The chapter presents an analytic description of evolutionary and developmental morphogenetic events in Metazoa using concepts of self-organization, morphological and molecular–genetic data, and the topological approach to the analysis. Biological objects are complex systems capable of dynamic self-organization at all levels of biological complexity. Some examples of self-organization in cyanobacteria, metazoan cells in vitro (chick embryo myogenic cells, molluscan hemocytes, sea urchin embryo cells), and animal communities of some vertebrates are shown. Following René Thom, a topological interpretation of some evolutionary and developmental transformations is presented using well-known mathematical concepts. Toroidal forms are considered as examples of functionally optimized biological design and attractors in metazoan morphogenesis. Molecular–genetic evidence of genomic–phenomic correlations determining the body plan and evolutionary trajectories in Metazoa is discussed. Gene regulatory networks and whole metazoan genomes are interpreted as self-organizing network systems dynamically transforming in development and evolution. Symmetry breaking, topological discontinuities and catastrophes, and body plan transformations are fundamental phenomena in metazoan development and evolution.