Conference Paper

Modeling Compositionality with Dependency Graph for Dialogue Generation

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Overview of the structure-aware framework. The model first accepts utterance pairs (current one, 5 , and its candidate parents) as input, and uses BERT for contextual representation encoding. Then, four types of heterogeneous graphs are encoded by EGCN models to further learn the dialogue-specific discourse structure features. ...
... Both the Struct baseline and our models exhibited resilience against the performance degradation caused by increased utterance distances, particularly when compared to the variant model that lacked any discourse structure features (w/o All). This resilience clearly demonstrates the effectiveness of discourse structure features in mitigating the challenges posed by long-range dependencies [5]. Furthermore, our comprehensive model outperformed the Struct baseline, primarily due to the integration of diverse and advanced structural discourse features. ...
Preprint
Full-text available
Dialogue disentanglement aims to detach the chronologically ordered utterances into several independent sessions. Conversation utterances are essentially organized and described by the underlying discourse, and thus dialogue disentanglement requires the full understanding and harnessing of the intrinsic discourse attribute. In this paper, we propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics. First of all, \textbf{in feature encoding stage}, we construct the heterogeneous graph representations to model the various dialogue-specific discourse structural features, including the static speaker-role structures (i.e., speaker-utterance and speaker-mentioning structure) and the dynamic contextual structures (i.e., the utterance-distance and partial-replying structure). We then develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context. Second, \textbf{in model learning stage}, we perform optimization with a hierarchical ranking loss mechanism, which groups dialogue utterances into different discourse levels and carries training covering pair-wise and session-wise levels hierarchically. Third, \textbf{in inference stage}, we devise an easy-first decoding algorithm, which performs utterance pairing under the easy-to-hard manner with a global context, breaking the constraint of traditional sequential decoding order. On two benchmark datasets, our overall system achieves new state-of-the-art performances on all evaluations. In-depth analyses further demonstrate the efficacy of each proposed idea and also reveal how our methods help advance the task. Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
Article
Dialogue disentanglement aims to detach the chronologically ordered utterances into several independent sessions. Conversation utterances are essentially organized and described by the underlying discourse, and thus dialogue disentanglement requires the full understanding and harnessing of the intrinsic discourse attribute. In this paper, we propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics. First of all, in feature encoding stage , we construct the heterogeneous graph representations to model the various dialogue-specific discourse structural features, including the static speaker-role structures (i.e., speaker-utterance and speaker-mentioning structure) and the dynamic contextual structures (i.e., the utterance-distance and partial-replying structure). We then develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context. Second, in model learning stage , we perform optimization with a hierarchical ranking loss mechanism, which groups dialogue utterances into different discourse levels and carries training covering pair-wise and session-wise levels hierarchically. Third, in inference stage , we devise an easy-first decoding algorithm, which performs utterance pairing under the easy-to-hard manner with a global context, breaking the constraint of traditional sequential decoding order. On two benchmark datasets, our overall system achieves new state-of-the-art performances on all evaluations. In-depth analyses further demonstrate the efficacy of each proposed idea and also reveal how our methods help advance the task. Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
Conference Paper
Full-text available
Recently, non-recurrent architectures (convolutional, self-attentional) have outperformed RNNs in neural machine translation. CNNs and self-attentional networks can connect distant words via shorter network paths than RNNs, and it has been speculated that this improves their ability to model long-range dependencies. However, this theoretical argument has not been tested empirically, nor have alternative explanations for their strong performance been explored in-depth. We hypothesize that the strong performance of CNNs and self-attentional networks could also be due to their ability to extract semantic features from the source text, and we evaluate RNNs, CNNs and self-attention networks on two tasks: subject-verb agreement (where capturing long-range dependencies is required) and word sense disambiguation (where semantic feature extraction is required). Our experimental results show that: 1) self-attentional networks and CNNs do not outperform RNNs in modeling subject-verb agreement over long distances; 2) self-attentional networks perform distinctly better than RNNs and CNNs on word sense disambiguation.
Article
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
Improved semantic representations from tree-structured long short-term memory networks
  • Kai Sheng Tai
  • Richard Socher
  • Christopher D Manning
Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1556-1566.
Hierarchical recurrent attention network for response generation
  • Chen Xing
  • Yu Wu
  • Wei Wu
  • Yalou Huang
  • Ming Zhou
Chen Xing, Yu Wu, Wei Wu, Yalou Huang, and Ming Zhou. 2018. Hierarchical recurrent attention network for response generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.