Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Big Data has proved to be vast and complex, without being efficiently manageable through traditional architectures, whereas data analysis is considered crucial for both technical and non-technical stakeholders. Current analytics platforms are siloed for specific domains, whereas the requirements to enhance their use and lower their technicalities are continuously increasing. This paper describes a domain-agnostic single access autoscaling Big Data analytics platform, namely Diastema, as a collection of efficient and scalable components, offering user-friendly analytics through graph data modelling, supporting technical and non-technical stakeholders. Diastema's applicability is evaluated in healthcare through a predicting classifier for a COVID19 dataset, considering real-world constraints.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.