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Abstract: The branch of informatics that deals with construction and operation of computers built
of DNA, is one of the research directions which investigates issues related to the use of DNA as
hardware and software. This concept assumes the use of DNA computers due to their biological
origin mainly for intelligent, personalized and targeted diagnostics frequently related to therapy.
Important elements of this concept are (1) the retrieval of unique DNA sequences using machine
learning methods and, based on the results of this process, (2) the construction/design of smart
diagnostic biochip projects. The authors of this paper propose a new concept of designing diagnostic
biochips, the key elements of which are machine-learning methods and the concept of biomolecular
queue automata. This approach enables the scheduling of computational tasks at the molecular level
by sequential events of cutting and ligating DNA molecules. We also summarize current challenges
and perspectives of biomolecular computer application and machine-learning approaches using
DNA sequence data mining.
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1. Introduction

For the last several years, there has been a growing interest in the possibility of com-
puting by means of DNA molecules (called “DNA computing” later in this paper). The
different directions of studies in this area include construction of biomolecular computers
hardware and software which are based on biochemical components (bioorganic chemical
compounds). Such computers are nanodevices built exclusively of organic components.
Biomolecular computers may have a number of practical uses in the future, owing to their
various properties, such as parallelism of operation or the ability to store information.
Importantly, the biomolecular computers may, in the predictable future, fill some gaps in
the areas not yet accessible to conventional computers. Particularly interesting is the com-
patibility between biomolecular computers and the cellular environment via biochemical
reactions taking place both in vitro and in vivo.

An important part of DNA computing is involved in the construction of intelligent
biochips (meaning decision making in the choice of a diagnosis/treatment direction), as
such technological solutions may simplify and automate molecular diagnostics. This paper
presents the use of biomolecular computers for constructing diagnostic biochips based on
DNA chain cutting and ligating reactions carried out by restriction enzymes. The study
was inspired by the concept of the hypothetical enzymatic Turing machine that was built of
biomolecules by Charles Bennett in 1982 [1]. It also indicates the feasibility of using only
biochemical components for designing computers characterized by high energy efficiency—
with low energy consumption for performing calculations scheduled by humans. It should
be pointed out that Charles Bennett noticed a similarity between the biochemical processes
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taking place in live organisms (specifically DNA polymerase) and the operation of the
Turing machine—specifically, a model of a programmable universal Turing machine that
enables data processing and which is very well known in computer science.

In 1995, Paul W.K. Rothemund published his concept of a Turing machine based on
commercially available class IIS restriction enzymes [2]. This concept indicated a theoretical
possibility (not requiring laboratory experiments) of encoding, in double-stranded DNA,
the transition table of the Turing machine, the idea of which is based on alternate cutting
and ligating the double-stranded DNA with the class IIS restriction enzymes and a ligase.
Moreover, Paul W.K. Rothemund suggested a method for constructing symbols as well
as input words, for instance: the input word x = 000111 (built of the symbols 0 or 1), of
Turing machines which were designed by recording them as double-stranded DNA. In that
approach, encoding the information (the symbol encoded in the input word x = 000111)
as double-stranded DNA is feasible, as modern laboratories offer production of double-
stranded DNA with a preset nucleotide sequence. Paul W.K. Rothemund also proposed a
method for encoding the state of the biomolecular Turing machine which, in his approach,
was interpreted as a sticking-out, single-stranded DNA (the so-called sticky end), obtained
by cutting the double-stranded DNA with class IIS restriction enzymes.

Further studies, including experimental ones, were carried out by our and Ehud
Shapiro’s teams, and demonstrated the potential of restriction enzymes in developing
practical programmable biomolecular nanodevices, functioning in actual laboratory con-
ditions [3–6]. In 2001, Ehud Shapiro’s group built biomolecular computers in which
double-stranded DNA was employed for encoding processed input data (symbols encoded
in the input word). They also used double-stranded DNA for developing molecular soft-
ware to enable such a biomolecular computer to be programmed. The hardware of such a
biomolecular computer consisted of FokI restriction enzyme and ligase. They achieved a
computational result by alternately cutting and ligating double-stranded DNA, placing in
a test tube the double-stranded DNA encoding the input word, the software in the form of
double-stranded DNA, and the hardware (FokI, ligase). It is worth noting that the entire
process was run autonomously in a reaction mixture comprising the appropriate reaction
buffers until the final computational result was obtained. This approach showed that it
is feasible to practically construct a biomolecular computer, working only in a test tube
(without any electronic components), in which the computations are based exclusively on
biochemical reactions.

The use of restriction enzymes in typical laboratory conditions requires optimization
of reaction conditions [5] and an appropriate approach to encoding various components
of biomolecular computers, especially when multiple restriction enzymes are used. A
number of laboratory experiments were carried out using multiple restriction enzymes,
operating alternately on DNA chains in a single reaction mixture [5,6]. After solving
various practical problems, we developed an algorithmic method that enabled an ad hoc
addition of more restriction enzymes acting alternately on the appropriately encoded
DNA [6]. Understanding the successive properties of the biomolecular computers led
us to the formulation of a new mathematical theory involving a base formal apparatus
concerning performance of computation by means of a single restriction enzyme and a
double-stranded DNA [7]. Other theoretical studies included the fundamentals of designing
biomolecular computers with memory and discussed the potential use of type IIB restriction
endonucleases for developing a biomolecular push-down automaton [8].

One concern with biochip design is targeting particular specific molecular goals.
Typically, these targets are specific DNA or RNA sequences defined and determined by the
biochip’s application target (infectious agent or pathological protein/sequence). This issue
can be solved with machine learning.

Machine learning is an important part of the new concept of designing biochips
based on biomolecular computers that has been proposed in this paper. This approach
(concept) requires knowledge of unique DNA fragments, which is obtained by using
machine-learning methods, such as sequence pattern mining [9]. Knowledge about unique
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DNA fragments, the presence of which we want to diagnose, makes it possible to use
biomolecular computers to read these DNA fragments. We selected from the various
approaches to the application of machine-learning methods in biology those that will be
useful for finding unique DNA fragments—important from the point of view of designing
biochips based on biomolecular computers.

2. Machine-Learning Approaches in Nucleotide Sequence Data Mining

In recent years, the use of algorithms and mathematical methods has become widespread
in biological sciences [10,11]. This is due to a dynamic increase in the number of biological
data sets, which prompts the use of various methods typical of exact sciences [12], including
artificial intelligence and machine-learning algorithms, for example, recurrent neural net-
works [13] or convolutional neural networks [14]. This requires using sophisticated methods
characteristic of exact sciences to deepen the biological knowledge (see Table 1). The current
knowledge on living organisms demonstrates great complexity of processes occurring at
the molecular level, e.g., the expression of genetic information is a complex and not fully
understood process.

Table 1. Summary of the existing machine-learning approaches for DNA sequence mining.

Paper Method Type of Input Target Dataset Result

Luedi et al.
(2007) [15]

Multiple
classification
algorithms

DNA sequence Imprint status of
human genes Ensembl 156 imprinted

genes identified

Chen et al. (2016) [16] Hierarchical neural
networks cDNA microarrays Molecular signal

transduction PUMAdb

Novel model for
evaluating the

machinery regulating
gene expression

Kelley et al.
(2016) [17]

Convolutional neural
networks Genome sequence

To annotate and
interpret the
noncoding

genome parts

DNaseI-seq peak
BED format files for

125 cells

Noncoding genome
parts annotated
and interpreted

Amin et al.
(2018) [18]

Long short-term
memory Genome sequence Annotate genome

sequences
NCBI genomedomek-

database

DeepAnnotator
algorithms
and models

Zeng et al. (2018) [19] Natural language
processing Gene sequence Enhancer-promoter

interactions
Various databases
from TargetFinder Framework EP2vec

Yuan and Bar-Joseph
(2019) [20]

Convolutional neural
network RNA sequences Gene–gene

relationships
scRNA-seq and bulk

RNA-seq Framework CNNC

Fudenberg et al.
(2020) [21]

Convolutional neural
network DNA sequences Genome folding

Five Hi-C
anddomekMicro-C

datasets
Akita network

A dynamic development of the next-generation sequencing (NGS), which became
cheap and available, brought about an increase in the amount of data containing nucleotide
sequences. NGS is a sequencing method that makes it possible to determine the order of
nucleotides in a sample of nucleic acids and high-throughput whole-genome sequencing.
The GenBank database, which collects research results from the sequencing of living
organisms, is of particular interest here. Thus, it is possible to quickly find information
about the nucleotide sequence in the form of files containing nucleotide sequences, e.g.,
for a selected group of organisms for which we want to check for differences in nucleotide
sequences. This makes it possible to develop new approaches to the analysis of data
derived from the sequencing of living organisms. In recent years, many different machine-
learning approaches have been used in life sciences. They focus on different aspects
related to sequencing data analysis, such as sequence alignment, classification, and pattern
finding [22].

To implement the biomolecular computers in medicine, as proposed in this paper,
it is crucial to find unique DNA fragments that can be read/identified by biomolecular
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computers. It is important to find unique patterns for the DNA sequences tested so that
genetic differentiation of the investigated organisms is possible. DNA fragments encode
various information, e.g., they encode amino acids that make up proteins. Therefore,
comparing genomes based on specific DNA fragments makes it possible to find similarities
between the tested organisms or to differentiate them with respect to the occurrence of
unique nucleotide sequence arrangements. The problem of finding patterns in large sets
of biological data that contain genomic sequences [9,23] is a challenge both for computer
scientists and mathematicians, but also for biologists. Figure 1 presents the main idea of
finding patterns in various nucleotide sequences that are analyzed by applying machine-
learning methods to files containing nucleotide sequences. In our approach to the use
of biomolecular computers, we amplify the unique DNA fragments by PCR (fragments
number 2 and number 4 to be exact); then, we read the amplified DNA fragments using a
properly designed biomolecular computer. Thus, the step of finding unique patterns using
machine-learning methods is a key stage in the application of biomolecular computers for
molecular diagnostics.

Figure 1. A diagram showing the use of machine-learning methods to find patterns and similarities
in nucleotide sequences. By studying different nucleotide sequences with the use of machine-
learning methods, unique DNA fragments can be found that are distinctive patterns of a DNA
sequence. Two unique sequences (1 and 4) in the S1 sequence tested are marked green. Abbreviations:
S1, . . . , S7—denote different genome sequences (different nucleotide sequences in genomes); the
numbers 1, 2, 3, 4, 5, 6, 7—denote nucleotide sequences that occur in the sequences tested; the numbers:
58, 114, 1047, 1087—denote the sequence position in the genome; the unique DNA fragments are
denoted by green color; the nonunique DNA fragments are denoted by yellow color.

Machine-learning algorithms are of particular interest, as they allow classifying DNA
sequences, for example, the use of convolutional neural networks to analyze DNA se-
quences [14]. The classification of DNA sequences is very useful in understanding the
relationship between DNA sequences encoding different proteins, as well as the relation-
ships between proteins [13]. The main problem with these studies is that the functions of
DNA fragments are not fully understood and the relationships between DNA fragments
are still being discovered. There are many different approaches to finding homology in
files containing nucleotide sequences [24], e.g., the use of basic local alignment search tool
(BLAST) to find similarities in nucleotide sequences [25]. These problems are similar to
those of fast search in text files encountered in computer sciences [26].

The key element of the proposed approach of employing the biomolecular computers
is the use of machine-learning methods to find unique and characteristic DNA fragments
of the diagnosed organism. These can be unique patterns of DNA fragments that are found
by machine learning. Our proposed new approach is a combination of different research
results in the field of machine learning and theoretical and practical work in the field of
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biomolecular computers. This approach requires an interdisciplinary treatment of looking
at the problem of molecular diagnostics, which needs to be solved by a joint action of
computer science and molecular biology.

3. New Concept of Designing Diagnostic Biochips

Extraction of DNA sequence patterns with the use of machine-learning methods
provides the background for the construction of diagnostic biochips based on biomolecular
computers. In the proposed concept of designing diagnostic biochips based on biomolecular
computers, unique DNA fragments play a special role, as they enable proper programming
of a biomolecular computer in such a way that it reads unique DNA nucleotide sequences.

In the previous section, we discussed different machine-learning approaches to nu-
cleotide sequence data mining. In our new concept of designing diagnostic biochips, it is
possible to use artificial neural networks, for example, recurrent neural network (RNN) [18],
at the stage of machine learning in the sequence data mining. RNNs can be used for data
containing ordered strings, e.g., nucleotide sequences. From the point of view of the re-
search methodology involving the RNN, it is important that the nucleotide sequences of
the studied living organism genome are the input layer of such a network. RNNs can be
used to generate output based on a nucleotide sequence of a given length. For example,
RNNs can analyze nucleotide sequences that are characteristic of protein-coding genes and
identify promoter sequences [10]. As part of the methodology of working with sequence
extraction machine-learning methods, classic elements of machine learning, such as the
process of training, validation, and testing, should be distinguished in individual steps. In
the first step, it is necessary to well understand the set of input data and then to formulate
an appropriate research question. In the next step, the data should be divided into training,
testing, and validation sets. The next step is to choose the most suitable model for the
research question. At this stage, it is especially important to check assumptions on the
possibility of using the model. From the point of view of machine-learning methodology, it
is also important to fine-tune the hyperparameters for the methods used. It is worth noting
that in recent years, the model called transformers have attracted a lot of interest from
researchers, as it allows better accuracy when studying character strings such as nucleotide
sequences [27,28].

We propose a new approach to biochip design with biomolecular computing as the
hardware and software (Figure 2) to enable DNA-level diagnostics. In this approach, the
main mechanism is based on the use of biomolecular computers, built of appropriately
encoded DNA chains as the software, and restriction enzymes and ligase as the hardware.

Figure 2. Schematic diagram of the new approach to using biomolecular computers as diagnos-
tic biochips.

In this approach, the DNA fragments, for example, unique to a pathogenic virus,
are determined by means of machine-learning methods in the sequence data mining.
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Knowledge on unique DNA fragments, e.g., viral genomes, can come from analyzing
an open access genetic sequence database, such as the GenBank database. Particularly
interesting studies in this area include fingerprinting, which enables detection of the specific
DNA fragments (obtained by PCR) characteristic of the investigated organisms. Recent
years have also seen the development of methods based on artificial intelligence, which
enable an automatic retrieval of information from genetic data. To this end, we propose
the development of various machine-learning methods enabling detection of those DNA
fragments that are unique with reference to the tested species. An important part of
this approach is the software that will enable automatic encoding of the indispensable
parts of diagnostic biochips based on biomolecular computers. This type of software will
allow highly precise designing of indispensable components of the diagnostic biochips.
At the molecular level, the mechanism of action of the diagnostic biochips consists of
a sequential (alternate) reading of characteristic genetic features by the programmable
biomolecular nanodevices built of a double-stranded DNA and the restriction enzymes.
The devices complete their action as soon as they detect the presence of the desired DNA
fragments and output signal, e.g., by means of fluorescence. It is worth noting that the
so-designed diagnostic biochips can be manufactured commercially as laboratory kits or
diagnostic devices.

One of the requirements for the correct and accurate designing of biochips based on
biomolecular computers is to develop theoretical fundamentals of the implementation of
practical biomolecular computers. In the case of diagnostic biochips, we propose the use of
a formal system called queue automata [29] which have a memory that works according to
the first in, first out (FIFO) principle—queue memory [30] (Figure 3).

Figure 3. Schematic diagram of the queue memory operation (FIFO principle). A new element added
to the queue is placed at the end of the queue, and the first element is removed from the front of the
queue. The operation of adding a new element to the queue is called ENQUEUE, while the operation
of removing an element from the queue is called DEQUEUE. Abbreviations: 1, 2, 3, 4, 5 denote the
positions of the elements that are in the queue.

The queue automata consist of a head (finite control), a type with cells containing an
input word created from symbols of a certain finite alphabet and a queue (Figure 3). A
finite control reading of the symbols of the input word runs one after another and changes
its state according to the transition rules followed. At every step of the queue automaton
operation, the first symbol in the queue may be removed or retained, and another symbol
may be added at the end of the queue. The transition depends on the current state of
the queue automaton and on the symbol read out from the input word. A variant of
queue automata is the deterministic input-driven queue automata [31]. In these automata,
“input-driven” means that the automata are controlled by the input, i.e., that the input word
controls the queue. The deterministic input-driven queue automata are a formal system
M = (Q, Σ, Γ, q0, F,⊥, δe, δr, δi), where Q is the finite set of internal states; Σ is the finite
set of input symbols consisting of the disjoint union of sets Σe, Σr, Σi; Γ is the finite set of
queue symbols; q0 ∈ Q is the initial state; F ⊆ Q is the set of accepting states; ⊥ /∈ Γ is the
empty queue symbol; δe is the partial transition function mapping Q× Σe × (Γ ∪ {⊥}) to
Q× Γ; δr is the partial transition function mapping Q× Σr × (Γ ∪ {⊥}) to Q; and δi is the
partial transition function mapping Q× Σi × (Γ ∪ {⊥}) to Q.

The choice of that theoretical model (exactly queue automata) was dictated by the
possibility of task scheduling with the use of queue automata, which is required for the
controlled genome reading at the molecular level with the use of type IIB restriction
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endonucleases. The biomolecular implementation of the queue automata (biomolecular
queue automata) requires specific encoding of the respective components of the queue
automata (Figure 4).

Figure 4. Schematic diagram of a biomolecular queue automaton. Abbreviations: a, b, c, d, e denote
the symbols of the biomolecular queue automaton; A, B, C, D, E—the queue symbols of a biomolecular
computer; the empty queue symbol denotes the beginning of the biomolecular queue; the spacer
denotes the DNA fragment between the input symbols or the queue symbols of the biomolecular
queue automaton; 5′, 3′—the DNA chain direction.

We propose that the symbols in the queue automaton should be separated by spacers,
that is, the DNA fragments which do not encode the input symbols of a biomolecular
computer—similarly to a computing machine made of biomolecules and presented by
Ehud Shapiro’s group in 2003 [4]. In addition, our proposal is that the spacers between
the symbols should be of different length as this provides an opportunity to perceive a
genome as a system of different symbols separated by spacers (Figure 5A). In our approach,
the spacers can be used as technical DNA fragments encoding additional information at
the biological level, but they do not play a significant role in queue automata. From the
point of view of queue automata, the spacers are not very important for the calculations,
but can be used as carriers of biological information encoded in DNA, e.g., a spacer can
be used to store DNA sequences encoding proteins. It is suggested that the input symbols
of the queue automata are encoded with same-length DNA chains, for instance: 10 base
pairs, since this will enable appropriate encoding of the states of the queue automaton.
In this approach, we are able to find the respective DNA fragments in the genome and
then read the symbols using type IIB restriction endonucleases. The queue symbols of
the biomolecular computer are encoded with DNA chains which have the same encoding
lengths and which may contain spacers—just like the symbols of the queue automaton
(Figure 5B). The states of the biomolecular queue automata are understood as the cut places
of the symbol of a queue automaton within a fragment of the diagnosed genome [7].

Figure 5. (A) An example of the input symbols of a biomolecular queue automaton. (B) An example
of the queue symbols of a biomolecular queue automaton. Abbreviations: bp—the number of base
pairs, encoding information in DNA; 10 bp—the length of a DNA with 10 base pairs (other base pair
numbers such as 7 bp are to be understood accordingly); the input symbols of a biomolecular queue
automaton are denoted by blue color; the queue symbols of a biomolecular queue automaton are
denoted by green color, the empty queue symbol is denoted by yellow color.
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The distinguished initial state is the first cut place of a type IIB restriction endonuclease
in the appropriate place of the symbol of a genome. The set of accepting states is understood
as cut places generated after the last cut with type IIB restriction endonuclease. The empty
queue symbol is a separate DNA molecule, encoded with a unique DNA fragment with
a sticky end. The queue symbols are encoded within the DNA fragment located in the
transition molecule—to the left of the action site of the type IIB restriction endonuclease.
The queue symbols are released only after the transition molecule relates to the symbol,
encoded in the input word consisting of the symbols of the biomolecular queue automaton.
The transitions of the biomolecular queue automaton are encoded with DNA chains which
contain the restriction site for a type IIB restriction endonuclease in the middle of the
transition. One queue symbol is encoded on the left of the restriction site and on the right,
there is the sticky end complementary to the sticky end of the symbol of the biomolecular
queue automaton.

Type IIB restriction endonucleases may constitute the hardware for biomolecular
computers with queue memory, as they have the ability to simultaneously read and write
information by cutting the double-stranded DNA to the right and to the left of the restriction
site (Figure 6A). It is also acceptable to use multiple type IIB restriction endonucleases
that act alternately in a single reaction mixture as well as to use restriction enzymes of
other classes, for instance Class II, which cut the DNA chain only in one direction from the
restriction site. This is of interest particularly in the aspect of earlier laboratory studies on
the applicability of multiple restriction enzymes [5,6], as well as the concept of a theoretical
design of a push-down automaton with the use of multiple restriction enzymes [32].

Figure 6. (A) The operation of the restriction enzyme BaeI. (B) The mechanism of writing the queue
symbols using the restriction enzyme BaeI. Abbreviations: t1—the transition molecule named t1.

It is worth mentioning that, in the area of DNA computing, earlier practical solu-
tions based on the use of restriction enzymes, only offered the possibility of reading the
information encoded in the DNA, but not that of writing it [3,5]. The type IIB restriction
endonucleases enable cutting the DNA chains in two directions and, in addition, they leave
relatively long sticky ends, e.g., the length of the sticky ends left by BaeI is five nucleotides
(Figure 6A). This effect of the type IIB restriction endonucleases enables the biomolecular
computer to be programmed so that, after cutting the DNA chain, the enzyme writes
information on the read-out DNA fragment (Figure 6B)—this is similar to the case of the
biomolecular push-down automaton [8]. It is worth mentioning that a representative of the
type IIB restriction endonucleases, BaeI, was used in practical experiments aimed at the
implementation of the biomolecular computer involving multiple restriction enzymes [6].
This provided an experimental ground in the area of DNA computing for constructing
various practical solutions based on type IIB restriction endonucleases.
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4. A Concept for PCR Automation by Means of Biomolecular Computers

Biomolecular computers, specifically those with queue memory, which use type IIB
restriction endonucleases may be used for automating the PCR method. The proposed
new approach (called Queue-PCR) to automating the PCR method consists of the use of
biomolecular computers as the hardware and the software for a wide range of PCR solutions.
In comparison with the conventional PCR, this approach has the advantage of reading
numerous replicated DNA fragments by the appropriately programmed biomolecular
computer (Figure 7). The first step involves the replication of selected DNA fragments using
the starters and the polymerase—as in the conventional PCR protocol. In the next step, the
appropriately programmed biomolecular software in the form of transition molecules (see
t1, t2, t3, Figure 8) enables cutting the respective DNA fragments. The transition molecules
enable both reading the DNA fragments and writing the read-out DNA fragment at the
same time (Figure 8). The key elements in this approach are the appropriately programmed
transition molecules that are unique for each transition executed by the biomolecular
computer—they have the unique sticky ends and the encoded queue symbols.

Figure 7. Diagram Queue-PCR of a new PCR automation concept of the use of biomolecular
computers with type queue memory based on type IIB restriction endonuclease. The first step
of Queue-PCR concept is replication of selected DNA fragments and the next step is sequential
cutting and ligating DNA molecules by means of molecular software and hardware. Abbrevia-
tions: t1, t2, t3, t4, t5—respective transition molecules (molecular software); PCR—conventional PCR
method; the numbers: 58, 114, 1047, 1087 denote positions on the genome. The blue line denotes the
genome fragment multiplicated by the PCR. The green rectangle denotes the sequence recognized by
type IIB restriction endonuclease (molecular hardware). The DNA fragments amplify by PCR are
denoted by blue color. The restriction sites are denoted by light green color. The remaining colors
schematically illustrate the queue symbols.



Appl. Sci. 2022, 12, 6928 10 of 19

Figure 8. Operation of the restriction enzyme BaeI in a system which reads the genome
fragment—reading and writing information into the queue. The molecular software (t1, t2, t3) allows
alternating and autonomous cleavage of DNA molecules which are genome fragments obtained
by the PCR method. The biomolecular computer produces the final DNA fragment, as a standard
output, after the cyclic reactions of cutting and ligating the genome fragment obtained by the PCR
method. The green circle denotes the factor of fluorescence. The DNA fragments that are cleaved by
restriction enzyme (BaeI) are denoted in yellow. The restriction sites are denoted by light green color.
The other colors schematically illustrate the queue symbols that are placed in the queue.

After reading the DNA fragments (see Appendix A), the appropriately programmed
and designed biomolecular computer will return, as the standard output, information on
the result of the operation, e.g., in the form of fluorescence (see Appendix B). An important
element in the new approach to designing diagnostic biochips is the use of a restriction
enzyme cutting DNA in two directions (as described in the previous subsection). This
enables designing transition molecules which also comprise writing the information (queue
symbols) and reading multiple DNA fragments replicated by the PCR method. In the final
phase of DNA reading, a chain is formed that changes the color of the solution due to
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fluorescence. This approach may additionally be supplemented with DNA sequencing
using the restriction enzymes [33,34].

5. Discussion

Searching for unique nucleotide sequences using machine-learning methods is crucial
for the proposed applications of biomolecular computing. An important direction of
research in this area has been shown to be the discovery of unique patterns in nucleotide
sequences [9], as this knowledge enables biomolecular computer programming to read
unique patterns in nucleotide sequences.

Current and potential future research directions and an example of the use of biomolec-
ular computers as the hardware and software in technological solutions are presented.
Among the vast array of available restriction enzymes, type IIB restriction endonucleases
were selected as having a great potential in applications related to biomolecular computers.
In addition, the idea of biomolecular queue automata is proposed along with queuing
systems and queuing networks based on the use of type IIB restriction endonucleases and
appropriate encoding of double-stranded DNA. This approach shows that it is possible to
design biomolecular computers with queue memory as well as queuing networks using
type IIB restriction endonucleases. The earlier technological solutions included practical
laboratory experiments testing biomolecular finite state automata that were computers
without memory [3,4]. Moreover, laboratory tests were already run on the functioning of
type IIB restriction endonuclease (BaeI) in a system of biomolecular computers [6]. This
provides practical foundations for creating different technological solutions linked with
broadly understood biomolecular computers involving type IIB restriction endonucleases,
specifically for creating diagnostic biochips.

The proposed approach to designing biochips with biomolecular computers can
incorporate one or more than one type IIB restriction enzyme. The choice of multiple
restriction enzymes (type IIB) depends on the possibility of using an appropriate type IIB
restriction enzyme to read a genome fragment. If a given DNA fragment cannot be read by
a given type IIB restriction enzyme (in use with designed transition molecules), it should
be checked whether it is possible to read it using two or more restriction enzymes. When
selecting the number of type IIB restriction enzymes, one should be guided by the principle
of minimalism and choose the minimum number of restriction enzymes that can read a
given DNA fragment. In this regard, attention should be paid to the main advantage of
such an approach, namely that the use of more types of IIB restriction enzymes makes it
possible to read DNA fragments of greater lengths. Thus, the use of multiple restriction
enzymes in the diagnostic biochip (while maintaining the principle of minimalism) allows
building more complex biochips.

Additionally, in the case of diagnostic biochips, we propose the use of a formal
apparatus available in the theory of queue automata [29,35]. Particularly interesting are
the deterministic input-driven queue automata [31]; nevertheless, this approach does not
take into account encoding the input data with DNA chains and the action of restriction
enzymes. In addition, we used the idea of queue automata—a concept mentioned as
early as 1943 by Emil Leon Post [36]. The queue automata were the subject of studies
in various areas [31,35,37–39]. From the PCR perspective, especially interesting are the
queue automata in the context of scheduling problems [40], as in this method scheduling
of the resulting DNA chains is particularly useful. We propose to advance the idea of
the deterministic input-driven queue automata [31]. The other theories we used in our
paper include the queuing theory [41] and queuing networks [42]. The former was used
for modeling biological processes [43].

The use of type IIB restriction endonucleases also makes it possible to implement other
models, based on the type of queue memory. Particularly promising seem the queuing
systems based on the Erlang queuing theory [44,45]. It is worth noting that queuing systems
can be combined to form queuing networks [46], which enable complex systems based on
queues to be designed. Biomolecular implementation consists of the appropriate encoding
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of all elements of the system, where the queue is the hardest element to implement. It
should be noted that the idea of biomolecular implementation of a queue is provided in the
present paper. For instance, in every queuing system, one can use one type IIB restriction
endonuclease and combine it with others so that they form a queuing network.

Theoretical studies on biomolecular computers may provide practical solutions. Such
new methods and models may have numerous medical applications, complementing con-
ventional therapies and laboratory diagnostics. Early research on biomolecular computers
focused on human-operated, laboratory-scale computers for solving complex computa-
tional problems. More recently, simple, autonomous and programmable molecular com-
puters have been presented in which the input and output information can be given in
a molecular form. Such computers, using biological molecules as input and biologically
active molecules as output, could create a system for the “logical” control of biological
processes. An autonomous biomolecular computer is proposed, which, at least in vitro,
logically analyzes mRNA levels and responds by producing a molecule capable of affecting
gene expression levels. This approach can be applied in vivo for biochemical sensing,
genetic engineering, and even medical diagnosis and treatment.

A good example of the use of biomolecular computers is the concept of cancer diag-
nostics and cancer treatment based on silencing a cancer gene expression [47]. With this
approach in mind, Ehud Shapiro’s team developed a method for the activation of biomolec-
ular software for cases where the reaction mixture contains typical neoplastic mRNA. For
that purpose, they used a simple biomolecular computer, developed in a similar way as in
their previous experiments [3,4]: it was built of software (in the form of double-stranded
DNA) and hardware (in the form of the FokI restriction enzyme), which could only assume
one of two states—“yes” or “no”. If “cancer mRNA” was present, then the biomolecular
computer switched to the “yes” state; otherwise, it was in the “no” state. When all the
sought for cancer features in the form of mRNA were present in the reaction mixture, then
the biomolecular computer completed its operation and yielded the diagnosis of “yes”,
confirming the presence of cancer genes. Then, it released a drug capable of silencing the
cancer gene expression. A part of that approach was also the proposed new concept of
designing the input word, which enabled the release of the drug after the final cutting of
the double-stranded DNA encoding the symbols of the biomolecular computer.

Another interesting application of DNA computing is the general concept of de-
signing reconfigurable DNA nanovaults capable of controlling interactions between the
enzymes [48]. Of particular interest seem to be issues involving DNA sequencing, where
Sanger’s sequencing remains the basic method [49]. Interestingly, one of the methods of
studying sequencing is based on the use of class IIS restriction enzymes [33,50], and another,
similar approach to sequencing is used as well [34,51]. The proposed concept, of which
DNA sequencing is the main aim, is based on reading DNA by the restriction enzymes. It is
worth noting that the idea of sequencing with the use of the restriction enzymes was shown
before the first practical experiment, i.e., implementing biomolecular computers with a
single restriction enzyme [3]. It is particularly interesting to study the feasibility of sequenc-
ing in the aspect of programming and using biomolecular computers, because the two
approaches complement each other. It seems that comprehensive studies on sequencing
with the use of biomolecular computers will yield numerous practical solutions in the field
of sequencing. Another interesting application of restriction enzymes, regarding type IIB,
is fingerprinting with the use of a class of such enzymes [52]. The researchers noted that
type IIB restriction endonucleases can be used for studies on the genome of live organisms.
Details of the biochemical cutting of DNA by means of type IIB restriction endonucleases
were studied in a number of papers, including ours [6,53]. Type IIB enzymes were used in
DNA-computing studies for developing a theoretical biomolecular push-down automaton
model, that is, for a stack-memory computer. The main idea was based on using a circular
double-stranded DNA and a single type IIB restriction endonuclease, PsrI [8], which en-
ables cutting of the double-stranded DNA to the left and to the right of the restriction site.
This approach is similar to the idea presented by Paul W.K. Rothemund in 1995, in which
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the symbols are encoded by means of the double-stranded DNA, and input data processing
is affected by alternately cutting and ligating the double-stranded DNA. It should also
be noted that our practical studies on the use of multiple restriction enzymes in a single
reaction mixture also showed the applicability of type IIB restriction endonuclease for
designing biomolecular computers [6].

The action of a typical type IIB restriction endonuclease (more specifically, BaeI) was
studied in earlier works in a system of biomolecular computers using multiple restric-
tion enzymes [6]. Those studies demonstrated how to design synthetic nucleotides with
LITMUS 38i plasmids, and how to obtain the respective components of a biomolecular
computer working in a system of multiple alternately functioning restriction enzymes.
The biochemical reactions were optimized for two restriction enzymes acting in a single
reaction mixture [5]. In those studies, we also investigated in detail the optimization of
the reaction medium in which a biomolecular computer operates and identified problems
that may occur in preparing the respective components of biomolecular computers. More-
over, we explained how to solve any problems that may occur in the practical functioning
of the biomolecular computer comprising multiple restriction enzymes within a single
reaction mixture.

It is worth mentioning that earlier experiments demonstrated the action of a single
restriction enzyme in a biomolecular computer system [3,4,54]. The experimental conditions
of the work of various restriction enzymes were also investigated as potentially useful in
the construction of biomolecular computers [55].

Numerous research papers describe the development of biosensors, or small devices
enabling detection of organic compounds, for instance DNA, by means of miniature physi-
cal detectors. Another concept is to design biochips, or devices that enable a number of
biochemical reactions to take place in a single device, usually integrated with electronic
components that constitute the hardware [56,57]. A compelling approach to designing
diagnostic devices is the lab-on-a-chip (LOC), with a number of strategies to design actual
devices that are based on the lab-on-a-chip idea [58] and have practical applications involv-
ing operations on DNA [59]. An interesting illustration of how the lab-on-a-chip idea may
be coupled with DNA computing is the concept of a molecular inference system [60–62].
One more example of an innovative approach to using biomolecular computing is the idea
of creating biosensors [63,64].

What is frequently required in the practical implementations of biomolecular comput-
ers is an advanced mathematical formal apparatus, the purpose of which is to organize
state-of-the-art knowledge of various approaches to constructing biomolecular computers.
A precursor formal apparatus, which enables computations performed with the use of
restriction enzymes and a double-stranded DNA to be grasped, was described as the theory
of tailor automata [7]. A uniform formal system helps to precisely define a formal model
used for implementing biomolecular computers. This approach to DNA computing enables
problems connected with the practical designing of biomolecular computers to be solved
effectively. For instance, from the practical point of view, it is an important thing to increase
the number of states of a biomolecular computer [6,54,65], and to correctly encode the
symbols of the biomolecular computer, simply because their precise design is required
for the optimum operation of a biomolecular computer in the conditions of a reaction
medium [66,67].

In addition to that, a number of other concepts of building biomolecular computers
as well as their applications are currently in the phase of theoretical considerations. As a
proof of the principle, a computer can be used to identify and analyze mRNA of disease-
related genes from in vivo cancer models. Theoretical studies on biomolecular computers
include, as a leading topic, studies on the splicing system [68–71]. Another interesting
approach to DNA computing is the reaction system [72,73]—the subject of numerous
studies recently [74–76].

In this paper, we proposed an idea of biochips that can be constructed using DNA.
Therefore, the natural target processed easily by our biochips is cell-free DNA (cfDNA)
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present in a wide variety of pathological conditions ranging from cancer to autoimmune
diseases [77]. It is associated not only with disease occurrence, but also with the severity
of symptoms and even treatment options. It is worth mentioning that cfDNA can easily
be isolated using noninvasive methods and further processed. To date, cfDNA analysis
has only been quantitative; however, it has recently been shown that cfDNA can be used
to detect the sign of genomic instability. In other words, cfDNA profiling, defined as
a common set of disease-specific mutations, can be a useful tool for screening healthy
individuals for early symptoms of cancer and other diseases with the genomic instability
background. Such a screening is time- and cost-consuming, as it requires sequencing
followed by library preparation. Our conceptual biochips could be used instead of DNA
sequencing. It is possible to configure our biochips in such a way that individual mutations
would be scheduling by queue biomolecular automata and the signal is only emitted when
the exact mutation is detected.

6. Conclusions

This paper presents a novel concept for building biochips of which the hardware
and the software are based on biomolecular computers. Due to their unique properties,
the biomolecular computers are of particular interest in building biochips. Among the
various known theoretical models of computation, we selected the one that is exceptionally
interesting regarding the aspect of PCR automation, namely, the deterministic input-driven
queue automaton. We also indicated a group of restriction enzymes (type IIB restriction
endonucleases), especially important for biomolecular computers. The use of such enzymes
provides a foundation for designing biomolecular computers with memory, e.g., queue
automata. It would also be interesting to pursue studies on the applicability of type IIB
restriction endonucleases for designing various data structures known in computer science,
e.g., tree data structure.

We also propose a new approach—Queue-PCR—for automation of the PCR method
using the biomolecular computers. The Queue-PCR concept is important as a new idea of
the use of biomolecular computers. It shows their applications and indicates the potential
directions of study on new functionalities of programmable biomolecular nanodevices.
This approach to PCR automation may be the beginning of new directions of study, focused
on the automation of molecular genetics methods using biomolecular computers as the
hardware. This provides fundamentals for creating biomolecular software for PCR solutions
in their broad sense, thus enabling them to be programmed at the molecular level.

In the proposed approach, it is important to use machine-learning methods at the
stage of designing biochips based on biomolecular computers, because the key element of
the proposed solutions is knowledge on unique nucleotide sequences.
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Appendix A

Figure A1. The list of DNA chains that are formed during the action of a biochip—an example:
(A)—the set of all transition molecules; (B)—the set of all reaction by-products formed during the
alternating action of type IIB restriction endonuclease (more specifically, BaeI); (C)—the set of all
queue symbols. (D)—the set of all detection molecules; (E)—the process of biomolecular queue
symbols ligation; (F)—the set of all reactions in which DNA molecules are not ligated together.
Abbreviations: A, B, C (in italic text)—the queue symbols of a biomolecular computer; t1, t2, t3, t4,
t5—molecular software. The color markings are described in Figure 8.
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Appendix B

Figure A2. The list of DNA chain lengths before, during and after molecular diagnosis by means
of a biochip based on a biomolecular computer. The length of DNA strands before the diagnosis is:
200 bp, 56 bp, and 46 bp, while after the molecular diagnosis it is: 480 bp, and 28 bp. The fluorescence
mechanism is used, in which fluorescence occurs when a DNA chain of 480 appears in the solution.
The color markings are described in Figure 8.
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