ThesisPDF Available

Optimisation de la gestion de l’impact des polluants gazeux du sol sur la qualité de l’air intérieur

Authors:

Abstract and Figures

Les sites pollués (sol ou eaux souterraines) représentent un potentiel de risque pour la santé humaine et l’environnement. Il existe des outils d’aide à la gestion, en complément des mesures in-situ, qui permettent d’estimer rapidement et à moindre coût les risques sanitaires associés à l’exposition des polluants gazeux du sol dans les espaces intérieurs afin d’établir des mesures de prévention et/ou correction. Cependant, et malgré leur intérêt, il a été montré dans la littérature qu’il existe des différences importantes entre les concentrations intérieures mesurées et les estimations des outils existants. Ces incertitudes reposent principalement sur trois aspects : une mauvaise caractérisation du site, une modélisation incomplète des voies et mécanismes de transfert, ou bien du fait de négliger l’influence de certains paramètres sur le transfert. Par exemple, le fait de négliger la latéralité de la source reste une explication plausible des limites des modèles classiques de transfert. Les auteurs conviennent que la migration latérale joue un rôle important sur l’atténuation de la concentration intérieure en polluant, contrairement aux scénarios de source homogène ou continue, où les vapeurs migrent uniquement de manière verticale vers le bâtiment. Ainsi, lorsque la source est latéralement décalée vis-à-vis du bâtiment, les vapeurs vont migrer préférentiellement vers l’atmosphère et moins vers le bâtiment générant une atténuation plus importante de la concentration intérieure. Dans ce contexte, l’objectif principal de ces travaux de thèse est la contribution à l’amélioration des outils d’aide à la gestion afin d’élargir leur plage d’application. Pour ce faire, des nouveaux modèles ont été développés permettant de tenir compte de la latéralité de la source dans l’estimation de la concentration intérieure en polluant. Le développement de ces modèles est réalisé à partir de l’expérimentation numérique et l’analyse adimensionnelle sur la base des outils existants (modèles semi-empiriques construits en considérant une source continue). La combinaison de ces deux approches permet d’une part, de garder la capacité des modèles source continue de tenir compte des propriétés physiques du sol (perméabilité, coefficient de diffusion, …) et des caractéristiques du bâtiment (typologie de soubassement, dépression, volume, …), et d’une autre part, de mieux préciser la position de la source dans le sol en considérant l’influence de sa latéralité dans les estimations. Ces nouveaux modèles ont été issus d’une analyse comparative permettant de vérifier la cohérence et la précision des estimations vis-à-vis d’un modèle numérique (CFD), de données expérimentales et de modèles existants dans la littérature. Finalement, ces expressions ont été intégrées dans un code de ventilation (MATHIS-QAI) permettant de mieux préciser les caractéristiques des environnements intérieurs (système de ventilation, perméabilité à l’air de l’enveloppe, volume du bâtiment, …) et de réaliser des estimations des niveaux de concentration en fonction des variations temporelles (vitesse du vent, température extérieure, …) au cours du temps. À partir d’une étude paramétrique il a été montré que malgré l’impact non-négligeable des caractéristiques du bâtiment, l’influence de la latéralité de la source sur l’atténuation de la concentration intérieure en polluant reste prédominante (atténuation de plusieurs ordres de grandeur quand la source est décalée latéralement du bâtiment en comparaison à une source continue). Cependant, préciser les caractéristiques du bâtiment (soubassement, système de ventilation, perméabilité à l’air de l’enveloppe,…), ainsi que les conditions météorologiques uniques de chaque projet de construction, permet d’augmenter la précision des estimations en évitant la mise en œuvre de solutions extrêmes ou bien encore, de mesures inadaptées.
Content may be subject to copyright.
... VI depends on several factors and in some cases, its predictions can be highly complex [5][6][7]. In the literature, several VI models exist that allow for the evaluation of incoming pollutant flux [4,[6][7][8][9][10][11][12][13][14][15]. However, these approaches often rely on strong assumptions when representing real-world scenarios (i.e., assuming a continuous source distribution in the soil). ...
... To accurately compute the building conditions for VI esti-mation, analytical VI models can be coupled with multizone airflow and pollutant transport simulation programs. This coupling enables a more precise modeling of building pressures, airflows, and the evaluation of indoor pollutant concentration levels over time [12]. Therefore, analytical VI models can only be used as a preliminary interpretation to quantify the potential transfer of Volatile Organic Compounds (VOC) from the soil into the building [20]. ...
... Semi-empirical VI models were developed in order to better consider the source position in the soil (i.e. lateral source/building separation) [12,13]. These models allow for a more accurate specification of pollution scenarios, extending their application range to more realistic situations, such as lateral sources. ...
Article
Most of the proposed Vapor Intrusion (VI) models are developed assuming a steady indoor environment (i.e., building pressure and air exchange rate). To account for variations in these building conditions, these models are coupled with multizone codes to enable more precise modeling of indoor air pollution. In this paper, semi-empirical VI models are integrated into MATHIS-QAI, a multi-zone ventilation software. This coupled tool allows consideration not only of the impact of the building ventilation system characteristics, airtightness, and foundation type, but also the computation of more realistic pollution scenarios by specifying the lateral separation between the pollution source in the soil and the building. A sensitivity analysis was conducted to quantify the influence of these parameters on the indoor concentration of pollutants. The results showed that the main driving parameter in this event is the source location in the soil. However, a significant impact of the building characteristics and weather conditions on the indoor pollutant concentration was also observed. These characteristics vary significantly from one building to another, necessitating specific and appropriate calculations. The proposed tool, based on nodal modeling, offers an easy-to-use simulation that does not require significant computational resources compared to Computational Fluid Dynamics approaches. This coupling can be utilized for optimal management and reduction of uncertainties in risk assessment. Ultimately, it can serve as a relevant tool in the design and conception of more efficient buildings against VI.
Article
Full-text available
At sites impacted by volatile organic compounds (VOCs), vapor intrusion (VI) is the pathway with the greatest potential to result in actual human exposure. Since sites with VI were first widely publicized in late 1990s, the scientific understanding of VI has evolved considerably. The VI conceptual model has been extended beyond relatively simple scenarios to include nuances such as biological and hydrogeological factors that may limit the potential for VI and alternative pathways such as preferential pathways and direct building contact/infiltration that may enhance VI in some cases. Regulatory guidance documents typically recommend initial concentration- or distance-based screening to evaluate whether VI may be a concern, followed by a multiple-lines-of-evidence (MLE) investigation approach for sites that do not screen out. These recommendations for detailed evaluation of VI currently focus on monitoring of VOC concentrations in groundwater, soil gas, and indoor air and can be supplemented by other lines of evidence. In this paper, we summarize key elements important to VI site characterization, provide the status and current understanding, and highlight data interpretation challenges as well as innovative tools developed to help overcome the challenges. Although there have been significant advances in the understanding of VI in the past 20 years, limitations and knowledge gaps in screening, investigation methods, and modeling approaches still exist. Potential areas for further research include improved initial screening methods that account for the site-specific role of barriers, improved understanding of preferential pathways, and systematic study of buildings and infrastructure other than single-family residences.
Article
Various screening-level and analytical models have been proposed in order to evaluate Vapor Intrusion (VI) and provide assessment tools for exposure risk in indoor environments. However, many in situ investigations show important differences between predicted and measured indoor concentrations generally associated with inappropriate conceptual modelling, incomplete VI process or by ignoring critical parameters in the evaluations. In this study, a numerical model is developed to better understand how polluted site characteristics as source position, soil properties, building pressure and type of construction may affect VI process from non-degrading chemicals. The results confirm that source location plays a critical role on VI compared to soil properties and building features. Increasing lateral distance from a building decreases indoor concentration about 5 orders of magnitude when the source is shallow and 2 to 3 orders of magnitude for deeper sources. However, despite the main influence of the position of the source, soil properties and building characteristics impacts are not insignificant: building pressure (−4 Pa) may increase VI by a factor of 2 compared to building at atmospheric pressure, slab on grade construction types increase vapor attenuation of 80% compare to a bare ground configuration and permeable soils may allow vapors to migrate more easily to the building by generating an indoor concentration up to 10 times higher compared to impermeable soils. Current VI models including lateral separation, generally adopted in polluted site engineering, are unable to consider those influencing parameters, especially building features, and thus need to be extended to improve the management of contaminated land before building constructions.
Article
This study presents a fast and nonintrusive in situ methodology to characterise the Volatile Organic Compounds (VOCs) fluxes of contaminated sites and to quantify their intrusion into future buildings built on these sites. It could be used to conduct exhaustive ground pre-characterisation and indoor air assessments for future on-site buildings. The methodology involved the use of a specific apparatus called the “experimental box”, representing convective and diffusive transfers of soil gas pollutants into buildings, to quantify an equivalent homogeneous concentration of the contaminant in the soil gas. Furthermore, this equivalent homogeneous concentration was used to quantify the indoor air pollutant concentration in a future building using an analytical transfer model associated with a numerical ventilation model. This methodology was applied on an experimental site. A critical analysis highlights its interest as a powerful complementary tool to constitute complementary support for decision-making methods and for human health risk assessment.
Article
There is a lack of vapor intrusion (VI) models that reliably account for weather conditions and building characteristics, especially at sites where active alternative pathways, such as sewer connections and other preferential pathways, are present. Here, a method is presented to incorporate freely-available models, CONTAM, and CFD0, to estimate site-specific building air exchange rates (AERs) and indoor air contaminant concentrations by accounting for weather conditions and building characteristics at a well-known VI site with a land drain preferential pathway. To account for uncertainty in model input parameters that influence indoor air chlorinated volatile organic compound (CVOC) concentration variability, this research incorporated Monte Carlo simulations and compared model results with retrospective field data collected over approximately 1.5 years from the study site. The results of this research show that mass entry rates for TCE are likely influenced by indoor air pressures that can be modeled as a function of weather conditions (over seasons) and building characteristics. In addition, the results suggest that temporal variability in indoor air TCE concentrations is greatest (modeled and measured) due to the existence of a land drain, which acts as a preferential pathway, from the subsurface to the granular fill beneath the floor slab. The field data and modeling results are in good agreement and provide a rare comparison of field data and modeling results for a VI site. The modeling approach presented here offers a useful tool for decision makers and VI practitioners as they assess these complex and variable processes that have not been incorporated within other VI models.
Article
In this study, we examine the impact of a building's indoor pressure fluctuations in drawing subsurface volatile contaminants into the building, and how the presence of an impervious pavement surrounding the building influences this. Even in the absence of communication between the subsurface soil gas and ambient air fluctuations of building indoor pressure can cause upward advection of contaminated soil gas from the subfoundation zone into a building. For cases with the paved ground surface, the simulated volumetric soil gas entry rates are lower than steady-state cases with constant -5 indoor-outdoor pressure difference, by at least half an order of magnitude. When the indoor pressure fluctuation rate exceeds about 5 Pa/h (which corresponds a sinusoidal fluctuation with a period of 2 h), the predicted indoor air concentration of paved scenarios will be higher than the conventional case. When both the building foundation and surrounding pavement block diffusional escape of the volatile soil gas contaminants to the atmosphere, high subfoundation soil gas contaminant concentrations can exist, and contaminant entry into the building through foundation breaches is enhanced beyond what would be expected from diffusion as the building undergoes normal pressure cycling. Upward advection into the building may be induced even when the indoor pressure appears, based on limited measurements, to be higher than that in the subslab, particularly when the indoor pressure in the building quickly fluctuates. This represents a limitation on VI mitigation approaches that rely on indoor pressurization, if those approaches cannot at the same time control significant fluctuation of indoor pressure.
Article
Indoor air concentrations are susceptible to temporal and spatial variations and have long posed a challenge to characterize for vapor intrusion scientists, in part, because there was a lack of evidence to draw conclusions about the role that building and weather conditions played in altering vapor intrusion exposure risks. Importantly, a large body of evidence is available within the building science discipline that provides information to support vapor intrusion scientists in drawing connections about fate and transport processes that influence exposure risks. Modeling tools developed within the building sciences provide evidence of reported temporal and spatial variation of indoor air contaminant concentrations. In addition, these modeling tools can be useful by calculating building air exchange rates (AERs) using building specific features. Combining building science models with vapor intrusion models, new insight to facilitate decision-making by estimating indoor air concentrations and building ventilation conditions under various conditions can be gained. This review highlights existing building science research and summarizes the utility of building science models to improve vapor intrusion exposure risk assessments.
Thesis
L'outil conceptualisé et développé au cours de cette thèse aspire à: (1) Tirer profit des récentes évolutions des Systèmes d'Information Géographique (SIG) en proposant de nouvelles approches pour le traitement de problème ayant un aspect spatial. (2) Appliquer des approches théoriques dans des problématiques industrielles réelles afin de proposer des approches pour les phases qui ne sont pas abordées dans la recherche théorique. Dans cette optique, trois modules ont été développés, un module d’intégration et de visualisation des données spatiales, un module de pré-traitement des données et un module d’optimisation de la couverture.- La première partie de la thèse aborde le sujet de la mise en place du premier module, et propose un framework conceptuel pour le développement d'outil similaire. Le module d'intégration et de visualisation développé permet l’accès aux données de ventes via une interface web dédiée. La plateforme permet la mise en contexte des données de ventes en affichant les détaillants sur une carte, et en donnant accès à la visualisation d’autres données (ex. : socio-démo graphique, concurrentielle). Les détaillants affichés sur la carte sont filtrables suivant leurs caractéristiques et colorables suivant de multiples critères (ex. : comparaison aux années précédentes, comparaison aux objectifs, etc.). La sélection des éléments présents sur la carte permet d’avoir accès à leurs informations détaillées. L’ensemble des différentes fonctionnalités permet une meilleure compréhension du marché, et autorise l’exploration des résultats de ventes sous un nouvel angle.- La seconde partie traite de l’outil de pré-traitement des données spatiale. Notre approche permet de rendre accessible l’analyse de données spatiales aux utilisateurs ne disposant pas de connaissances en SIG. En plus de cela, la réalisation des étapes de prétraitement peut être réalisée plus rapidement, et avec des choix guidés quant à la sélection des relations spatiales à prendre en compte. Une implémentation fonctionnelle de l’approche a été mise en place, basée sur des outils open sources pour permettre l’implémentation à coûts réduits de notre solution. L’utilisation de notre implémentation permet des gains de temps conséquents lors du prétraitement des données spatiales pour les analyses des données géospatiales.- La troisième et dernière partie se concentre sur l’outil d’optimisation de la couverture qui s’appuie sur la structure et les outils mis en place précédemment. Il prend en entrée les jeux de données correspondant aux potentiels des zones et ceux correspondant aux points de vente et à leurs zones de chalandise. À partir de ces données, l’outil propose des solutions d’amélioration de la couverture qui tiennent compte des aspects liés à la zone de chalandise de chaque magasin et à la captation collaborative de la demande.
Article
Vapor intrusion exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: 1) COMSOL Multiphysics to model subsurface fate and transport processes, 2) CFD0 to model atmospheric air flow around the building, and 3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10Pa to +4Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.