ArticlePDF Available

On quasi-monoidal comonads and their corepresentations

Authors:

Abstract

In this paper, we define and study quasi-monoidal comonads on a monoidal category. It generalize the (Hom type) coquasi-bialgebras to a non-braided setting. We investigate their corepresentations and their coquasitriangular structures. We also discuss their gauge equivalence relations.
Electronic
Research Archive
http://www.aimspress.com/journal/era
ERA, 30(8): 3153–3171.
DOI: 10.3934/era.2022160
Received: 20 March 2022
Revised: 12 May 2022
Accepted: 17 May 2022
Published: 17 June 2022
Research article
On quasi-monoidal comonads and their corepresentations
Dingguo Wang and Xiaohui Zhang*
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China.
*Correspondence: Email: zhangxh2015@qfnu.edu.cn, zxhhhhh@hotmail.com.
Abstract: In this paper, we define and study quasi-monoidal comonads on a monoidal category. It
generalize the (Hom type) coquasi-bialgebras to a non-braided setting. We investigate their corepre-
sentations and their coquasitriangular structures. We also discuss their gauge equivalence relations.
Keywords: quasi-monoidal comonads; coquasitriangular structures; gauge transformations;
monoidal categories
1. Introduction
The theory of (co)monads can be used as a tool in various fields of mathematics such as algebra,
logic or operational semantics, and theoretical computer science. Note that in algebra theory, there are
two dierent “bimonads”. On the one hand, bimonads and Hopf monads without monoidal structures
were introduced in [1], and developed in [2–4]. On the other hand, bimonads on monoidal categories
were introduced in [5]. In 2002, Moerdijk used an opmonoidal monad to define a bimonad. This
bimonad Fis both a monad and an opmonoidal functor satisfying the multiplication and the unit of F
are all monoidal natural transformations (see [5] for details). Although Moerdijk called his bimonad
“Hopf monad”, the antipode was not involved in his definition. In 2007, A. Bruguières and A. Virelizier
introduced the notion of Hopf monad with antipode in the rigid categories in [6], and then put it in the
non-dual monoidal categories [7]. We refer to [7–11] for the recent research on A. Bruguières and A.
Virelizier’s bimonads.
Quasi-bialgebras were introduced by V. G. Drinfel’d in [12]. The dual definition, a k-coquasi-
bialgebra H(or a Majid algebra), was introduced by S. Majid in [13]. The associativity of the multipli-
cation are replaced by a weaker property, called coquasi-associativity. The multiplication is associative
up to conjugation by a convolution invertible linear form ω(HHH), called the coassociator.
Note that the definition of a coquasi-bialgebra is not selfdual, and the category of (left or right) co-
modules over a coquasi-bialgebra is a monoidal category with nontrivial associativity constraint and
nontrivial unit constraints. Coquasi-bialgebras in a braided monoidal category also have been studied
3154
in [14].
Taking into account the results proved A. Bruguières and A. Virelizier in [6], it is now very natural
to ask how to extend coquasi-bialgebras to the non-braided setting. This is the main motivation of the
present paper.
In this paper, we present a dual version of the second author’s results about quasi-bimonads which
appeared in [15]. We mainly provide a generalization of coquasi-bialgebras by introducing the notion
of quasi-monoidal comonad. Actually, a quasi-monoidal comonad Fis both a comonad and a quasi-
monoidal functor such that its corepresentations is a non-strict monoidal category. The notion of quasi-
monoidal comonad is very general. For example, the tensor functor of a (Hom-type) coquasi-bialgebras
and bicomonads are all special cases of quasi-monoidal comonads.
The paper is organized as follows. In Section 2 we recall some notions of comonads, quasi-monoidal
functors, π-categories and so on. In Section 3, we introduce the definition of quasi-monoidal comonads
and discuss their corepresentations. In Section 4, we mainly investigate the coquasitriangular structures
of a quasi-monoidal comonad. At last, we introduce the gauge equivalent relation on quasi-monoidal
comonads.
2. Preliminaries
Throughout the paper, we let kbe a fixed field and char(k)=0 and Veckbe the category of finite
dimensional k-spaces. All the algebras and coalgebras, modules and comodules are supposed to be in
Veck. For the comultiplication of a k-space C, we use the Sweedler-Heyneman’s notation: (c)=
Pc1c2for any cC.
2.1. Quasi-monoidal functor
Let (C,,I,a,l,r) and (C,,I,a,l,r) be two monoidal categories. Recall that a quasi-monoidal
functor from Cto Cis a triple (F,F2,F0), where F:C→Cis a functor, F2:FFFis a
natural transformation, and F0:IFI is a morphism in C.
Furthermore, if the following equations hold for any X,Y,Z C:
F2(X,YZ)(idFX F2(Y,Z)) a
FX,F Y,FZ
=F(aX,Y,Z)F2(XY,Z)(F2(X,Y)idFZ ),(2.1)
F(lX)F2(I,X)(F0idFX)=l
FX ,(2.2)
F(rX)F2(X,I)(idFX F0)=r
FX ,(2.3)
then F=(F,F2,F0) is called a monoidal functor.
2.2. Monoidal comonad
Let Cbe a category, F:C→C be a functor. Recall from [16] or [17] that if there exist natural
transformations δ:FFF and ε:FidC, such that the following identities hold
Fδδ=δFδ, and idF=Fεδ=εFδ,
then we call the triple (F, δ, ε) a comonad on C.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3155
Let X C, and (F, δ, ε) a comonad on C. If there exists a morphism ρX:XF X, satisfying
FρXρX=δXρX,and εXρX=idX,
then we call the couple (X, ρX) an F-comodule.
A morphism between F-comodules g:XXis called F-colinear, if gsatisfies: Fg ρX=ρXg.
The category of F-comodules is denoted by CF.
Let (C,,I,a,l,r) be a monoidal category, (F, δ, ε) be a comonad on C, and (F,F2,F0) : C→Cbe a
monoidal functor. Then recall from [18] or [19] that Fis called a monoidal comonad (or a bicomonad)
on Cif δand εare both monoidal natural transformations, i.e. the following compatibility conditions
hold for any X,Y C:
(C1) F(F2(X,Y)) F2(FX,FY)(δXδY)=δXYF2(X,Y),
(C2) εXYF2(X,Y)=εXεY,
(C3) F(F0)F0=δIF0,
(C4) εIF0=idI.
2.3. Convolution product
Given a category Cand a positive integer n, we denote Cn=C×C×···×Cthe n-tuple cartesian
product of C. If Fis a comonad on C, then F×n(the n-tuple cartesian product of F) is a comonad on
Cn, and we have CnF×n=(CF)n.
Assume that U:CF C is the forgetful functor and P,Q:Cn D are functors. Then from [ [9],
Proposition 4.1], we have the following results.
Lemma 2.1. There is a canonical bijection:
Nat(PU×n,QU×n)N at(PF×n,Q).
Proof. Define ?:Nat(PU×n,QU×n)Nat(PF×n,Q), f7→ f, by
f
(X1,··· ,Xn):P(FX1× · · · × F Xn)f(F X1,··· ,F Xn)
//Q(FX1× · · · × F Xn)
Q(εX1,··· Xn)
//Q(X1× · · · × Xn),
and ?:Nat(PF×n,Q)Nat(PU×n,QU×n), α7→ α, by
α
(M1,··· ,Mn):P(M1× · · · × Mn)
P(ρM1,··· Mn)
//P(FM1× · · · × F Mn)α(M1,··· ,Mn)//Q(M1× · · · × Mn),
for any fN at(PU×n,QU ×n), αNat(PF×n,Q) and Xi C, (Mi, ρMi) CF. It is easy to check that ?
and ?are well defined and are inverse with each other.
Let P,Q,R:Cn D be functors. For any αNat(PF×n,Q) and βN at(QF×n,R), define their
convolution product βαN at(PF×n,R) by setting, for any objects X1,· · · ,Xnin C,
βαX1,··· ,Xn=βX1,··· ,XnαFX1,··· ,F XnP(δX1,· · · , δXn).
We say that αNat(PF×n,Q) is -invertible if there exists βNat(QF×n,P) such that βα=P(ε×n)
Nat(PF×n,P) and αβ=Q(ε×n)Nat(QF×n,Q). We denote βby α∗−1.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3156
Proposition 2.2. The -invertible elements in Nat(PF×n,Q)are in corresponding with the natural
isomorphisms in Nat(PU×n,QU×n).
Proof. Suppose that fNat(PU×n,QU×n) is a natural isomorphism. Then we immediately get that
(f)∗−1=(f1).
Conversely, if αNat(PF×n,Q) is -invertible, then α1=(α∗−1).
3. Quasi-monoidal comonads
Suppose that (C,,I,a,l,r) is a monoidal category, F:C C is a functor, (F, δ, ε) is a comonad
and (F,F2,F0) is a quasi-monoidal functor.
Lemma 3.1. If we define the F-coaction on I by F0, and define the F-coaction on M N (as the tensor
product in C) for any (M, ρM),(N, ρN) CFby:
ρMN:MNρMρN
//FM F N F2(M,N)//F(MN),
then (I,F0)and (MN, ρMN)are all objects in CFif and only if the compatibility conditions Eqs
(C1)–(C4) hold.
Proof. It is straightforward to check that Eqs (C1) and (C2) hold if and only if (MN, ρMN) CF,
Eqs (C3) and (C4) hold if and only if (I,F0) CF.
From now on, we always assume that the compatibility conditions Eqs (C1)–(C4) hold.
We suppose that there are natural transformations ϑ: (_ _) _F×3_(_ _) : C×3 C,
and ι:IF__ : C→C,κ:F_I_ : C→C. From Lemma 2.1, for any objects
(M, ρM),(N, ρN),(P, ρP) CF,ϑ, ι, κ can induce the following natural transformations
AM,N,P=ϑ
M,N,P,LM=ι
M,RM=κ
M.
Conversely, if there are natural transformations A: (_ _) __(_ _) : C×3 C and
L:I_id :C→C,R: _ Iid :C→C, then from Lemma 2.1, for any X,Y,Z C, they can
induce natural transformations
ϑX,Y,Z=A
X,Y,Z, ιX=L
X, κX=R
X.
Next, we will discuss when Ais the associativity constraint and L,Rare the unit constraints in CF.
Lemma 3.2. A, L and R are isomorphisms if and only if ϑ,ιand κare -invertible.
Proof. Straightforward from Proposition 2.2.
Lemma 3.3. A is F -colinear if and only if ϑsatisfies
(FX FY)FZ
δXδYδX
δXδYδX//(FFX FFY)FFZ F2id //F(F X F Y )F FZ
F2
(FFX FFY)FFZ
ϑFX,F Y,FZ
F((FX FY)FZ)
FϑX,Y,Z
FX (FY FZ)idF2
//FX F(YZ)F2
//F(X(YZ))
(3.1)
for any X,Y,Z C.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3157
Proof. ): Since the following diagram
(MN)P
ρMρNρP
ρMρNρP
//(FM F N)FP
δMδNδP
ϑ//M(NP)
ρMρNρP
(FM F N)FP
F2id
(FF M FFN)FFP
F2id
ϑ//FM (F N F P)
idF2
F(MN)FP
F2
FρMFρNFρP
//F(FM F N)FFP
F2
FM F(NP)
F2
F(M(NP)) F(ρMρNρP)//F(FM (F N F P)) Fϑ//F(M(NP))
is commutative for any M,N,P CF,AM,N,Pis F-colinear.
): Notice that AF X,FY,FZ is F-colinear for any X,Y,Z C, then it follows
F(εXεYεZ)FAF X,FY,FZ ρ(FXFY )F Z
=F(εXεYεZ)ρFX (FY FZ )AFX,FY,FZ .
After a direct computation, we obtain (3.1).
Lemma 3.4. A satisfies the Pentagon Axiom in CFif and only if ϑsatisfies
(id ϑX,Y,Z)ϑW,FX FY,FZ (id F2id)(ϑF W,FFX,F FY id) (3.2)
(δWδ2
Xδ2
YδZ)
=ϑW,X,YZ(id id F2)ϑF WFX,F Y,FZ (F2id id)(δWδXδYδZ)
for any W,X,Y,Z C.
Proof. ): Since we have
(id ϑN,P,Q)(id ρNρPρQ)ϑM,NP,Q(id F2id)(ρMρNρPρQ)
(ϑM,N,Pid)(ρMρNρPid)
=(id ϑN,P,Q)ϑM,F NFP,FQ (id F(ρNρP)ρQ)(id F2id)(ϑF M,F N,F P id)
(FρMFρNFρPρQ)(ρMρNρPid)
=(id ϑN,P,Q)ϑM,F NFP,FQ (id F2id)(ϑF M,FFN,FFP id)(δMδ2
Nδ2
PδQ)
(ρMρNρPρQ)
=ϑM,N,PQ(id id F2)ϑFM FN,FP,FQ (F2id id)(δMδNδPδQ)
(ρMρNρPρQ)
=ϑM,N,PQ(id id F2)(ρMρNρPρQ)ϑMN,P,Q(F2id id)
(ρMρNρPρQ)
for any M,N,P,Q CF,Asatisfies the Pentagon Axiom.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3158
): For any W,X,Y,Z C, we have cofree F-comodules FW,F X,FY,F Z. Consider the following
Pentagon Axiom:
AFW,FX,FYF Z AFW FX,FY,FZ
=(id AFX,F Y,FZ )AFW,FXF Y,FZ (AFW,FX,FY id).
Applying εWεXεYεZto both sides of the above identity, we get Diagram (3.2).
Lemma 3.5. For any X C,
(1) L is F -colinear if and only if ιsatisfies
IFX
F0δX
idδX//IFFX
ιFX
FI FFX F2
//F(IFX)FιX
//FX.
(3.3)
(2) R is F-colinear if and only if κsatisfies
FX I
δXF0
δXid //FFX I
κFX
FFX FI F2
//F(FX I)FκX
//FX.
(3.4)
Proof. We only prove (1).
): From the following commutative diagram
IM
idρM
idρM
//IFM
idFρM
F0id //FI F M
idFρM
F2//F(IM)
idρM
IFM
ιM&&
idδM//IFF M
ιFM ''
F0id //FI FF M F2//F(IF M)
FιM
vv
MρM//FM
for any M CF,LMis F-colinear.
): Conversely, since FX is an F-comodule and LF X is F-colinear for any X C, it is directly to
get Diagram (3.3).
Lemma 3.6. A, L and R satisfy the Triangle Axiom in CFif and only if ϑ,ιand κsatisfy
(FX I)FY
idF0δY
κXid //XFY id εY//XY
(FX FI)FFY ϑX,I,F Y
//X(IFY )
idιY
OO(3.5)
for any X,Y,Z C.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3159
Proof. ): For any M,N CF, we compute
(idMιN)(idMidIρN)ϑM,I,N(ρMF0ρN)
=(idMιN)ϑM,I,F N (idF M F0δN)(ρMidIρN)
=(idMεN)(κMidF N )(ρMidIρN)
=(κMidN)(ρMidIidN)
thus the Triangle Axiom in CFholds.
): Conversely, for any X,Y C, since we have
FX FY εXεY//XY
(FX I)FY AFX,I,FY
//
RFX id
66
FX (IFY)
idLFY
hh
,
it is a direct computation to get Diagram (3.5).
Definition 3.7. Let (C,,I,a,l,r) be a monoidal category on which (F, δ, ε) is a monad and (F,F2,F0)
is a quasi-monoidal functor such that the compatible conditions Eqs (C1)–(C4) are satisfied. If there are
-invertible natural transformations ϑ,ιand κsatisfying (3.1)–(3.5), then we call (F, δ, ε, F2,F0, ϑ, ι, κ)
aquasi-monoidal comonad on C,
Then by Lemma 3.1–3.6, one gets the following result.
Theorem 3.8. Let (C,,I,a,l,r)be a monoidal category on which (F, δ, ε)is a monad and (F,F2,F0)
is a quasi-monoidal functor such that the compatible conditions Eqs (C1)–(C4) is satisfied. Then there
exist natural transformations ϑ,ιand κsuch that (F, δ, ε, F2,F0, ϑ, ι, κ)is a quasi-monoidal comonad
if and only if there are natural transformations A, L and R such that (CF,,I,A,L,R)is a monoidal
category.
Example 3.9. Let (C,,I,a,l,r) be a monoidal category on which (F, δ, ε) is a monad and (F,F2,F0)
is a quasi-monoidal functor such that the compatible conditions Eqs (C1)–(C4) are satisfied. If we
define
ϑX,Y,Z=a
X,Y,Z, ιX=l
X, κX,Y,Z=r
X,Y,Z
for any X,Y,Z C, then Eq (3.2) holds because of the Pentagon Axiom of a; Eq (3.5) holds because of
the Triangle Axiom of a,l,r; Eqs (3.1), (3.3) and (3.4) hold if and only if (F,F2,F0) is a monoidal func-
tor. That means, the quasi-monoidal comonad (F, δ, ε, F2,F0, ϑ, ι, κ) is exactly a monoidal comonad.
Example 3.10. Recall from [9] or [10], we consider the following monoidal category Hi,j(Veck) for
any i,jZ:
the objects of Hi,j(Veck) are pairs (X, αX), where XV eckand αXAutk(X);
the morphism f: (X, αX)(Y, αY) in Hi,j(V eck) is a k-linear map from Xto Ysuch that αYf=
fαX;
the monoidal structure is given by
(X, αX)(Y, αY)=(XY, αXαY),
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3160
and the unit is (k,idk);
the associativity constraint a, the unit constraints land rare given by
aX,Y,Z: (xy)z7→ αi+1
X(x)(yαj1
Z(z));
lX(1kx)=αj+1
X(x),rX(x1k)=αi+1
X(x),XVeck.
Now assume that (H, αH) is an object in Hi,j(Veck), mH:HHH(with notation mH(ab)=ab),
ηH:kH(with notation ηH(1k)=1H), and H:HHH(with notation H(h)=h1h2), and
εH:Hkare all morphisms in Hi,j(Veck). Further, we write
¨
H=_H:Hi,j(Veck) Hi,j(Veck),(X, αX)7→ (XH, αXαH)
for the right tensor functor of H.
If we define the following structures on ¨
H:
δ:¨
H¨
H¨
Hand ϵ:¨
HidHi,j(Veck)are defined by
δX:xh7→ (αX(x)h1)α1
H(h2),
ϵX:xh7→ εH(h)α1
X(x);
¨
H2:¨
H¨
H¨
Hand ¨
H0:k¨
H(k) are given by
¨
H2(X,Y):(xa)(yb)7→ (xy)αi
H(a)αj
H(b),
¨
H0(1k)=1k1H,
for any X,Y Hi,j(Veck). Then obviously ¨
H=(¨
H, δ, ϵ) forms a comonad on Hi,j(Veck) if and only
if (H, αH,H, εH) is a Hom-coalgebra over k, Eqs (C1)–(C4) hold if and only if mHand ηHare all
morphisms of Hom-coalgebras.
Suppose that there are αH-invariant convolution invertible linear forms ω(HHH)and
p,qH, then we can define the following -invertible natural transformations
ϑX,Y,Z: ((xa)(yb)) (zc)7→ ω(α2i
H(a), αi+j
H(b), αj1
H(c))(αi
X(x)(α1
Y(y)αj2
Z(z))),
ιX: 1k(xa)7→ p(a)αj
X(x), κX: (xa)1k7→ q(a)αi
X(x),
where a,b,cH,xX,yY,zZand X,Y,ZVeck. Thus we immediately get that ϑsatisfies Eq
(3.1) if and only if ωsatisfies
XαH(a1)(b1c1)ω(a2,b2,c2)=Xω(a1,b1,c1)(a2b2)αH(c2); (3.6)
ϑsatisfies Eq (3.2) if and only if ωsatisfies
Xω(αH(a1), αH(b1),c1d1)ω(a2b2, αH(c2), αH(d2))
=Xω(b1,c1, αH(d1))ω(αH(a1), α1
H(b21)α1
H(c21), αH(d2))ω(αH(a2),b22 ,c22); (3.7)
ιsatisfies Eq (3.3) and κsatisfies Eq (3.4) if and only if p,qsatisfy
Xp(a1)1Ha2=αH(a1)p(a2),Xq(a1)a21H=αH(a1)q(a2); (3.8)
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3161
ϑ, ι and κsatisfy Eq (3.5) if and only if ω,pand qsatisfy
ω(a,1H,b)=q(a)p∗−1(b).(3.9)
This means, ¨
H=(¨
H, δ, ϵ, ¨
H2,¨
H0, ϑ, ι, κ) forms a quasi-monoidal comonad on Hi,j(Veck) if and only
if H=(H, αH,mH, ηH,H, εH, ω, p,q) forms a Hom-coquasi-bialgebra over k(see [20] for the dual
definition). Further, from Theorem 3.10, one get that Corep(H)=(Hi,j(Veck)) ¨
H, the category of right
H-Hom-comodules, is a monoidal category and its associativity constraint, unit constraints are given
as follows:
AM,N,P((mn)p)=Pω(α2i(m1), αi+j(n1), αj1(p1))αi
M(m0)(α1
N(n0)αj2
P(p0)),
LM(1km)=Pp(m1)αj
M(m0),RM(m1k)=Pq(m1)αi
M(m0),
where mM,nN,pP,M,N,PCore p(H).
Example 3.11. Under the consideration of Example 3.10, if all the Hom-structure maps αare identity
maps, then the Hom-coquasi-bialgebra is exactly the coquasi-bialgebra (also called a Majid algebra,
see [13] for details) over k.
Example 3.12. Let B=(B, µ, 1B,, ε) be a bialgebra over k,αB:BBbe an endo-isomrophism.
Recall that a k-linear form gBis called
(1) dual central if g(x1)x2=x1g(x2) for any xB;
(2) dual group-like if it is convolution invertible and satisfies g(xy)=g(x)g(y) for any x,yB;
(3) αB-invariant if g(αB(x)) =g(x).
Now suppose that p,qBare all dual central dual group-like and αB-invariant linear forms. Define
ak-linear form ω:BBBkby
ω(x,y,z)=p(x)ε(y)q∗−1(z),for any x,y,zB,
define the new multiplication µαBand comultiplication αBby
µαB=αBµ, αB= αB.
Then it is a direct calculation to check that αB, ω, p,qsatisfy Eqs.(3.6) - (3.9) (under µαBand αB),
hence Bp,q
αB=(B, αB, µαB,1B,αB,ε, ω, p,q) forms a nontrivial Hom-coquasi-bialgebra.
4. Coquasitriangular structures
Recall that a braiding in a monoidal category (C,,I,a,l,r) is a natural isomorphism τ:⊗⇒⊗op :
C × C C such that the following identities hold
aY,Z,XτX,YZaX,Y,Z=(idYτX,Z)aY,X,Z(τX,YidZ),(B1)
a1
Z,X,YτXY,Za1
X,Y,Z=(τX,ZidY)a1
X,Z,Y(idXτY,Z)(B2)
for any X,Y,Z C.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3162
Now let Fbe a quasi-monoidal comonad on C. Suppose that there is a natural transformation σ:
(F×F) op :C×2 C. From Lemma 2.1, for any objects M,Nin CF,σcan induce a natural
transformation
τM,N=σ
M,N:MNρMρN
//FM F N σM,N//NM.
Conversely, if there exists τ:⊗⇒⊗op :C × C C, then from Lemma 2.1, for any X,Y C,τcan
induce the following
σX,Y=τ
X,Y:FX FY τF X,FY //FY F X εYεX//YX.
Next we will discuss when τis a braiding in CF.
Lemma 4.1. τis an isomorphism if and only if σis -invertible.
Proof. Straightforward from Proposition 2.2.
Lemma 4.2. τis F-colinear if and only if σsatisfies
FX FY
δXδY
δXδY//FFX FFY σFX,FY //F Y F X
F2
FFX FFY F2
//F(FX FY)FσX,Y
//F(YX)
(4.1)
for any X,Y C.
Proof. ): We compute
MN
ρMρN
ρMρN
//FM F N
FρMFρN
σM,N//NM
ρNρM
FM F N
F2
δMδN//
=FρMFρN//FF M FFN
F2
σFM,F N //FN F M
F2
F(MN)F(ρMρN)//F(FM F N)FσM,N
//F(NM)
for any M,N CF. Hence τM,Nis F-colinear.
): Conversely, notice that τFX,FY is F-colinear for any X,Y C, we have
F(εYεX)FτFX,F Y ρFXFY =F(εYεX)ρF YFX τF X,FY ,
which implies Diagram (4.1) holds.
Lemma 4.3. Diagram (B1) holds in CFif and only if σsatisfies
ϑY,Z,XσFX,F YFZ (id F2)ϑFFX,FFY,FF Z (δ2
Xδ2
Yδ2
Z) (4.2)
=(id σX,Z)ϑY,F X,FZ (σFFX,F Y id)(δ2
XδYδZ)
for any X,Y,Z C.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3163
Proof. ): Take X=M,Y=N,Z=Pfor any F-comodules M,N,P. Multiplied by ρMρNρP
right on both sides of Eq (4.2), we immediately get Diagram (B1).
): Since Diagram (B1) is commutative for any FX,FY,FZ C, multiplied by εεεleft on
both sides of the above equation, we get Eq (4.2).
Lemma 4.4. For any X,Y,Z C, Diagram (B2) holds in CFif and only if σsatisfies
ϑ∗−1
Z,X,YσFX FY,FZ (F2id)) ϑ∗−1
FFX,FF Y,FFZ (δ2
Xδ2
Yδ2
Z) (4.3)
=(σX,Zid)ϑ∗−1
FX,F Z,Y(id σFY,FF Z )(δXδYδ2
Z),
where ϑ∗−1means the -inverse of ϑ.
Proof. The proof is similar to Lemma 4.3.
Definition 4.5. Let (F, δ, ε, F2,F0, ϑ, ι, κ) be a quasi-monoidal comonad on a monoidal category C. If
there is a -invertible natural transformation σNat(FF,op), satisfying Eqs (4.1)–(4.3) for any
X,Y,Z C, then σis called a coquasitriangular structure of F, and (F, σ) is called a coquasitriangular
quasi-monoidal comonad.
Combining Lemma 4.1–Definition 4.5, we obtain the following result.
Theorem 4.6. Let (F, δ, ε, F2,F0, ϑ, ι, κ)be a quasi-monoidal comonad on a monoidal category C.
Then CFis a braided monoidal category if and only if there exists a natural transformation σ:FF
op such that (F, σ)is a coquasitriangular quasi-monoidal comonad. Further, the braiding in CFis
given by τ=σ.
Corollary 4.7. Let (F, σ)be a coquasitriangular quasi-monoidal comonad on a monoidal category C.
Then for any X,Y,Z C,σsatisfies the following generalized Yang-Baxter equation:
(id σX,Y)ϑZ,FX,F Y (σFFX,FZ id)ϑ∗−1
F3X,FF Z,FFY (id σF3Y,F3Z)
ϑF4X,F4Y,F4Z(δ4
Xδ4
Yδ4
Z)
=ϑZ,Y,X(σFY,F Z id)ϑ∗−1
FF Y,FFZ,F X (id σFFX,F3Z)ϑF3Y,F3X,F4Z
(σF4X,F4Yid)(δ4
Xδ4
Yδ4
Z).
Proof. Straightforward.
Example 4.8. If Fis a monoidal comonad on C, and σ: F×2 o p is a -invertible natural
transformation satisfying Eqs (4.1)–(4.3), then (F, σ) is exactly a coquasitriangular monoidal comonad
(see [9], Definition 4.12).
Example 4.9. With the notations in Example 3.10, if Q(HH)is αH-invariant and convolution
invertible, then we have the following -invertible natural transformation
σX,Y:¨
HX ¨
HY YX,(xa)(yb)7→ Q(αi
H(a), αj
H(b))αji1
Y(y)αij1
X(x),
where xX,yYand X,Y Hi,j(Veck). Thus we immediately get that σsatisfies Eq (4.1) if and
only if Qsatisfies XQ(a1,b1)a2b2=Xb1a1Q(a2,b2),
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3164
σsatisfies Eqs (4.2) and (4.3) if and only if Qsatisfies
Xω(b1,c1,a1)Q(αH(a21),b21 c21)ω(a22 ,b22,c22 )
=XQ(a1,c1)ω(b1, α1
H(a21),c2)Q(α1
H(a22),b2),
Xω∗−1(c1,a1,b1)Q(a21b21 , αH(c21))ω∗−1(a22,b22,c22)
=XQ(a1,c1)ω∗−1(a2, α1
H(c21),b1)Q(b2, α1
H(c22)),
where a,b,cH. That is, ( ¨
H, σ) forms a coquasitriangular quasi-monoidal comonad if and only
if (H,Q) is a coquasitriangular Hom-coquasi-bialgebra. Further, from Theorem 4.6, one get that
Corep(H)=(Hi,j(Veck)) ¨
His a braided monoidal category.
Example 4.10. With the notations in Example 3.12, if pBis a dual central dual group-like αB-
invariant k-linear form on a bialgebra B, then we get a coquasi-bialgebra Bp,p
αB. Now suppose that
Q(BB)is the coquasitriangular structure over B. If Q(αBαB)=Q, then after a straightforward
compute we get that Qis also a coquasitriangular structure over the Hom-coquasi-bialgebra Bp,p
αB.
5. Gauge transformations
Let F=(F, δ, ε, F2,F0) be a quasi-monoidal comonad on a monoidal category (C,,I,a,l,r).
Definition 5.1. Agauge transformation on Fis a -invertible natural transformation ξ:FF .
Using a gauge transformation ξon F, we can build a new quasi-monoidal comonad Fξas follows.
Firstly, as a functor, Fξ=F:C→C.
Secondly, the comonad structure of Fξis Fξ=F=(F, δ, ε).
Thirdly, the quasi-monoidal functor structure of Fξis given by:
for any X,Y C,Fξ
2:FFFis defined as follows
Fξ
2(X,Y) : FX FYδ2
Xδ2
Y
//F3XF3Yξ//FFX FFY F2//F(FX FY )
F(ξ∗−1
X,Y)
//F(XY) (5.1)
where ξ∗−1means the -inverse of ξ;
Fξ
0=F0:FI I.
Proposition 5.2. With the above notations, δand εare both monoidal natural transformations
Proof. We only need to show the compatible conditions Eqs (C1)–(C4) hold.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3165
To prove Eq (C1), we compute
FX FY
δXδY
δ4
Xδ4
Y
((
δ2
Xδ2
Y//F3XF3Y
FδδXFδδY
ξ//FFX FFY
δδXδδY
δFX δF Y //F3XF3YF2//F(FFX FFY )
F(FδXFδY)
uu
Fξ∗−1
FFX FFY
ξ
F5XF5Yξ//F4XF4YF2//F(F3XF3Y)
Fξ∗−1
))
F(FX FY)
F(δXδY)
FX FY
δ3
Xδ3
Y
22
δXδY
//FFX FFY
F2
vv
δFX δF Y
((
F2//F(FX FY)
F(δ2
Xδ2
Y)
OO
F(FFX FFY)
F(ξ)
F(FX FY)
δFX FY
,,
Fξ∗−1
F3XF3Y
F2
,,
F(FX FY)
F(δXδY)
F(XY)δXY
//FF(XY)FF(F X F Y )
FF ξ∗−1
ooF(FFX FFY),
F2
oo
for any X,Y C. The rest are straightforward.
For any X,Y C, define the natural transformation ϑξ: (FF)F_(_ _) by
ϑξ
X,Y,Z=(id ξ∗−1
Y,Z)ξ∗−1
X,FY FZ (id F2)ϑF X,FFY,FFZ (ξFFXF3Y,F3Z) (5.2)
(F2id)(ξF3X,F4Yid)(δ3
Xδ4
Yδ3
Z),
and define the followings natural transformations:
ιξ
X:IFX F0δX//FI FFX ξ//IFX ιX//X,(5.3)
and
κξ
X:FX IδXF0//FFX FI ξ//FX IκX//X.(5.4)
It is easy to get that ϑξ,ιξand κξare all -invertible. Further, we have the following properties.
Lemma 5.3. With the above notations, ϑξsatisfies Eqs (3.1) and (3.2).
Proof. We only prove Eq (3.1). For any X,Y,Z C, we compute
F(ϑξ
X,Y,Z)Fξ
2(Fξ
2id)(δXδYδZ)
=F(id ξ∗−1
Y,Z)F(ξ∗−1
X,FY FZ )F(id F2)F(ϑF X,FFY,FF Z )F(ξFFXF3Y,F3Z)
F(F2id)F(ξF4X,F3Yid)F(δ3
Xδ4
Yδ3
Z)F(ξ∗−1
FX FY,FZ )F2
(δFX FY δF Z )ξF(FXFY ),F FZ (δF XF Y δFZ )(F(ξ∗−1
FX,F Y )id)
(F2id)(δF X δFY id)(ξFFX,F F Y id)(δF X δFY id)(δXδYδZ)
=F(id ξ∗−1
Y,Z)F(ξ∗−1
X,FY FZ )F(id F2)F(ϑF X,FFY,FF Z )F(ξFFXF3Y,F3Z)
F(F2id)F(δF X δ2
FY δ3
Z)F(ξ∗−1
FFXFFY,F Z )F2(δFFXFF Y δFZ )
ξF(FFXFFY),F FZ (δFFXF FY δF Z )(F2id)(δF X δFY id)(ξFFX,FFY id)
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3166
(δ2
Xδ2
YδZ)
=F(id ξ∗−1
Y,Z)F(ξ∗−1
X,FY FZ )F(id F2)F(ϑF X,FFY,FF Z )F2(F2id)(δ2
FX δ2
FY
δ2
FZ )ξF3XF3Y,FF Z (F2id)(δF X δ2
FY δF Z )(ξFFX,FFY id)(δ2
Xδ2
YδZ)
=F(id ξ∗−1
Y,Z)F(ξ∗−1
X,FY FZ )F(id F2)F2(id F2)(δXδ2
Yδ2
Z)ϑFX,F Y,FZ
ξFFXFFY,F F Z (F2id)(ξF3X,F3Yid)(δ3
Xδ3
Yδ2
Z)
=F(ξ∗−1
X,YZ)F(id F(ξ∗−1
Y,Z)) F2(δXδFYF Z )(id F2)(id δYδZ)
(εFX εF Y εFZ )ϑFFX,FF Y,FFZ ξF3XF3Y,F3Z(F2id)(ξF4X,F4Yid)
(δ4
Xδ4
Yδ3
Z)
=F(ξ∗−1
X,YZ)F2(δXδYZ)ξFX,F(YZ)ξ∗−1
FFX,FF (YZ)(FδXFδYZ)(id
FF(ξ∗−1
Y,Z)) (id F(F2)) (id F(δYδZ)) (id F2)ϑFFX,FF Y,FFZ ξF3X,F3YF3Z
(F(id FFεFY )FFFεFZ )(F2id)(ξF4X,F5Yid)(δ4
Xδ5
Yδ4
Z)
=F(ξ∗−1
X,YZ)F2(δXδYZ)ξFX,F(YZ)(δXδYZ)(F(id ξ∗−1
Y,Z)) (id F2(FY,FZ))
(id δYδZ)(id ξFX,F Y )(id ξ∗−1
FF Y,FFZ )(id δF Y δFZ )ξ∗−1
FX,F FYF FZ
(id F2(FFY FFZ)) ϑFFX,F3Y,F3ZξF3X,F4YF4Z(F2id)(ξF4X,F5Yid)
(δ4
Xδ5
Yδ4
Z)
=Fξ
2(FX,FY F Z)(id Fξ
2(FY,FZ)) ϑξ
FX,F Y,FZ (δXδYδZ).
Thus the conclusion holds.
Lemma 5.4. With the above notations, ιξsatisfies Eq (3.3) and κξsatisfies Eq (3.4).
Proof. We only prove Eq (3.3). For any X C, we have
IFX
idδX
F0δX//FI FX
idFδX
ξ
''
δIδFX //FFI F3Xξ//F I FFX
F2
δIδFX //FFI F3X
F2
IFFX
F0id
88
FI F3X
ξ''
IFX
idδX
F0δX
66
F(IFX)
FιX
vv
F(F0δX)//F(FI FFX)
F(δIδFX )
vv
F(ξ∗−1)
IFFX
ιFX
ww
F(FFI F3X)
F(ξ∗−1)
((
F(IFX)
F(F0δX)
FX F(IFX)
FιX
ooF(FI FFX)
Fξ
oo
which implies Eq (3.3).
Lemma 5.5. With the above notations, ϑξand ιξ,κξsatisfy Eq (3.5).
Proof. For any X,Y C, we obtain
(id ιξ
Y)(ϑξ
X,I,FY )(id F0δY)
=(id ιY)(id ξI,FF Y )(id F0δY)(id ξ∗−1
I,FY )ξ∗−1
X,FI ,FF Y (id F2)ϑF X,FFI,F3Y
ξFFXF3I,F4Y(F2id)(ξF3X,F4Iid)(δ3
Xδ4
Iδ3
FY )(δXF0δY)
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3167
=ξ∗−1
X,Y(id FιY)(id F2)ϑFX,F I,F FY ξFFXFFI,F3Y(F2id)(ξF3X,F3Iid)
(δ3
Xδ3
Iδ2
FY )(δXF0δY)
=ξ∗−1
X,Y(id ιFY )ϑF X,I,FF Y (id F0δY)ξFFXI,FF Y (F2id)(ξF3X,F I id)
(δ3
XδIδ2
Y)(δXF0id)
=(id εY)ξ∗−1
X,FY (κF X id)ξFFXI,FFY (F2id)(δF X F0id)(ξFFX,Iid)
(δ2
XF0δ2
Y)
=(id εY)ξ∗−1
X,FY ξF X,FF Y (κFFX id)(δF X id id)(ξFFX,Iid)(δ2
XF0δ2
Y)
=(id εY)(κXid)(ξF X,Iid)(δXF0id)=(id εY)(κξ
Xid)
hence Eq (3.5) holds.
Theorem 5.6. Fξ=(F, δ, ε, Fξ
2,F0, ϑξ, ιξ, κξ)is a quasi-monoidal comonad.
Remark 5.7.(CFξ,,I,Aξ,Lξ,Rξ) is a monoidal category, where Aξ=(ϑξ),Lξ=(ιξ),Rξ=(κξ).
Now consider a coquasitriangular quasi-monoidal comonad (F, σ). For any gauge transformation ξ
on F, for any X,Y C, define
σξ
X,Y:FX FY δ2δ2
//F3XF3Yξ//FFX FFY σ//FY F X ξ∗−1
//YX.(5.5)
Proposition 5.8. With the above notations, σξis a coquasitriangular structure of Fξ. Thus F ξis
a coquasitriangular quasi-monoidal comonad. Hence CFξis a braided monoidal category with the
braiding τξ=(σξ).
Proof. Firstly, it is straightforward to get that σξis -invertible.
Secondly, to prove Eq (4.1), for any X,Y C, we compute
Fξ
2σξ
FX,F Y (δXδY)
=F(ξ∗−1
Y,X)F2(δYδX)ξFY,F X ξ∗−1
FF Y,FFX (δ2
Yδ2
X)σFX,F Y ξFFX,FFY (δ2
Xδ2
Y)
=F(ξ∗−1
Y,X)F2σFFX,FF Y ξF3X,F3Y(δ3
Xδ3
Y)
=F(ξ∗−1
Y,X)F(σFX,FY )F(ξFFX,FFY )F(ξ∗−1
F3X,F3Y)F(δ3
Xδ3
Y)F2(δXδY)
=F(ξ∗−1
Y,X)F(σFX,FY )F(ξFFX,FFY )F(δ2
Xδ2
Y)F(ξ∗−1
FX,F Y )F2(δFX δF Y )
ξFFX,FF Y (δ2
Xδ2
Y)
=F(σξ
Y,X)Fξ
2(FX,FY )(δXδY).
Thirdly, for Eq (4.2), we have
ϑξ
Y,Z,Xσξ
FX,F YF Z (id Fξ
2)ϑξ
FFX,FF Y,FFZ (δ2
Xδ2
Yδ2
Z)
=(id ξ∗−1
Z,X)ξ∗−1
Y,FZFX (id F2)ϑFY,FFZ,FFX ξFF YF3Z,F3X(F2id)
(ξF3YF4Zid)(δ3
Yδ4
Zδ3
X)ξ∗−1
FY FZ,F X σFFX,F(FYF Z)ξF3X,F F(FY FZ))
(δ2
FX δ2
FY FZ )(id F(ξ∗−1
FY,FZ )) (id F2)(id ξF3Y,F3Z)(id δ2
FY δ2
FZ )
(id ξ∗−1
F2Y,F2Z)ξ∗−1
FFX,F3YF3Z(id F2)ϑF3X,F4Y,F4ZξF4XF5Y,F5Z
(F2id)(ξF5X,F6Yid)(δ5
Xδ6
Yδ5
Z)
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3168
=(id ξ∗−1
Z,X)ξ∗−1
Y,FZFX (id F2)ϑFY,FFZ,FFX σF3X,FF YF3Z(id F2)
ϑF4X,F3Y,F4Z(δ2
FFX δ2
FY δ2
FF Z )ξF3XF FY,F3Z(F2id)(ξF4X,F3Yid)
(δ4
Xδ3
Yδ3
Z)
=(id ξ∗−1
Z,X)(id σFX,F Z )ξ∗−1
Y,FFXF FZ (id F2)ϑF Y,F3X,F3Z(σF4X,FFY id)
(δ2
FFX δFY δF FZ )ξF3XF F Y,F3Z(F2id)(ξF4X,F3Yid)(δ4
Xδ3
Yδ3
Z)
=(id ξ∗−1
Z,X)(id σFX,F Z )ξ∗−1
Y,FFXF FZ (id F2)ϑF Y,F3X,F3ZξF2YF4X,F4Z
(F(σF4X,FF Y )id)(F2id)(δ4
FX δ3
FY δF Y )(ξFFX,F FY id)(id δ2
Zδ2
Z)
=(id σξ
X,Z)ϑξ
Y,FX,FZ (σξ
FFX,FF id)(δ2
XδYδZ).
At last, we can prove Eq (4.3) in a similar way. Thus the conclusion holds.
Now consider the corepresentations of Fand Fξ.
Theorem 5.9. CFand CFξare isomorphic as monoidal categories. Further, if F is a coquasitriangular
quasi-monoidal comonad, then CFand CFξare braided isomorphic.
Proof. For any morphism fand objects M,Nin C, the monoidal functor is defined as follows
E=(E,Eξ
2,E0):(CF,,I,A,L,R)(CFξ,,I,Aξ,Lξ,Rξ),
where
E(M) :=Mas an F-comodule,E(f) :=f,E0=idI,
and Eξ
2(M,N) : E(M)E(N)E(MN) is given by
Eξ
2(M,N)=ξ:MNρMρN
//FM F N ξM,N//MN.
Obviously Eis well-defined.
Now we will check relation (2.1). Indeed, we have
Eξ
2(M,NP)(id Eξ
2(N,P)) Aξ
M,N,P
=ξM,NP(id F2)(ρMρNρP)(id ξN,P)(id ρNρP)(id ξ∗−1
N,P)
ξ∗−1
M,FN FP (id F2)ϑFM,FFN,FFP ξFF M F3N,F3P(F2id)(ξF3M,F4Nid)
(δ3
Mδ4
Nδ3
P)(ρMρNρP)
=ξM,NP(ρMF2)ξ∗−1
M,FN FP (id F2)ϑFM,FFN,FFP ξFF M F3N,F3P(F2id)
(ξF3M,F4Nid)(δ3
Mδ4
Nδ3
P)(ρMρNρP)
=ξM,NPξ∗−1
FM,F(NP)(δMδNP)(id F2)ϑFM,F N,F P ξFFM FFN,FFP (F2id)
(ξF3M,F3Nid)(δ3
Mδ3
Nδ2
P)(ρMρNρP)
=ϑM,N,PξFM FN,FP (F2id)(ξF2M,F2Nid)(δ2
Mδ2
NδP)(ρMρNρP)
=E(AM,N,P)Eξ
2(MN,P)(Eξ
2(M,N)id),
which implies Eq (2.1).
Further, we can obtain (2.2) and (2.3) by straightforward computation. Hence the conclusion holds.
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3169
Moreover, if σis a coquasitriangular structure of F, then from Theorem 5.6, (Fξ, σξ) is also a
coquasitriangular quasi-monoidal comonad. Then we have
Eξ
2(N,M)τξ
M,N
=ξN,M(ρNρM)ξ∗−1
N,MσFM,FN ξF F M,FFN (δ2
Mδ2
N)(ρMρN)
=(εNεM)σFM,FN ξF F M,FFN (δ2
Mδ2
N)(ρMρN)
=σFM,FN (ρNρM)ξM,N(ρMρN)=E(τM,N)Eξ
2(M,N),
which implies (E,Eξ
2,E0) is a braided monoidal functor.
Example 5.10. With the notations in Example 3.10, if there is a convolution invertible linear form
χ(HH)satisfying χ(αHαH)=χ, then we have the following -invertible natural transformation
in Hi,j(Veck)
ξX,Y:¨
HX ¨
HY XY,(xa)(yb)7→ χ(αi
H(a), αj
H(b))α1
X(x)α1
Y(y),
where a,bH,xX,yYand X,Y Hi,j(Veck). It is not hard to check that ¨
Hξ
2,ϑξ,ιξand κξin Eqs
(5.1)–(5.4) are deduced from the following
mχ(ab)=Xχ∗−1(a1,b1)α2
H(a21)α2
H(b21)χ(a22 ,b22),
where χ∗−1means the convolution inverse of χ, and
ωχ(a,b,c)=Xχ∗−1(b11,c11 )χ∗−1(αH(a11), α1
H(b121)c12 )
ω(a12, α1
H(b122),c21 )χ(a21b21 , αH(c22))χ(a22,b22 ),
pχ(a)=Xp(a1)χ(1H,a2),qχ(a)=Xq(a1)χ(a2,1H),
respectively. Thus from Example 3.10 and Theorem 5.6, Hχ=(H, αH,mχ,1H,, ε, ωχ,pχ,qχ) is also
a Hom-coquasi-bialgebra.
Example 5.11. With the notations in Example 3.12, note that the BαB=(B, αB, αBµ, 1B,αB, ε) is
a Hom-bialgebra, and it can be seen as a Hom-coquasi-bialgebra BαB=(B, αB, αBµ, 1H,αB, ε, ε
εε, ε, ε). If there are αB-invariant and dual central dual group-like k-linear forms p,qB, then we
have the following gauge transformation χ(BB)by
χ(a,b)=q∗−1(a)p(b),where a,bB.
Obviously Bχ
αB=Bp,q
αB.
Acknowledgments
The work was partially supported by the National Natural Science Foundation of China (No.
11801304, 11871301), and the Taishan Scholar Project of Shandong Province (No. tsqn202103060).
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3170
Conflict of interest
The authors declare there is no conflict of interest.
References
1. B. Mesablishvili, R. Wisbauer, Bimonads and Hopf monads on categories, J. K-Theory,7(2011),
349–388. https://doi.org/10.1017/is010001014jkt105
2. M. Livernet, B. Mesablishvili, R. Wisbauer, Generalised bialgebras and en-
twined monads and comonads, J. Pure Appl. Algebra, 219 (2015), 3263–3278.
https://doi.org/10.1016/j.jpaa.2014.10.013
3. B. Mesablishvili, R. Wisbauer, Galois functors and generalised Hopf modules, J. Homotopy Relat.
Struct. 9(2014), 199–222. https://doi.org/10.1007/s40062-013-0072-1
4. B. Mesablishvili, R. Wisbauer, The fundamental theorem for weak braided bimonads, J. Algebra,
490 (2017), 55–103. https://doi.org/10.1016/j.jalgebra.2017.06.023
5. I. Moerdijk, Monads on tensor categories, J. Pure Appl. Algebra,168 (2002), 189–208.
https://doi.org/10.1016/S0022-4049(01)00096-2
6. A. Bruguières, A. Virelizier, Hopf monads, Adv. Math.,215 (2007), 679–733.
https://doi.org/10.1016/j.aim.2007.04.011
7. A. Bruguières, S. Lack, A. Virelizier, Hopf monads on monoidal categories, Adv. Math.,227
(2011), 745–800. https://doi.org/10.1016/j.aim.2011.02.008
8. G. Böhm, S. Lack, R. Street, Weak bimonads and weak Hopf monads, J. Algebra,328 (2011),
1–30. https://doi.org/10.1016/j.jalgebra.2010.07.032
9. X. H. Zhang, L. H. Dong, Braided mixed datums and their applications on Hom-quantum groups,
Glasgow Math. J.,60 (2018), 231–251. https://doi.org/10.1017/S0017089517000088
10. X. H. Zhang, W. Wang, X. F. Zhao, Smash coproducts of monoidal comonads and Hom-entwining
structures, Rocky Mountain J. Math.,49 (2019), 2063–2105. https://doi.org/10.1216/RMJ-2019-
49-6-2063
11. H. X. Zhu, The crossed structure of Hopf bimodules, J. Algebra Appl.,17 (2018), 1850172.
https://doi.org/10.1142/S0219498818501724
12. V. G. Drinfel’d, Quasi-Hopf algebras, Leningrad Math. J.,1(1990), 1419–1457.
13. M. Gerstenhaber, J. Stashe, Deformation theory and quantum groups with ap-
plications to mathematical physics, Contemp. Math.,134 (1992), 219–232.
https://doi.org/10.1090/conm/134/1187289
14. I. Angiono, A. Ardizzoni, C. Menini, Cohomology and coquasi-bialgebras in the cate-
gory of Yetter-Drinfeld modules, Ann. Sc. Norm. Super. Pisa Cl. Sci.,17 (2017), 609–653.
https://doi.org/10.2422/2036-2145.201509018
15. X. H. Zhang, X. F. Zhao, W. Wang, Quasi-bimonads and their representations. J. Pure Appl. Alge-
bra,225 (2021), 106459. https://doi.org/10.1016/j.jpaa.2020.106459
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
3171
16. J. Beck, Distributive laws, Lect. Notes Math.,80 (1969), 119–140.
https://doi.org/10.1007/BFb0083084
17. R. Street, The formal theory of monads, J. Pure Appl. Algebra,2(1972), 149–168.
https://doi.org/10.1016/0022-4049(72)90019-9
18. D. Chikhladze, S. Lack, R. Street, Hopf monoidal comonads, Theory Appl. Categ.,24 (2010),
554–563.
19. X. H. Zhang, D. G. Wang, Cotwists of Bicomonads and BiHom-bialgebras, Algebra Repr. Theory,
23 (2020), 1355–1385. https://doi.org/10.1007/s10468-019-09888-2
20. M. Elhamdadi, A. Makhlouf,Hopf algebras and tensor categories, Contemp. Math.,585 (2013),
227–245. https://doi.org/10.1090/conm/585/11617
21. A. Bruguières, A. Virelizier, Quantum double of Hopf monads and categorical centers, Trans.
Amer. Math. Soc.,364 (2012), 1225–1279. https://doi.org/10.1090/S0002-9947-2011-05342-0
22. G. Böhm, T. Brzezi´
nski, R. Wisbauer, Monads and comonads on module categories, J. Algebra,
322 (2009), 1719–1747. https://doi.org/10.1016/j.jalgebra.2009.06.003
23. X. L. Fang, Gauge transformations for quasitriangular quasi-Turaev group coalgebras, J. Algebra
Appl.,17 (2018), 1850080. https://doi.org/10.1142/S0219498818500809
24. S. H. Wang, A. Van Daele, Y. H. Zhang, Constructing quasitriangular multiplier
Hopf algebras by twisted tensor coproducts, Comm. Algebra,37 (2009), 3171–3199.
https://doi.org/10.1080/00927870902747894
©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)
Electronic Research Archive Volume 30, Issue 8, 3153–3171.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
This paper presents the definition of the cotwists of a bicomonad, which offers a generalization of cotwists of bimonoids in duoidal categories. We show that a new bicomonad can be deduced from the cotwist, and their corepresentations are monoidal isomorphic. As applications, the cotwists of bialgebroids and of BiHom-bialgebras are discussed.
Article
Full-text available
Let H be a Hopf algebra with bijective antipode. We first define some generalized Hopf bimodules. Next, we show that these Hopf bimodules form a new tensor category with a crossed structure, which is equivalent to the category of some generalized Yetter–Drinfeld modules introduced by Panaite and Staic. Finally, based on this equivalence, we verify that the category of Hopf bimodules admits the structure of a braided G-category in the sense of Turaev.
Article
Full-text available
The purpose of this paper is to introduce an equivalence relation on quasitriangular quasi-Turaev group coalgebras such that the categories of representations of two quasitriangular quasi-Turaev group coalgebras are tensor π-equivalent. As an application, we construct a new Turaev braided group category by a gauge transformation and give a new solution of Yang–Baxter type equation.
Article
Full-text available
The theories of (Hopf) bialgebras and weak (Hopf) bialgebras have been introduced for vector space categories over fields and make heavily use of the tensor product. As first generalisations, these notions were formulated for monoidal categories, with braidings if needed. The present authors developed a theory of bimonads and Hopf monads H on arbitrary categories A\mathbb{A}, employing distributive laws, allowing for a general form of the Fundamental Theorem for Hopf algebras. For τ\tau-bimonads H, properties of braided (Hopf) bialgebras were captured by requiring a Yang-Baxter operator τ:HHHH\tau:HH\to HH. The purpose of this paper is to extend the features of weak (Hopf) bialgebras to this general setting including an appropriate form of the Fundamental Theorem. This subsumes the theory of braided Hopf algebras (based on weak Yang-Baxter operators) as considered by Alonso \'Alvarez and others.
Article
Full-text available
We prove that a finite-dimensional Hopf algebra with the dual Chevalley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.
Article
In this paper quasi-bimonads on a monoidal category are introduced and investigated. Quasi-bimonads generalize quasi-bialgebras to a non-braided setting. We discuss their representations and investigate the R-matrix of a quasi-bimonad. Such an R-matrix provides a new solution of the version of the Yang-Baxter equation adapted to the situation. We also introduce an equivalent relation on (quasitriangular) quasi-bimonads such that the categories of representations of two (quasitriangular) quasi-bimonads are (braided) monoidal equivalent. Finally, we discuss Drinfeld twists and Hom quasi-bialgebras.
Article
In this paper, we mainly provide a categorical view on the braided structures appearing in the Hom-quantum groups. Let C\mathcal{C} be a monoidal category on which F is a bimonad, G is a bicomonad, and ϕ is a distributive law, we discuss the necessary and sufficient conditions for CFG(φ)\mathcal{C}^G_F(\varphi) , the category of mixed bimodules to be monoidal and braided. As applications, we discuss the Hom-type (co)quasitriangular structures, the Hom–Yetter–Drinfeld modules, and the Hom–Long dimodules.
Article
Let F,G be bicomonads on a monoidal category C\mathcal{C}. The aim of this paper is to discuss the smash coproducts of F and G. As an application, the smash coproduct of Hom-bialgebras is discussed. Further, the Hom-entwining structure and Hom-entwined modules are investigated.
Article
The center Z(C) of an autonomous category C is monadic over C (if certain coends exist in C). The notion of a Hopf monad naturally arises if one tries to reconstruct the structure of Z(C) in terms of its monad Z: we show that Z is a quasitriangular Hopf monad on C and Z(C) is isomorphic to the braided category =of Z-modules. More generally, let T be a Hopf monad on an autonomous category C. We construct a Hopf monad ZT on C, the centralizer of T, and a canonical distributive law Ω: TZT → ZT T. By Beck's theory, this has two consequences. On one hand, DT = ZT °Ω T is a quasitriangular Hopf monad on C, called the double of T, and = as braided categories. As an illustration, we define the double D(A) of a Hopf algebra A in a braided autonomous category in such a way that the center of the category of A-modules is the braided category of D(A)-modules (generalizing the Drinfeld double). On the other hand, the canonical distributive law Ω also lifts ZT to a Hopf monad = is the coend of For T = Z, this gives an explicit description of the Hopf algebra structure of the coend of Z(C) in terms of the structural morphisms of C. Such a description is useful in quantum topology, especially when C is a spherical fusion category, as = is then modular.