Content uploaded by Claus Marberger
Author content
All content in this area was uploaded by Claus Marberger on Jul 07, 2022
Content may be subject to copyright.
Content uploaded by Claus Marberger
Author content
All content in this area was uploaded by Claus Marberger on Jul 07, 2022
Content may be subject to copyright.
Questionnaire for subjective assessment of ride comfort in automated driving:
“Automated Ride Comfort Assessment (ARCA)”
Authors: Claus Marberger, Dr. Hanna Otto, Michael Schulz, Dr. Philipp Alt, Stefanie Horn
Affiliation: Robert Bosch GmbH
1 Background information
• The questionnaire addresses aspects of ride comfort in automated vehicles that is related to the design of the
automated vehicle motion. It deliberately excludes aspects of ride comfort that are determined by character-
istics of vehicle suspension, seating ergonomics, design of interior space, air quality etc.
• The questionnaire compiles several relevant physical and mental aspects of comfort/well-being on the basis
of a literature research conducted in AP1 of the RUMBA project (https://projekt-rumba.de/en/). Apart from
„classical“ criteria of ride comfort, the questionnaire also includes aspects of general user experience and
technology acceptance.
• Purpose of the tool: post-hoc assessment of a past drive or section of a drive; no explicit focus on single
driving situations.
• No assessment of technical parameters (like brake timing, deceleration dynamics, …), instead a clear focus
on subjective experience was chosen.
• 1 “direct”-item per factor and consistent format across all items keeps complexity low and allows multiple
usage of the tool within one trial.
• Response format does not only address discomfort (from „negative“ to “neutral”), but the complete spectrum
from discomfort to comfort (from „negative“ – red, to „neutral“ – white to „positive“ – green). This reflects the
underlying mental model of comfort. In this model comfort is a conscious experience of well-being, when
relevant physical and mental aspects surpass the expected level in a positive way. Conversely, discomfort
results, when these aspects fall short in relation to the expected level (cf. Carsten& Martens, 2019).
• In case single items do not fit to the conditions of the study they should be removed beforehand.
• The analysis should be done on single item level. In order to assess the overall comfort level of a past auto-
mated drive, the last two items can be used. Calculation of total scores is not foreseen and not recommended.
2 Current version of the questionnaire (2022/05/18)
Figure 1: Overview of underlying factors (left; not part of the questionnaire) and single items including response choices (right).
Sense of safety As a user of this system, I felt …. unsafe ◌ ◌ ◌ ◌ ◌ ◌ ◌ safe.
Naturalness Vehicle control appeared …. unnatural ◌ ◌ ◌ ◌ ◌ ◌ ◌ natural.
Cooperativity Vehicle behavior appeared … towards other road users. unfriendly ◌ ◌ ◌ ◌ ◌ ◌ ◌ friendly
Transparency Decisions for lane choice were … to me. not transparent ◌ ◌ ◌ ◌ ◌ ◌ ◌ transparent
Feeling of control Automated driving felt like ... control. losing ◌ ◌ ◌ ◌ ◌ ◌ ◌ gaining
Travel progress I had the impression to travel …. inefficiently ◌ ◌ ◌ ◌ ◌ ◌ ◌ efficiently.
Workload Automated driving made me feel … stressed ◌ ◌ ◌ ◌ ◌ ◌ ◌ relaxed.
Social environment Other road users probably think … about my vehicle's behavior. negative ◌ ◌ ◌ ◌ ◌ ◌ ◌ positive
Predictability I could … predict the vehicle's behavior. hardly ◌ ◌ ◌ ◌ ◌ ◌ ◌ easily
System trust My feeling of trust towards this system is … low ◌ ◌ ◌ ◌ ◌ ◌ ◌ high.
Interference with NDRT The driving behavior made it … to work with the mobile device. difficult ◌ ◌ ◌ ◌ ◌ ◌ ◌ easy
G-Forces (braking) G-forces due to braking were … inappropriate ◌ ◌ ◌ ◌ ◌ ◌ ◌ appropriate.
G-Forces (accelerating) G-forces due to acceleration were … inappropriate ◌ ◌ ◌ ◌ ◌ ◌ ◌ appropriate.
G-Forces (curves) G-forces in curves/turns were … inappropriate ◌ ◌ ◌ ◌ ◌ ◌ ◌ appropriate.
G-Forces (lane change) G-forces during lane changes were … inappropriate ◌ ◌ ◌ ◌ ◌ ◌ ◌ appropriate.
Fatigue My body feels physically … fatigued ◌ ◌ ◌ ◌ ◌ ◌ ◌ recovered.
Motion sickness Concerning motion sickness, I feel sick ◌ ◌ ◌ ◌ ◌ ◌ ◌ well.
General comfort All in all, the automated ride was … uncomfortable ◌ ◌ ◌ ◌ ◌ ◌ ◌ comfortable.
General drivign style I am … with the way the automation controlled the vehicle. unhappy ◌ ◌ ◌ ◌ ◌ ◌ ◌ happy
Ride comfort in automated driving
General
Psychological aspects
Physical aspects
3 Underlying literature
• Bellem, H. (2017). Analysis of Driving Style Preference in Automated Driving. Dissertation. Technische Uni-
versität Chemnitz, Chemnitz.
• Bellem, H., Schönenberg, T., Krems, J. F., & Schrauf, M. (2016). Objective metrics of comfort: Developing a
driving style for highly automated vehicles. In: Transportation Research Part F: Traffic Psychology and Be-
haviour 41, S. 45–54.
• Carsten, O., & Martens, M. H. (2019). How can humans understand their automated cars? HMI principles,
problems and solutions. Cognition, Technology & Work, 21(1), 3-20.
• Chang, A. (2012). UTAUT and UTAUT 2: A review and agenda for future research. The Winners, 13(2), 10-
114.
• Da Silva, M. C. G. (2002). Measurements of comfort in vehicles. In: Measurement Science and Technology
13 (6)
• Dovgan, E., Tušar, T., Javorski, M., & Filipič, B. (2012). Discovering comfortable driving strategies using sim-
ulation-based multiobjective optimization. In: Informatica 36 (3).
• Ellinghaus, D. & Schlag, B. (2001). Beifahrer. Eine Untersuchung über die psychologischen und soziologi-
schen Aspekte des Zusammenspiels von Fahrer und Beifahrer. Köln, Hannover.
• Engelbrecht, A. (2013). Fahrkomfort und Fahrspaß bei Einsatz von Fahrerassistenzsystemen. disserta Verlag.
• Elbanhawi, M., Simic, M., & Jazar, R. (2015). In the passenger seat: investigating ride comfort measures in
autonomous cars. IEEE Intelligent transportation systems magazine, 7(3), 4-17.
• Festner, M. (2019). Objektivierte Bewertung des Fahrstils auf Basis der Komfortwahrnehmung bei hochauto-
matisiertem Fahren in Abhängigkeit fahrfremder Tätigkeiten: Grundlegende Zusammenhänge zur komfortori-
entierten Auslegung eines hochautomatisierten Fahrstils (Doctoral dissertation, Universität Duisburg-Essen).
• Flemisch, F., Schieben, A., Schoemig, N., Strauss, M., Lueke, S., & Heyden, A. (2011, July). Design of human
computer interfaces for highly automated vehicles in the EU-Project HAVEit. In International Conference on
Universal Access in Human-Computer Interaction (pp. 270-279). Springer, Berlin, Heidelberg.
• Hartwich, F., Beggiato, M., Dettmann, A., & Krems, J. F. (2015). Customized Automated Driving Styles for
Younger and Older Drivers. VDI Bericht 2264, 271-283.
• Hassenzahl, M. (2007). The hedonic/pragmatic model of user experience. Towards a UX manifesto 10.
• Lange, A., Maas, M., Albert, M., Siedersberger, K.-H., & Bengler, K. (2014). Automatisiertes Fahren - So
komfortabel wir möglich, so dynamisch wie nötig. Vestibuläre Zustandsrückmeldung beim automatisierten
Fahren. In: VDI (Hg.): 30. VDI/VW-Gemeinschafts-tagung. Fahrerassistenz und Integrierte Sicherheit. Wolfs-
burg, 14.-15.10.2014. VDI/VW: VDI Verlag GmbH, S. 215–228.
• Peng, C., Merat, N., Romano, R., Hajiseyedjavadi, F., Paschalidis, E., Wei, C., ... & Boer, E. (2021). Drivers’
Evaluation of Different Automated Driving Styles: Is It Both Comfortable and Natural?
• Schönhammer, R. (1992). Zur Psychologie der Beifahrersituation. In: Deutschen Gesellschaft für Psychologie
(Hg.): Bericht über 38. Kongreß der Deutschen Gesellschaft für Psychologie. Trier. Göttingen: Hogrefe, S.
321–322.
• Sarter, N. B., Woods, D. D., & Billings, C. E. (1997). Automation surprises. Handbook of human factors and
ergonomics, 2, 1926-1943.
• Summala, H. (2007). Towards understanding motivational and emotional factors in driver behaviour: Comfort
through satisficing. In Modelling driver behaviour in automotive environments (pp. 189-207). Springer, London.