Conference Paper

Advanced 2030 Turboprop Aircraft Modeling for the Electrified Powertrain Flight Demonstration Program

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Conference Paper
This paper presents a parametric modeling and integrated sizing approach for a charge-depleting parallel hybrid electric aircraft. The hybrid powertrain model is integrated within a regional aircraft with an entry-into-service of 2030-2035. In addition to the physical architecture, different operational modes enabled by the hybridization of the propulsion system are modeled parametrically. The modes of operation presented in this paper are peak power shaving, climb power electric boost, in-flight battery recharging, and electric taxi. The aircraft and powertrain sizing is performed within the multidisciplinary analysis and optimization environment, E-PASS. The consideration of the physical system and its operation together provides a holistic approach where the propulsion system and the airframe are designed under an optimized power and energy management strategy. The parametric nature of the work enables the design space exploration for electrification and lays the groundwork for future technology projection and uncertainty quantification studies. The developed capability is generic and can be applied to other aircraft classes. The work is done as part of the Electrified Powertrain Flight Demonstration program.
Full-text available
Article
Sandwich structures with advanced composite facesheets are attracting much attention as a solution to maximize the potential of composite materials. However, the composite sandwich structures are prone to damage, such as impact damage and debonding. Although these damages are difficult to detect using conventional nondestructive inspection method, they cause significant reduction in the mechanical properties. Hence, several researchers have attempted to detect and suppress the damages using smart sensors and actuators. In this paper recent developments on smart technologies to improve reliability of the composite sandwich structures are reviewed. First, the state-of-the-art sandwich technology in aerospace application is presented. Next, typical damages in composite sandwich structures are described, which is essential to effectively apply the smart technologies to sandwich structures. Then, smart technologies which have been applied to sandwich structures are briefly shown with focusing specific properties of sandwich structures. It includes damage detection using dynamic response, wave propagation and optical fiber sensors. Finally, a smart honeycomb sandwich concept is also presented.
Conference Paper
This paper presents a parametric modeling and integrated sizing approach for a charge-depleting parallel hybrid electric aircraft. The hybrid powertrain model is integrated within a regional aircraft with an entry-into-service of 2030-2035. In addition to the physical architecture, different operational modes enabled by the hybridization of the propulsion system are modeled parametrically. The modes of operation presented in this paper are peak power shaving, climb power electric boost, in-flight battery recharging, and electric taxi. The aircraft and powertrain sizing is performed within the multidisciplinary analysis and optimization environment, E-PASS. The consideration of the physical system and its operation together provides a holistic approach where the propulsion system and the airframe are designed under an optimized power and energy management strategy. The parametric nature of the work enables the design space exploration for electrification and lays the groundwork for future technology projection and uncertainty quantification studies. The developed capability is generic and can be applied to other aircraft classes. The work is done as part of the Electrified Powertrain Flight Demonstration program.
Conference Paper
View Video Presentation: https://doi.org/10.2514/6.2022-1994.vid This paper explores the design spaces of a thin-haul and a regional aircraft with parallel hybrid electric propulsion architectures and an entry into service date of 2030. Notional technology reference aircraft models were developed for a 19- and a 50-passenger aircraft based on publicly available data on the Beechcraft 1900D and ATR 42-600, respectively. Advanced technology aircraft models were developed by infusing the reference aircraft models with a set of selected airframe and propulsion system technologies projected to reach maturity by2030. Matlab and NPSS-based parametric, physics-based models were created for the charge depleting parallel hybrid electric propulsion system architecture. Different modes of operation were identified and parametrized with a basket of design variables to investigate the feasibility and trade space for peak power shaving, climb power boosting, electric taxi, battery usage schedules, and in-flight battery recharge strategies. A design of experiments with thousands of data points was conducted for the 19- and 50-passenger electrified aircraft propulsion vision systems. The vision systems were sized for the same point and mission performance requirements as their conventional counterpart. Artificial Neural Network models were fit toa set of subsystem, system, and mission level metrics of interest. An extensive trade study was performed to identify the fuel burn, weight, and efficiency trends and sensitivities as a function of different modes of operation as well as the electric powertrain key performance parameters and technology projections for 2030 and onward. The resulting multidisciplinary design space exploration environment was used to identify the optimum vision system designs and modes of operation for the minimum block fuel burn objective. It was found that both vehicle classes with the charge depleting parallel hybrid electric architecture provided fuel burn benefits over their 2030 advanced technology counterparts under certain modes of operation.
Article
The application of riblets on a typical regional turboprop configuration is discussed in this paper. The effect of the riblets is modeled as a singular roughness problem by a proper boundary condition at the wall. The model, already proposed in a previous paper, is briefly described. The drag prediction capabilities are verified by showing some airfoil flow applications. Then a typical wing–body of a regional aircraft is considered. The configuration has been designed to have extended natural laminar flow in cruise conditions. Riblets are applied at flow specifications representative of cruise in combination with the natural laminar flow technology and in climb/descent conditions. A comparison of the two technologies in terms of drag reduction is presented. Their combined application can result in a cruise drag reduction of more than 20%. The resulting fuel savings during a typical operational day are evaluated.
Article
Purpose The purpose of this paper was to create a generic and flexible framework for the exploration, evaluation and side-by-side comparison of novel propulsion architectures. The intent for these evaluations was to account for varying operation strategies and to support architectural design space decisions, at the conceptual design stages, rather than single-point design solutions. Design/methodology/approach To this end, main propulsion subsystems were categorized into energy, power and thrust sources. Two types of matrices, namely, the property and interdependency matrices, were created to describe the relationships and power flows among these sources. These matrices were used to define various electrified propulsion architectures, including, but not limited to, turboelectric, series-parallel and distributed electric propulsion configurations. Findings As a case study, the matrices were used to generate and operate the distributed electric propulsion architecture of NASA’s X-57 Mod IV aircraft concept. The mission performance results were acceptably close to the data obtained from the literature. Finally, the matrices were used to simulate the changes in the operation strategy under two motor failure scenarios to demonstrate the ease of use, rapidness and automation. Originality/value It was seen that this new framework enables rapid and analysis-based comparisons among unconventional propulsion architectures where solutions are driven by requirements.
Article
The out-of-autoclave-vacuum-bag-only (OOA-VBO) process is low in capital expenditures compared to the traditional autoclave, however, the material challenges for OOA-VBO workable material systems are high. Presently there are few such aerospace grade prepreg materials available commercially. In this study, we evaluated processing and properties of honeycomb sandwich structure (HC/SS) panels fabricated by co-curing composite face sheet with adhesives by the OOA-VBO process in an oven. The prepreg materials were IM7/MTM 45-1 and T40-800B/5320. Adhesives studied were AF-555M, XMTA-241/PM15, FM-309-1M and FM-300K. Aluminum H/C cores with and without perforations were included. It was found that adhesives in IM7/MTM 45-1/AF-555M, T40-800B/5320/FM 309-1M and T40-800B/5320/FM-300K panels all foamed but yielded high flatwise tensile (FWT) strength values above 8,275 kPA (1,200 psi). IM7/MTM 45-1/XMTA-241/PM15 did not foam, yet yielded a low FWTstrength. SEM photomicrographs revealed that the origin of this low strength was poor adhesion in the interfaces between the adhesive and face sheet composite due to poor wetting associated with the high initial viscosity of the XMTA-241/PM15 adhesive.
Article
With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise reduction at selective frequencies (1500 to 3000 Hz) but are otherwise in general agreement with the far-field spectra results (within measurement uncertainty).
Conference Paper
As part of a joint venture between DASA/Dornier Luftfahrt GmbH and DLR Braunschweig, a laminar wing glove was designed for the Do 228 turboprop aircraft. The glove, covering nearly 50% of half-span, was attached to the right wing of the aircraft. The extensive flight tests, performed in close cooperation between DLR and Dornier, included the evaluation of the laminar properties in the undisturbed glove region and in the propeller slipstream region. The influence of disturbances due to simulated surface imperfections was studied to determine the magnituedes for allowable manufacturing tolerances. A liquid cleaning and de-icing system covering a spanwise region of 1m was tested on the outer part of the glove. In this paper, some of the design aspects of the glove are discussed and the main results of the flight test are presented.
Modeling turboshaft engines for the revolutionary vertical lift technology project
  • C A Snyder
  • M T Tong
C. A. Snyder and M. T. Tong, "Modeling turboshaft engines for the revolutionary vertical lift technology project," in 75th Annual Vertical Flight Society (VFS 2019) Forum and Technology Display, Philadelphia, 2019.
Fy2019 advanced air transportation technologiessystems analysis report: Technology portfolio
  • mavris
A methodology for dynamic sizing of electric power generation and distribution architectures
  • G Cinar
G. Cinar, "A methodology for dynamic sizing of electric power generation and distribution architectures," Ph.D. dissertation, Georgia Institute of Technology, 2018.
Model 1900D Airliner Pilot's Operating Manual, Hawker Beechcraft Corporation
Model 1900D Airliner Pilot's Operating Manual, Hawker Beechcraft Corporation, P.O. Box 85, Wichita, Kansas, 67201-0085 USA, Sep. 2008.
Fy2019 advanced air transportation technologiessystems analysis report: Technology portfolio
  • D N Mavris
  • J Tai
  • J Gladin
D. N. Mavris, J. Tai, and J. Gladin, "Fy2019 advanced air transportation technologiessystems analysis report: Technology portfolio," Georgia Institute of Technology, techreport, Jul. 2020.