia, Canada
12- 12
Ipsowit ® .2018
Standard, Witasek Co, Austria
. ,
P. calcaratus
-
O. erosus
.
.'' '' ,
.2022 ,'
27 , 22
.
,
1,000–800 ,
1.3 ; "
. 7.5 4.5 ,
.
.
.2022 ,'
JMP 14
.SAS Institute, Inc., Cary, North Carolina
-
.
one-tailed
. Student's t-test
,
.2.9%
:
4
,
, 2017–2016
2018
. 50
,
.
77
; /
50
,
.
.
P
.5 = 0.026
50
.5
.
P
=
0.0155
P
<0.0001
O. erosus
,
P. calcaratus
.6
,
T. destruens
-
P. calcaratus
O. erosus
.1
5
2018 –
.
50 . .
P = 0.3389
**-
P = 0.0319
*-
.****
P = 0.0155
-
P <0.0001
***- .
.
6
P. calcaratus
-
O. erosus
2018
Ipsowit ®
Standard, Witasek Co
.
.
2022 ילוי | 22 ןויליג | רעי
78
,
P. calcaratus
.2017
, 2014
P. calcaratus
, 2015
. , ,
,
P. calcaratus
2016
,
T. destruens
2018 .
,
P. calcaratus
.1
.
,
.
, .
.
,
, .
,
.
, ,
. ,
P. calcaratusT. destruensP. calcaratusT. destruens
2018
7.5 ± 1.3 40150
05.3 ± 1.3 4015 1
07.3 ± 0.7 4014 1
2017
10.7 ± 1.9 34 118 ± 3.1 40
21 15 ± 0.7 217.3 ± 2.9 40
07.5 ± 0.4 210 ± 0 106 1
2016
10 ± 1.2 8018.9 ± 2.6 80
14.3 ± 3.1 6013.0 ± 1.3 810 1
20 ± 2.8 26.2 ± 0.4 419.0 ± 5.0 24.5 ± 0.6 3
2015
0018.3 ± 3.3 40
0013.3 ± 1.8 60
0013.0 ± 2.4 40
2014
11.3 ± 1.1 4020.8 ± 1.9 40
9.5 ± 0.3 3010.3 ± 0.1 30
007.0 ± 5.60
1
T. destruens
-
P. calcaratus
1.3- ,4.5 ,7.5 , , ." 100-
± . ,
.
79
,
.
.3
O. erosus
,4
Mendel et al., 1985; Mendel
O. erosus
- , .et al., 1992; Lieutier et al., 2016
.
,
. ,
,
,
T. destruens
-
P. calcaratus
, ,
O. erosus
.
Mendel et al., 1985;
O. erosus
,Ghaioule et al., 1998; Faccoli et al., 2005
P. calcaratus
T.
- .4
destruens
,
.–
T. destruens
-
P. calcaratus
2015- 2014 .
.1
P. calcaratus
P. calcaratus
.2022 ,'
,
,
.
P. calcaratus
O. erosus
.
.
,2016
T. destruens
.
, ,
, .
O. erosus
.
,
P.
–
. –
T. destruens
-
calcaratus
50%- ,
,
.Hochman et al., 2018 56%-
,
.
.Lieutier et al., 2016
, ;
Zhou et al.,
Dendroctonus
,
.2019
P.
"
ponderosa
D.
.2015–2012
,2015
brevicomis
.Fettig et al., 2019
D. ponderosae
P. contorta
(lodgepole pine)
.Meddens et al., 2012
,
Bentz et al.,
.2010
.
.
.
P. calcaratus
-
O. erosus
,
,
.
.
, .
,
2022 ילוי | 22 ןויליג | רעי
80
,
.
,
,
,
.
,
,
.2022 ,'
.
,
. ,10-03-4387-18
–
:
, ,
,
,
" .
"
.
.2022 .' , , , , ,
, .-
.70–60 ,22
,4–128 , . .1978 .
.28–20
Balachowsky AS. 1949.
Coleopteres, Scolytides
. Paris: P. Lechevalier.
Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, et al.
2010. Climate change and bark beetles of the Western United
States and Canada: Direct and indirect eects.
BioScience
,
608, 602–613.
Borden JH, Pureswaran DS, and Lafontaine J-P. 2008. Synergistic
blends of monoterpenes for aggregation pheromones of the
Mountain Pine Beetle Coleoptera: Curculionidae.
Journal of
Economic Entomology
, 1014, 1266–1275.
Branco M, Pereira JS, Mateus E, Tavares C, and Paiva MR. 2010. Water
stress aects
Tomicus destruens
host pine preference and
performance during the shoot feeding phase.
Annals of
Forest Science
, 67, 608.
Carle P. 1975. Problèmes posés par les ravageurs xylophages des
conifères en forêt méditerranéenne.
Revue Forestière
Française
, 274, 283–296.
Davi H, Durand-Gillmann M, Damesin C, Delzon S, Petit C, Rozenberg P,
et al. 2020. Distribution of endemic bark beetle attacks and
their physiological consequences on
Pinus halepensis
.
Forest
Ecology and Management
, 469, 118187.
Dori-Bachash M, Avrahami-Moyal L, Protasov A, Mendel Z, and Freeman
S. 2015. The occurrence and pathogenicity of Geosmithia
spp. and common blue-stain fungi associated with pine bark
beetles in planted forests in Israel.
European Journal of Plant
Pathology
, 1434, 627–639.
El-Sayed AM, Suckling DM, Wearing CH, and Byers JA. 2006.
Potential of mass trapping for long-term pest management
and eradication of invasive species.
Journal of Economic
Entomology
, 995, 1550–1564.
Faccoli M. 2007. Breeding performance and longevity of
Tomicus
destruens
on Mediterranean and continental pine species.
Entomologia Experimentalis et Applicata
, 1233, 263–269.
Faccoli M, Battisti A, and Masutti L. 2005. Phenology of
Tomicus
destruens
Wollaston in northern Italian pine stands. In:
Lieutier F and Ghaioule D Eds.
Entomological Research in
Mediterranean Forest Ecosystems
. Paris: INRA Editions. pp
185–193.
Fettig CJ, Mortenson LA, Bulaon BM, and Foulk PB. 2019. Tree mortality
following drought in the central and southern Sierra Nevada,
California, U.S.
Forest Ecology and Management
, 432, 164–178.
Gaylord ML, Hofstetter RW, and Wagner MR. 2010. Impacts of silvicultural
thinning treatments on beetle trap captures and tree attacks
during low bark beetle populations in ponderosa pine forests
of northern Arizona.
Journal of Economic Entomology
, 1035,
1693–1703.
Geertsema H. 1979. Insect problems in South African forest plantations.
Wood Southern Africa
, August, 33–36.
Gmelin JF. 1787.
Abhandlung über die Wurmtrocknis
. Leipzig:
Cruisiusschen.
Ghaioule D, Abourouh M, Bakry M, and Haddan M. 1998. Insectes
ravageurs des forêts au Maroc.
Annales de la Recherche
Forestière Au Maroc
, 31, 129–156.
Halperin J and Holzschuh C. 1984. Contribution to the knowledge
of bark beetles Coleoptera :Scolytoidea and associated
organisms in Israel.
Israel Journal of Entomology
18, 21–37.
Hochman A, Harpaz T, Saaroni H, and Alpert P. 2018. The seasons’
length in 21st century CMIP5 projections over the eastern
Mediterranean.
International Journal of Climatology
, 386,
2627–2637.
Kirisits T. 2004. Fungal associates of European bark beetles with
special emphasis on the Ophiostomatoid fungi. In: Lieutier F,
Day KR, Battisti A, Grégoire J-C, and Evans HF Eds.
Bark and
Wood Boring Insects in Living Trees in Europe
,
a Synthesis
.
Dordrecht: Springer Netherlands. pp 181–236.
Klutsch JG, Cale JA, Whitehouse C, Kanekar SS, and Erbilgin N. 2017.
Trap trees: An eective method for monitoring mountain pine
beetle activities in novel habitats.
Canadian Journal of Forest
Research
, 4710, 1432–1437.
Lieutier F, Mendel Z, and Faccoli M. 2016. Bark beetles of Mediterranean
conifers. In: Paine TD and Lieutier F Eds.
Insects and
Diseases of Mediterranean Forest Systems
. Cham: Springer
International Publishing. pp 105–197.
Mazur A, Witkowski R, Lomidze N, and Mendzikowski J. 2020. Notes
on distribution of
Pityogenes calcaratus
Eichho, 1878
Coleoptera: Curculionidae, Scolytinae in Georgia.
Acta
Scientiarum Polonorum Silvarum Colendarum Ratio et
Industria Lignaria
, 194, 183–185.
81
Meddens AJH, Hicke JA, and Ferguson CA. 2012. Spatiotemporal
patterns of observed bark beetle-caused tree mortality in
British Columbia and the western United States.
Ecological
Applications
, 227, 1876–1891.
Mendel Z. 1988. Attraction of pine bark beetles to the synthetic
aggregation pheromone formulation of
Orthotomicus erosus
and Ips typographus. Phytoparasitica
, 16, 109–117.
Mendel Z. 2000. The phytophagous insect fauna of Pinus halepensis
and P. brutia forests in the Mediterranean. In: Ne’eman G and
Trabaud L Eds.
Ecology, Biogeography and Management of
Mediterranean Pine Forest Ecosystems
1 ed.. Leiden: Wil R.
Peters-Backhuys. pp 217–237.
Mendel Z, Boneh O, and Riov J. 1992. Some foundations for the
application of aggregation pheromone to control pine bark
beetles in Israel.
Journal of Applied Entomology
, 114, 217–227.
Mendel Z, Branco M, and Battisti A. 2016. Invasive sap-sucker insects
in the Mediterranean Basin. In: Paine TD and Lieutier F Eds.
Insects and Diseases of Mediterranean Forest Systems
. Cham:
Springer International Publishing. pp 261–291.
Mendel Z and Halperin J. 1982. The biology and behavior of
Orthotomicus
erosus
in Israel.
Phytoparasitica
, 103,169–181.
Mendel Z, Madar Z, and Golan Y. 1985. Comparison of the seasonal
occurrence and behavior of seven pine bark beetles
Coleoptera: scolytidae in Israel.
Phytoparasitica
, 131, 21–32.
Özkazanç O, Iktüeren S, and Yücel M. 1985. Studies on the biology and
control of
Orthotomicus erosus
Woll. in Mediterranean and
Aegean regions.
Ormancilik Arastirma Enstitüsü Yayinnlari
,
152, 1–56.
Raa KF, Phillips TW, and Salom SM. 1993. Strategies and mechanisms
of host colonization by bark beetles. In: Schowalter TD and
Filip GM Eds.
Beetle-Pathogen Interactions in Conifer
Forests
. San Diego: Academic Press. pp 103–128.
Seybold SJ, Bentz BJ, Fettig CJ, Lundquist JE, Progar RA, and Gillette NE.
2018. Management of Western North American bark beetles
with semiochemicals.
Annual Review of Entomology
, 631,
407–432.
Seybold SJ, Penrose RL, and Graves AD. 2016. Invasive bark and
ambrosia beetles in California Mediterranean forest
ecosystems. In: Paine TD and Lieutier F Eds.
Insects and
Diseases of Mediterranean Forest Systems
. Cham: Springer
International Publishing. pp 583–662.
Smith RH. 1986. Trapping western pine beetles with baited toxic
trees. U.S. Department of Agriculture, Forest Service, Pacic
Southwest Forest and Range Experiment Station, Research
Note PSW-382.
Zhou YT, Ge XZ, Zou Y, Guo SW, Wang T, and Zong SX. 2019. Climate
change impacts on the potential distribution and range
shift of
Dendroctonus ponderosae
Coleoptera: Scolytidae.
Forests
, 1010, 860.
2022 ילוי | 22 ןויליג | רעי
VII
■ Bark beetle-related pine mortality in Israeli
planted forests and the eect of trap trees
Omer Golan 1, Rotem Attias 2' 3, Maor Elron1, Alexie
Protasov 4, Zvi Mendel 4, Rakefet David-Schwartz2*
The association of extensive mortality of pine trees
and bark beetle (Scolytinae) attack is a common
phenomenon in the Northern Hemisphere. Bark
beetle outbreaks frequently occur in the planted
pine forests in Israel and involve three species
Orthotomicus erosus, Pityogenes calcaratus
and
Tomicus destruens
. These bark beetle species
undergo periods of low population density when
they breed on trees stressed by drought or
thinning, and on broken trees or those uprooted by
wind or thinning slash. It has been suggested that
high populations of these scolytids often kill trees.
Assessing whether successful colonization of
standing pine trees by these species is the result
of direct beetle attack or a symptom of poor tree
physiology is a challenge and makes it dicult to
determine the required management strategy.
The role of bark beetles in tree death in a wide
study area was assessed by two experimental
systems: (1) a study of the potential eect of
drought in a layout of extensive trap trees in stands
1 Forest Management, KKL-JNF, Israel
2 Institute of Plant Sciences, Agricultural Research
Organization, The Volcani Center
3 Institute of Plant Sciences and Genetics in
Agriculture, The Robert H. Smith Faculty of
Agriculture, Food and Environment, The Hebrew
University of Jerusalem, Rehovot
4 Institute of Plant Protection, Agricultural Research
Organization, The Volcani Center
of
Pinus halepensis
and
P. brutia
; (2) examining
bark beetles colonization in killed pine trees in two
planted stands of
P. brutia
. In the rst experimental
system, trap-trees (baited with lures attractive to
both
O. erosus
and
P. calcaratus
and treated with
Bifenthrin) signicantly reduced the number of
dead trees in the trap-tree treated stands compared
with similar untreated ones.
O. erosus
was the
dominant species in these plots and tree mortality
occurred in the second half of the summer (August
and September). The second experimental system
indicated mainly the association of
P. calcaratus
and
T. destruens
with the killed trees. However,
in that system, the colonization was apparently
mainly during autumn to early winter (October and
November) and we were unable to determine the
direct role of the beetles in the tree mortality. The
results provided evidence that these pine bark
beetles, which are usually considered secondary,
are responsible for the tree death,
O. erosus
in
particular. Both
P. calcaratus
and
T. destruens
are
relatively more active during the low temperature
periods, typical of the autumn in Israel. We suggest
that the consequence of water scarcity and high
temperatures due to climate change during the
autumn make the pine trees more prone to beetle
attack during their typical activity period.