Article

The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

How mechanical stress affects physical performance via tendons is not fully understood. Piezo1 is a mechanosensitive ion channel, and E756del PIEZO1 was recently found as a gain-of-function variant that is common in individuals of African descent. We generated tendon-specific knock-in mice using R2482H Piezo1 , a mouse gain-of-function variant, and found that they had higher jumping abilities and faster running speeds than wild-type or muscle-specific knock-in mice. These phenotypes were associated with enhanced tendon anabolism via an increase in tendon-specific transcription factors, Mohawk and Scleraxis, but there was no evidence of changes in muscle. Biomechanical analysis showed that the tendons of R2482H Piezo1 mice were more compliant and stored more elastic energy, consistent with the enhancement of jumping ability. These phenotypes were replicated in mice with tendon-specific R2482H Piezo1 replacement after tendon maturation, indicating that PIEZO1 could be a target for promoting physical performance by enhancing function in mature tendon. The frequency of E756del PIEZO1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, suggesting a similar function in humans. Together, this human and mouse genetic and physiological evidence revealed a critical function of tendons in physical performance, which is tightly and robustly regulated by PIEZO1 in tenocytes.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Recent studies have indicated that genetic variants such as the PIEZO1 gene are associated with increased tendon stiffness, which could contribute to athletic performance [19][20][21]. The PIEZO1 E756del variant is found in a notable proportion of individuals of African descent, and has been associated with higher patellar tendon stiffness and improved performance in activities requiring high tendon strain-rate loading, such as vertical jumping [19,20]. ...
... Recent studies have indicated that genetic variants such as the PIEZO1 gene are associated with increased tendon stiffness, which could contribute to athletic performance [19][20][21]. The PIEZO1 E756del variant is found in a notable proportion of individuals of African descent, and has been associated with higher patellar tendon stiffness and improved performance in activities requiring high tendon strain-rate loading, such as vertical jumping [19,20]. This genetic variant may influence the exceptional performance of East African athletes by enhancing tendon mechanical properties, which could contribute to better running efficiency and endurance performance [20,21]. ...
... The PIEZO1 E756del variant is found in a notable proportion of individuals of African descent, and has been associated with higher patellar tendon stiffness and improved performance in activities requiring high tendon strain-rate loading, such as vertical jumping [19,20]. This genetic variant may influence the exceptional performance of East African athletes by enhancing tendon mechanical properties, which could contribute to better running efficiency and endurance performance [20,21]. As highlighted by this research, the regulation of tendon stiffness and mechanical properties by PIEZO1 could be a key factor in the great running efficiency/performance observed in these populations [20]. ...
Article
Full-text available
Introduction Runners from East Africa including Kenya, Ethiopia and Uganda have dominated middle- and long-distance running events, for almost six decades. This narrative review examines and updates current understanding of the factors explaining the dominance of East Africans in distance running from a holistic perspective. Content The dominance of East African distance runners has puzzled researchers, with various factors proposed to explain their unparalleled success. Four key elements emerge: 1) biomechanical and physiological attributes, 2) training characteristics, 3) psychological motivations, and 4) African diet. Runners from East Africa often exhibit ectomorphic somatotypes, characterized by lean body compositions which lead them to an extraordinary biomechanical and metabolic efficiency. Their sociocultural lifestyle, training regimens beginning at a young age with aerobic activities, seem crucial, as well as moderate volume, high-intensity workouts at altitudes ranging from 2,000 to 3,000 m. Psychological factors, including a strong motivation to succeed driven by aspirations for socioeconomic improvement and a rich tradition of running excellence, also contribute significantly. A multifactorial explanation considering these factors, without a clear genetic influence, is nowadays the strongest argument to explain the East African phenomenon. Summary and outlook To unravel the mystery behind the supremacy of East African runners, it is imperative to consider these multifaceted factors. The predominantly rural lifestyle of the East African population underscores the importance of aligning modern lifestyles with the evolutionary past of Homo sapiens, where physical activity was integral to daily life. Further research is required to explain this phenomenon, with a focus on genetics.
... Therefore, a number of experimental studies have demonstrated that both genes are responsible for detecting mechanical pressure and thus sensing body posture and motion ( Bornstein et al. 2021 ). One of the studies was to experimentally demonstrate the role of a variant Piezo1 , E756del Piezo1 , found in some of West Africans, African Americans, and Europeans ( Nakamichi et al. 2022 ). The cohort study indicates that 24 T. Miyake and M. Okabe this variant was present in Jamaican sprinters at higher frequency than non-athletic Jamaicans ( Nakamichi et al. 2022 ). ...
... One of the studies was to experimentally demonstrate the role of a variant Piezo1 , E756del Piezo1 , found in some of West Africans, African Americans, and Europeans ( Nakamichi et al. 2022 ). The cohort study indicates that 24 T. Miyake and M. Okabe this variant was present in Jamaican sprinters at higher frequency than non-athletic Jamaicans ( Nakamichi et al. 2022 ). When the variant was experimentally induced into mouse tendons, the mice with this variant had higher jumping and faster running ability than control mice. ...
... When the variant was experimentally induced into mouse tendons, the mice with this variant had higher jumping and faster running ability than control mice. All results suggest a functional improvement of the tendons of the mice with the induced variant and its natural functional association with "enhanced tendon anabolism" ( Nakamichi et al. 2022 ). What we gain from an advancement in molecular and cellular studies is to expand our scienti c and experimental repertoires for elucidating underlying mechanisms of dynamic interplays between the proximal muscles and the "muscle-tendon architecture," modulations of limb locomotion through mechanosensory feedbacks in proprioception coordinated with other sensory systems and interactions between and/or among the structures of the musculoskeletal system in any parts of limbs. ...
Article
Full-text available
Synopsis We review the two-joint link model of mono- and bi-articular muscles in the human branchium and thigh for applications related to biomechanical studies of tetrapod locomotion including gait analyses of humans and non-human tetrapods. This model has been proposed to elucidate functional roles of human mono- and bi-articular muscles by analyzing human limb movements biomechanically and testing the results both theoretically and mechanically using robotic arms and legs. However, the model has not yet been applied to biomechanical studies of tetrapod locomotion, in part since it was established based mainly on mechanical engineering analyses and because it has been applied mostly to robotics, fields of mechanical engineering, and to rehabilitation sciences. When we discovered and published the identical pairs of mono- and bi-articular muscles in pectoral fins of the coelacanth fish Latimeria chalumnae to those of humans, we recognized the significant roles of mono- and bi-articular muscles in evolution of tetrapod limbs from paired fins and tetrapod limb locomotion. Therefore, we have been reviewing the theoretical background and mechanical parameters of the model in order to analyze functional roles of mono- and bi-articular muscles in tetrapod limb locomotion. Herein, we present re-defined biological parameters including 3 axes among 3 joints of forelimbs or hindlimbs that the model has formulated and provide biological and analytical tools and examples to facilitate applicable power of the model to our on-going gait analyses of humans and tetrapods.
... In our recent study based on a cohort of American college students, we found that E756del carriers demonstrate a higher drop jump to countermovement jump height ratio than noncarrier controls, indicating that PIEZO1 also has functional relevance in human tendons (22). Over-representation of the gene has since been confirmed in elite sprinters (28). Interestingly, these two studies speculated that different mechanisms are at work with the study of Passini et al. (22) speculating that increased tendon stiffness, and increased rate of muscle force transmission to the skeleton, is responsible for the observed performance gain, whereas Nakamichi et al. (28) speculate that lower tendon stiffness but increased energy storage capacity underlies the observed performance advantages. ...
... Over-representation of the gene has since been confirmed in elite sprinters (28). Interestingly, these two studies speculated that different mechanisms are at work with the study of Passini et al. (22) speculating that increased tendon stiffness, and increased rate of muscle force transmission to the skeleton, is responsible for the observed performance gain, whereas Nakamichi et al. (28) speculate that lower tendon stiffness but increased energy storage capacity underlies the observed performance advantages. In any case, whether and how PIEZO1 regulates tendon mechanical properties in humans remains unknown. ...
Article
Full-text available
Prolonged periods of increased physical demands can elicit anabolic tendon adaptations that increase stiffness and mechanical resilience or conversely can lead to pathological processes that deteriorate tendon structural quality with ensuing pain and potential rupture. Although the mechanisms by which tendon mechanical loads regulate tissue adaptation are largely unknown, the ion channel PIEZO1 has been implicated in tendon mechanotransduction, with human carriers of the PIEZO1 gain-of-function variant E756del displaying improved dynamic vertical jump performance compared to noncarriers. Here, we sought to examine whether increased tendon stiffness in humans could explain this increased performance. We assessed tendon morphological and mechanical properties with ultrasound-based techniques in 77 participants of Middle- and West-African descent, and we measured their vertical jumping performance to assess potential functional consequences in the context of high tendon strain-rate loading. Carrying the E756del gene variant (n = 30) was associated with 46.3 ± 68.3% (p = 0.002) and 45.6 ± 69.2% (p < 0.001) higher patellar tendon stiffness and Young's modulus compared to non-carrying controls, respectively. While these tissue level measures strongly corroborate the initial postulate that PIEZO1 plays an integral part in regulating tendon material properties and stiffness in humans, we found no detectable correlation between tendon stiffness and jumping performance in the tested population that comprised individuals of highly diverse physical fitness level, dexterity, and jumping ability.
... The frequency of E756del Piezo1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, proposing similar functions in humans. The results described a critical function of tendons in physical performance, which is strictly regulated by Piezo1 in tenocytes [127]. The group and the Athlome Consortium researchers collected genetic information on elite athletes. ...
... Sprinters having two copies of the mutation showed similar trends among Greek athletes, with 3 to 5 times more than controls, and 1.3 to 1.75 times more compared sprinters having only one copy of the mutation. The researchers suggest that targeting the protein could help in the treatment of tendon injuries or reduce age-related declines in mobility [127]. ...
Article
Full-text available
Since the recent discovery of the mechanosensitive Piezo1 channels, many studies have addressed the role of the channel in various physiological or even pathological processes of different organs. Although the number of studies on their effects on the musculoskeletal system is constantly increasing, we are still far from a precise understanding. In this review, the knowledge available so far regarding the musculoskeletal system is summarized, reviewing the results achieved in the field of skeletal muscles, bones, joints and cartilage, tendons and ligaments, as well as intervertebral discs.
... While computational modeling holds considerable promise, challenges remain to maximize its utility as a tool to help solve the broader problem of poor mobility with aging. Key among them is that predictive simulations require the objective or goal of the movement task to be specified, such as weighting metabolic cost against gait stability or movement smoothness (Umberger and Miller, 2018;Nguyen et al., 2019). This is an active area of research that must be expanded to include older adults who are, for example, at greater risk of falls and thus may place a greater personal priority on stability than energy cost. ...
... There is some evidence to indicate that tendon properties can be modified through exercise training to optimize mobility in older adults (Reeves et al., 2003;Quinlan et al., 2021). There is emerging evidence of the molecular mechanisms for mechanotransduction in tendon; understanding age-related changes in these mechanisms will be essential for developing exercise therapies (Nakamichi et al., 2022;Passini et al., 2021;Wang et al., 2021). Additional work building on recentlypublished imaging and genetic engineering approaches in tendon is needed to advance knowledge of the basic mechanisms for tissue property changes with age. ...
Article
Full-text available
Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed.
... Piezo1 is expressed in the skin, endothelial cells, arterial smooth muscle cells, blood vessels, red blood cells, tendons, several organs , and in a relatively low amount in DRGs and other ganglia [2,12,32,[75][76][77][78][79][80][81]. In the skin, Piezo1 could enable mechanotransduction in keratinocytes [82,83], that make up~95% of the epidermis [84]. ...
... Activation Function [2,12,15,32,[75][76][77][78][79][80][81][82][83]] [2,[17][18][19][20][21][22][23]28,32,40,85-90] [15,18,28,32- When reversibly flattened into the membrane plane [7], Piezo1 is activated at membrane tensions in the range of 1-5 mN/m [111]. It senses "outside-in" and "inside-out" mechanical forces, including cell indentation [2], shear flow [32,86], membrane stretching [2,89], substrate displacement [90], osmotic stress [85], and ultrasound waves [17,88], but also electricity [21], ionizing radiation [22], and magnetic energy [23]. ...
Article
Full-text available
Focal vibration therapy seeks to restore the physiological function of tissues and the nervous system. Recommendations for vibration settings, e.g., that could improve residual limb health and prosthesis acceptance in people with amputation, are pending. To establish a physiological connection between focal vibration settings, clinical outcomes, and molecular and neuronal mechanisms, we combined the literature on focal vibration therapy, vibrotactile feedback, mechanosensitive Piezo ion channels, touch, proprioception, neuromodulation, and the recovery of blood vessels and nerves. In summary, intermittent focal vibration increases endothelial shear stress when applied superficially to blood vessels and tissues and triggers Piezo1 signaling, supporting the repair and formation of blood vessels and nerves. Conversely, stimulating Piezo1 in peripheral axon growth cones could reduce the growth of painful neuromas. Vibrotactile feedback also creates sensory inputs to the motor cortex, predominantly through Piezo2-related channels, and modulates sensory signals in the dorsal horn and ascending arousal system. Thus, sensory feedback supports physiological recovery from maladaptations and can alleviate phantom pain and promote body awareness and physical activity. We recommend focal vibration of phantom limb maps with frequencies from ~60–120 Hz and amplitudes up to 1 mm to positively affect motor control, locomotion, pain, nerves, and blood vessels while avoiding adverse effects.
... In a series of updates of the gene map for human performance and fitness-related phenotypes between 2000 and 2015, over 200 autosomal genes and quantitative trait loci have been reported, often lacking replications [1,2]. Despite persistent attempts to unveil the role of genes in human performance-related phenotypes [3][4][5], key genes and gene regulatory networks remain largely elusive. The underlying reasons for this lack of understanding are multi-faceted, such as the predominant reliance on a candidate gene approach, a primary focus on European populations, and small sample sizes that result in low statistical power to detect true effects. ...
Article
Full-text available
The genetic underpinnings of elite sprint and power performance remain largely elusive. This study aimed to identify genetic variants associated with this complex trait as well as to understand their functional implications in elite sprint and power performance. We conducted a multi-phase genome-wide association study (GWAS) in world-class sprint and power athletes of West African and East Asian ancestry and their geographically matched controls. We carried out genotype imputation, replications for the top GWAS signal rs10196189 in two European cohorts, and gene-based and tissue-specific functional network analyses. For the first time, we uncovered the G-allele of rs10196189 in the Polypeptide N Acetylgalactosaminyltransferase 13 (GALNT13) being significantly associated with elite sprint and power performance (P = 2.13E-09 across the three ancestral groups). Moreover, we found that GALNT13 expression level was positively associated with the relative area occupied by fast-twitch muscle fibers in the vastus lateralis muscle. In addition, significant and borderline associations were observed for BOP1, HSF1, STXBP2, GRM7, MPRIP, ZFYVE28, CERS4, and ADAMTS18 in cross-ancestry or ancestry-specific contexts, predominantly expressed in the nervous and hematopoietic systems. From the elite athlete cohorts, we further identified thirty-six previously uncharacterized genes linked to host defence, leukocyte migration, and cellular responses to interferon-gamma, and four genes – UQCRFS1, PTPN6, RALY and ZMYM4 – associated with aging, neurological conditions, and blood disorders. Taken together, these results provide new biological insights into the genetic basis of elite sprint and power performance and, importantly, offer valuable clues to the molecular mechanisms underlying elite athletic performance, health and disease.
... The PIEZO proteins were raised as a target for investigation for several reasons. PIEZO1 was found to contribute to physical performance [3]. Moreover, PIEZO1 can sense stimuli not only in a spatially restricted manner [4] but on a whole-body level as well [5]. ...
Article
Full-text available
Competitive athletes are often exposed to extreme physiological loading, resulting in over excessive mechanotransduction during their acute intensive training sessions and competitions. Individual differences in their genetics often affect how they cope with these challenges, as reflected in their high performances. Olympic Medalists are prohibited from providing atypical values in the Hematological Module of the Athlete Biological Passport. Since there was no aphysiological result and the Athlete maintained his innocence, a whole genome sequence analysis was carried out on him and his parents, with the primary focus on the PIEZO ion channels encoding gene. PIEZO1 is known to participate in homeostatic regulation even on a whole-body level, including the regulation of physical performance, circulatory longevity of red blood cells and cell fate determination of mesenchymal stem cells in relation to hydrostatic pressure. However, PIEZO2 was found to be the principal mechanosensory ion channel for proprioception. These regulatory mechanisms play a pivotal role in mechanotransduction and intensive exercise moments. Interestingly, two variances of uncertain significance of PIEZO1 were found that may explain the atypical values of the Athlete. Furthermore, two additional variances in SDC2, the syndcan-2 encoding gene, were identified in trans position that may influence the crosstalk between PIEZO2 and PIEZO1, with more likely relevance to the detected atypical values. After all, based on the found variances of PIEZO1 and syndecan-2, it cannot be ruled out that these VUS variants may have caused or impacted the exhibited outlier findings of the ABP Hematological Module of the Athlete.
... An important implication for this work relates to the growing number of human PIEZO1 mutations 26,81,82 . The gain-of-function mice used here carry a PIEZO1 mutation that in humans causes hereditary xerocytosis 25,26 , and other PIEZO1 GOF mutations are prevalent in people of African descent 25,83,84 . Loss of function PIEZO1 mutations have also been reported and linked to disorders such as lymphatic dysplasia 82 . ...
Article
Full-text available
Hyperemia in response to neural activity is essential for brain health. A hyperemic response delivers O2 and nutrients, clears metabolic waste, and concomitantly exposes cerebrovascular endothelial cells to hemodynamic forces. While neurovascular research has primarily centered on the front end of hyperemia—neuronal activity-to-vascular response—the mechanical consequences of hyperemia have gone largely unexplored. Piezo1 is an endothelial mechanosensor that senses hyperemia-associated forces. Using genetic mouse models and pharmacologic approaches to manipulate endothelial Piezo1 function, we evaluated its role in blood flow control and whether it impacts cognition. We provide evidence of a built-in brake system that sculpts hyperemia, and specifically show that Piezo1 activation triggers a mechano-feedback system that promotes blood flow recovery to baseline. Further, genetic Piezo1 modification led to deficits in complementary memory tasks. Collectively, our findings establish a role for endothelial Piezo1 in cerebral blood flow regulation and a role in its behavioral sequelae.
... For instance, E756del is a genetic gain-function variant of Piezo1, and some research results indicate that the E756del variant of Piezo1 is acquired in mice and appears more frequently in sprinters compared to non-athletes. Additionally, animal experiments have demonstrated that mice with the R2482H mutation in Piezo1 exhibit improved jumping and elastic muscle functions (Nakamichi et al., 2022). Hence, it can be inferred that Piezo1 enhances skeletal muscle stretching function by improving tendon compliance. ...
Article
Full-text available
Mechanosensitive ion channel protein 1 (Piezo1) is a large homotrimeric membrane protein. Piezo1 has various effects and plays an important and irreplaceable role in the maintenance of human life activities and homeostasis of the internal environment. In addition, recent studies have shown that Piezo1 plays a vital role in tumorigenesis, progression, malignancy and clinical prognosis. Piezo1 is involved in regulating the malignant behaviors of a variety of tumors, including cellular metabolic reprogramming, unlimited proliferation, inhibition of apoptosis, maintenance of stemness, angiogenesis, invasion and metastasis. Moreover, Piezo1 regulates tumor progression by affecting the recruitment, activation, and differentiation of multiple immune cells. Therefore, Piezo1 has excellent potential as an anti-tumor target. The article reviews the diverse physiological functions of Piezo1 in the human body and its major cellular pathways during disease development, and describes in detail the specific mechanisms by which Piezo1 affects the malignant behavior of tumors and its recent progress as a new target for tumor therapy, providing new perspectives for exploring more potential effects on physiological functions and its application in tumor therapy.
... Runx2 is expressed in the early stage of healing and plays an important role in the differentiation and maturation of osteoblasts 35 . Scx is expressed in all stages of tendon development, which plays an important role in tendon genesis, differentiation and regeneration, and it is a relative specific molecular marker of tendon 36 . Tnmd is a specific molecular marker of the tendon and plays an important role in the development and maturation of tendon 37 . ...
Article
Full-text available
Currently, the predominant method for repairing rotator cuff involves surgical suture techniques, but the failure rate remains notably high. Failure of the rotator cuff insertion to provide adequate biomechanics during early healing is considered a major cause of failure. Addressing this problem, biological augmentation emerges as a promising strategy for enhancing the biomechanical properties during early stages. Tendon-derived stem cells (TDSCs), which facilitate the differentiation of repair-supportive cells, hold the potential to improve the efficacy of patch application. The study aims to assess the behavior of TDSCs in acellular porcine Achilles tendon (APAT) patches and to explore the capacity of the APAT patch encapsulating TDSCs in promoting both tendon-to-bone healing and biomechanical enhancements in a rabbit rotator cuff repair model. Transmission electron microscopy (TEM) analyses validated the complete cellular clearance of native cells from APAT patches, with uniform distribution of TDSCs. Immunofluorescence staining confirmed successful TDSCs attachment, while population doubling time (PDT) underscored increased TDSCs proliferation on APAT patches. Quantitative polymerase chain reaction (qPCR) demonstrated upregulation of tenocyte and osteocyte related genes in TDSCS cultured within the patches. In the subsequent in vivo experiment, fifty-four rabbits were used to create rotator cuff injury models and randomly assigned to a control group, an APAT patch group, and an APAT patch with TDSCs group. Histological analysis showed that the APAT patch with TDSCs group had significantly enhanced tendon-to-bone healing and a distinctly organized tendon-fibrocartilage-bone structure, as compared to the APAT patch group. In addition, the biomechanical properties of the APAT patch with TDSCs group were significantly improved. In conclusion, APAT patches promote TDSC proliferation and stimulate tenogenic and osteogenic differentiation. APAT patches encapsulating TDSCs have shown considerable potential in promoting tendon-to-bone healing of rotator cuff injuries, indicating that their use in rotator cuff repair surgery is clinically meaningful.
... In a series of updates of the gene map for human performance and fitness-related phenotypes between 2000 and 2015, over 200 autosomal genes and quantitative trait loci have been reported, often lacking replications [1][2][3][4][5][6][7][8][9][10][11][12][13][14] . Genetic studies of human performance continue to produce further results in recent years 15,16 , however, key genes and gene regulatory networks remain largely elusive. The reason behind this knowledge scarcity is multi-faceted, in line with our progressive understanding of the field of human genetics. ...
Preprint
Full-text available
The genetic underpinnings of elite sprint performance remain largely elusive. For the first time, we uncovered rs10196189 (GALNT13) in the cross-ancestry, genome-wide analysis of elite sprint and power-oriented athletes and their controls from Jamaica, the USA, and Japan, and replicated this finding in two independent cohorts of elite European athletes (meta-analysis P < 5E-08). We identified statistically significant and borderline associations for cross-ancestry and ancestry specific loci in GALNT13, BOP1, HSF1, STXBP2 GRM7, MPRIP, ZFYVE28, CERS4, and ADAMTS18, predominantly expressed in the nervous and hematopoietic systems. Further, we revealed thirty-six previously uncharacterized genes associated with host defence, leukocyte migration, and cellular responses to interferon-gamma and unveiled (reprioritized) four genes, UQCRFS1, PTPN6, RALY and ZMYM4, responsible for aging, neurological conditions, and blood disorders from the elite athletic performance cohorts. Our results provide new biological insights into elite sprint performance and offer clues to the potential molecular mechanisms interlinking and operating in elite athletic performance and human health and disease.
... Last, we identified that the biomechanics-induced YAP-pSmad2/3-SOX9 axis facilitated chondrogenesis of SMSCs and subsequent meniscal regeneration. The mechanosensitive ion channel Piezo1 played a critical role in musculoskeletal system, which could relay the biomechanical stimulus into chemical signals (42,51,52). In the present study, it was demonstrated that Piezo1 mediated mechanotransduction through concerted activation of calcineurin and NFATc1 and further activated YAP-pSmad2/3-SOX9 axis during meniscal regeneration. ...
Article
Full-text available
Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus–like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.
... Mechanotransduction is known to be regulated by additional mechanically gated channels (including PIEZO2 and TRPV4) and inflammation, both of which are the topics of ongoing investigation in our laboratory. Further, recent studies have shown that PIEZO1 gain of function mutations in mice increases tendon anabolism, elastic energy storage potential, and compliance (Passini et al., 2021;Nakamichi et al., 2022); meanwhile, Piezo1 conditional knockout results in decreased tendon stiffness (Passini et al., 2021). The role of PIEZO1 in rotator cuff tendon homeostasis, pathology, and repair remains unknown, and future studies to investigate the rotator cuff tendons in addition to the glenohumeral articular cartilage would enhance our understanding of PIEZO1 in a massive rotator cuff tear. ...
Article
Full-text available
Introduction: A massive rotator cuff tear (RCT) leads to glenohumeral joint destabilization and characteristic degenerative changes, termed cuff tear arthropathy (CTA). Understanding the response of articular cartilage to a massive RCT will elucidate opportunities to promote homeostasis following restoration of joint biomechanics with rotator cuff repair. Mechanically activated calcium-permeating channels, in part, modulate the response of distal femoral chondrocytes in the knee against injurious loading and inflammation. The objective of this study was to investigate PIEZO1-mediated mechanotransduction of glenohumeral articular chondrocytes in the altered biomechanical environment following RCT to ultimately identify potential therapeutic targets to attenuate cartilage degeneration after rotator cuff repair. Methods: First, we quantified mechanical susceptibility of chondrocytes in mouse humeral head cartilage ex vivo with treatments of specific chemical agonists targeting PIEZO1 and TRPV4 channels. Second, using a massive RCT mouse model, chondrocytes were assessed for mechano-vulnerability, PIEZO1 expression, and calcium signaling activity 14-week post-injury, an early stage of CTA. Results: In native humeral head chondrocytes, chemical activation of PIEZO1 (Yoda1) significantly increased chondrocyte mechanical susceptibility against impact loads, while TRPV4 activation (GSK101) significantly decreased impact-induced chondrocyte death. A massive RCT caused morphologic and histologic changes to the glenohumeral joint with decreased sphericity and characteristic bone bruising of the posterior superior quadrant of the humeral head. At early CTA, chondrocytes in RCT limbs exhibit a significantly decreased functional expression of PIEZO1 compared with uninjured or sham controls. Discussion: In contrast to the hypothesis, PIEZO1 expression and activity is not increased, but rather downregulated, after massive RCT at the early stage of cuff tear arthropathy. These results may be secondary to the decreased axial loading after glenohumeral joint decoupling in RCT limbs.
... Gain-of-function PIEZO1 mutations are increasingly recognised and seen to be more frequent in some people, such as those of African, African American and South Asian ancestry [66][67][68] . There are associations with anaemia, malarial resistance, iron overload, sprinting ability, itch, cardiac hypertrophy and HbA1c, a marker of diabetes 66,[68][69][70][71][72] . Here, we raise the possibility of additional associations with lipid homeostasis and hepatobiliary conditions such as fatty liver disease. ...
Preprint
Full-text available
How cardiovascular activity beneficially regulates lipid homeostasis is unclear. Here we hypothesise a mechanism in which mechanical force sensed by PIEZO1 ion channels in endothelium links blood flow to lipid regulation. We engineered mice for conditional deletion of PIEZO1 in endothelium and determined consequences for lipid regulation. Prominent are upregulated expression of hepatic Cyp7a1 and intestinal Ldlr genes, which are pivotal in cholesterol catabolism and excretion. Consistent with such regulation is endothelial PIEZO1-dependence of hepatic, intestinal and whole body cholesterol and bile homeostasis. There is organ perfusion-dependent gene regulation via endothelial PIEZO1 and downstream nitric oxide synthase. Endothelial PIEZO1-deleted mice are protected against hyperlipidaemia and ectopic fat deposition. Human PIEZO1 gene variants and a recapitulated human PIEZO1 gain-of-function variant in mice associate with dyslipidaemia. The data suggest lipid-promoting effects of endothelial force sensing and new opportunity for understanding and addressing problems of hyperlipidaemia.
... 18,19 This broad mechanical sensitivity mirrors the breadth of physiological functions governed by PIEZO1 across cells, organs, and physiological systems. 9,11,12,[20][21][22][23][24][25][26][27][28][29][30] PIEZO1 possesses a homotrimeric structure encompassing a central pore region and three non-coplanar transmembrane blade domains, conferring the channel a unique bowl shape. [31][32][33][34][35] Physical manipulations of the PIEZO1 blade alter channel sensitivity to mechanical forces, [36][37][38][39] suggesting that this domain senses mechanical stimuli by changing its conformation. ...
Article
Full-text available
Mechanical forces are thought to activate mechanosensitive PIEZO channels by changing the conformation of a large transmembrane blade domain. Yet, whether different stimuli induce identical conformational changes in this domain remains unclear. Here, we repurpose a cyclic permuted green fluorescent protein as a conformation-sensitive probe to track local rearrangements along the PIEZO1 blade. Two independent probes, one inserted in an extracellular site distal to the pore and the other in a distant intracellular proximal position, elicit sizable fluorescence signals when the tagged channels activate in response to fluid shear stress of low intensity. Neither cellular indentations nor osmotic swelling of the cell elicit detectable fluorescence signals from either probe, despite the ability of these stimuli to activate the tagged channels. High-intensity flow stimuli are ineffective at eliciting fluorescence signals from either probe. Together, these findings suggest that low-intensity fluid shear stress causes a distinct form of mechanical stress to the cell.
... With the new approach afforded by NE, patients can improve their knowledge regarding their symptoms and perceptions and, subsequently, they may reach an enhanced understanding and better management of their condition. Often neglected areas, like body perception (31) and proprioception (32,33) are particularly important in the NE, which introduces the systematic assessment of these important subjective perceptions, whose presence in both EDS subjects and anxiety patients is common and holds great potential value. ...
Article
Full-text available
Introduction The link between anxiety disorders and joint hypermobility syndrome (now under hypermobility spectrum disorders, which include hypermobile Ehlers–Danlos syndrome) has been widely replicated over the past 30 years and has grown beyond the initial nosological limits. To integrate clinical and research progress in this field, a new neuroconnective endophenotype (NE) and its corresponding instrument, the Neuroconnective Endophenotype Questionnaire (NEQ), have been developed. This new clinical construct, created with the active participation of patients, includes both somatic and psychological dimensions and symptoms and resilience items. Methods The NE includes five dimensions: (1) sensorial sensitivity, (2) body signs and symptoms, (3) somatic conditions, (4) polar behavioral strategies, and (5) psychological and psychopathological dimensions. The NEQ information is collected through four self-administered questionnaires (sensorial sensitivity, body signs and symptoms, polar behavioral strategies, and psychological characteristics) and a structured diagnostic part that should be completed by a trained observer. This hetero-administered part incorporates (a) psychiatric diagnoses (using structured criteria, e.g., MINI), (b) somatic disorders diagnosis, using structured criteria, and (c) assessment of joint hypermobility criteria. Results In a sample of 36 anxiety cases with 36 matched controls, the NEQ obtained high scores for test–retest, inter-rater reliability, and internal consistency. As for predictive validity, cases and controls significantly differed in all five dimensions and hypermobility measurements. Discussion We can conclude that the NEQ has achieved acceptable reliability and validity values and, therefore, is ready to be used and tested in different samples. This original and consistent construct including somatic and mental items may improve clinical specificity, the search for more comprehensive therapies, and their genetic and neuroimaging bases.
... Interestingly, there is an opposite published result (Wan et al., 2020) that showed an increased proportion of type II muscle fibers in denervated TA muscles, claiming that slow-to-fast twitch muscle fiber conversion after denervation. However, previous studies have identified that TA muscle consists of IIB, IIX and IIA, but not of I fibers (Kammoun et al., 2014;Nakamichi et al., 2022), and we have also confirmed it by MyHC I IF staining (data not shown), reducing the likelihood of slow-to-fast fiber type shift in TA after denervation. Nevertheless, this study welcomes falsifiability. ...
Article
Full-text available
No drug options exist for skeletal muscle atrophy in clinical, which poses a huge socio-economic burden, making development on drug interventions a general wellbeing need. Patients with a variety of pathologic conditions associated with skeletal muscle atrophy have systemically elevated inflammatory factors. Morroniside, derived from medicinal herb Cornus officinalis, possesses anti-inflammatory effect. However, whether and how morroniside combat muscle atrophy remain unknown. Here, we identified crucial genetic associations between TNFα/NF-κB pathway and grip strength based on population using 377,807 European participants from the United Kingdom Biobank dataset. Denervation increased TNFα in atrophying skeletal muscles, which inhibited myotube formation in vitro. Notably, morroniside treatment rescued TNFα-induced myotube atrophy in vitro and impeded skeletal muscle atrophy in vivo, resulting in increased body/muscles weights, No. of satellite cells, size of type IIA, IIX and IIB myofibers, and percentage of type IIA myofibers in denervated mice. Mechanistically, in vitro and/or in vivo studies demonstrated that morroniside could not only inhibit canonical and non-canonical NF-κB, inflammatory mediators (IL6, IL-1b, CRP, NIRP3, PTGS2, TNFα), but also down-regulate protein degradation signals (Follistatin, Myostatin, ALK4/5/7, Smad7/3), ubiquitin-proteasome molecules (FoxO3, Atrogin-1, MuRF1), autophagy-lysosomal molecules (Bnip3, LC3A, and LC3B), while promoting protein synthesis signals (IGF-1/IGF-1R/IRS-1/PI3K/Akt, and BMP14/BMPR2/ALK2/3/Smad5/9). Moreover, morroniside had no obvious liver and kidney toxicity. This human genetic, cells and mice pathological evidence indicates that morroniside is an efficacious and safe inflammatory muscle atrophy treatment and suggests its translational potential on muscle wasting.
Article
The periodontal ligament (PDL) is a structure between the alveolar bone and cementum, essential for tooth stability and composed of diverse cell types. Mohawk homeobox (Mkx) is a master transcription factor that regulates tendon and ligament homeostasis. However, the specific cell populations expressing Mkx and its role in mechanotransduction during orthodontic tooth movement (OTM) remain unclear. We conducted single-cell RNA sequencing on wild-type rat PDL at 0 day, 1 week, and 2 weeks of post-OTM using coil springs to elucidate Mkx’s function and the changes in cell populations under continuous mechanical stimulation. In addition, RT-qPCR was performed to assess the relationship between tenogenic gene expression and Mkx expression in human PDL cells. The rat PDL was identified to consist of 14 clusters, with Mkx and Scleraxis (Scx) expressed in distinct cell populations. Collagen and ECM production increased throughout the OTM period, while the sterile inflammatory response was initially heightened and later diminished, indicating that bone remodeling occurs later in the inflammatory response. Overexpression of MKX in human PDL cells enhanced COL1A1 and DECORIN expression. Mechanical stimulation of the PDL appears to trigger an aseptic inflammatory response that disrupts PDL homeostasis and promotes bone remodeling. Mkx may exert a protective effect on the PDL during mechanical stimulation.
Article
Full-text available
Muscle degeneration is a common issue caused by rotator cuff tear (RCT) which significantly affects prognosis. Muscle stem cells (MuSCs) play a crucial role to prevent muscle degeneration after RCT. However, the pathological changes and detailed molecular mechanism underlying the myogenesis of MuSCs after RCT remain incomplete. The current study established single-cell landscape of supraspinatus muscles and found decreased expression of PIEZO1 and impaired myogenic potential of MuSCs from RCT patients. Reduced expression of PIEZO1 impaired the myogenesis of MuSCs by inhibiting the ERK/MAPK pathways. Furthermore, selective PIEZO1 agonist Yoda1 had the potential to alleviate muscle degeneration and improve shoulder function following RCT. This study emphasized the role of PIEZO1 in the myogenesis of MuSCs and suggested that activating PIEZO1 could be a potential non-surgical treatment option to reduce muscle degeneration after RCT.
Article
Full-text available
Preserving the function of human tendon‐derived cells (hTDCs) during cell expansion is a significant challenge in regenerative medicine. In this study, a non‐genetic approach is introduced to control the differentiation of hTDCs using a newly developed tympanic bioreactor. The system mimics the functionality of the human tympanic membrane, employing a piezoelectrically tuned acoustic diaphragm made of polyvinylidene fluoride‐co‐trifluoroethylene and boron nitride nanotubes. The diaphragm is vibrationally actuated to deliver targeted electromechanical stimulation to hTDCs. The results demonstrate that the system effectively maintains the tendon‐specific phenotype of hTDCs, even under conditions that typically induce nonspecific differentiation, such as osteogenesis. This stabilization is achieved by modulating integrin‐mediated mechanosignaling via ion channel‐regulated calcium activity, potentially by TREK‐1 and PIEZO1, yet targeted studies are required for confirmation. Finally, the system sustains the activation of key differentiation pathways (bone morphogenetic protein, BMP) while downregulating osteogenesis‐associated (mitogen‐ctivated protein kinase, MAPK and wingless integrated, WNT) pathways and upregulating Focal Adhesion Kinase (FAK) signaling. This approach offers a finely tunable, dose‐dependent control over hTDC differentiation, presenting significant potential for non‐genetic approaches in cell therapy, tendon tissue engineering, and the regeneration of other mechanosensitive tissues.
Article
Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure-function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.
Article
Full-text available
Piezo1, a mechanosensitive ion channel, has emerged as a key player in translating mechanical stimuli into biological signaling. Its involvement extends beyond physiological and pathological processes such as lymphatic vessel development, axon growth, vascular development, immunoregulation, and blood pressure regulation. The musculoskeletal system, responsible for structural support, movement, and homeostasis, has recently attracted attention regarding the significance of Piezo1. This review aims to provide a comprehensive summary of the current research on Piezo1 in the musculoskeletal system, highlighting its impact on bone formation, myogenesis, chondrogenesis, intervertebral disc homeostasis, tendon matrix cross-linking, and physical activity. Additionally, we explore the potential of targeting Piezo1 as a therapeutic approach for musculoskeletal disorders, including osteoporosis, muscle atrophy, intervertebral disc degeneration, and osteoarthritis.
Article
Tendons play an important role in the maintenance of motor function by connecting muscles and bones and transmitting forces. Particularly, the role of mechanical stress has primarily focused on the key mechanism of tendon homeostasis, with much research on this topic. With the recent development of molecular biological techniques, the mechanisms of mechanical stress sensing and signal transduction have been gradually elucidated with the identification of mechanosensor in tendon cells and the master regulator in tendon development. This review provides a comprehensive overview of the structure and function of tendon tissue, including the role for physical performance and the detailed mechanism of mechanotransduction in its regulation. An important lesson is that the role of mechanotransduction in tendon tissue is only partially clarified, indicating the complexity of the mechanisms of motor function and fueling increasing interest in uncovering these mechanisms.
Article
Tendons and ligaments, crucial components of the musculoskeletal system, connect muscles to bones. In the realm of sports, tendons and ligaments are vulnerable tissues, with injuries such as Achilles tendon rupture and anterior cruciate ligament tears directly impacting an athlete’s career. Furthermore, repetitive trauma and tissue degeneration can lead to conditions like secondary osteoarthritis, ultimately affecting the overall quality of life. Recent research highlights the pivotal role of mechanical stress in maintaining homeostasis within tendons and ligaments. This review delves into the latest insights on the structure of tendons and ligaments and the plasticity of tendon tissue in response to mechanical loads.
Article
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Article
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Article
Full-text available
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Article
Full-text available
Introduction Tendinopathy, the most common form of chronic tendon disorder, leads to persistent tendon pain and loss of function. Profiling the heterogeneous cellular composition in the tendon microenvironment helps to elucidate rational molecular mechanisms of tendinopathy. Methods and results In this study, through a multi-modal analysis, a single-cell RNA- and ATAC-seq integrated tendinopathy landscape was generated for the first time. We found that a specific cell subpopulation with low PRDX2 expression exhibited a higher level of inflammation, lower proliferation and migration ability, which not only promoted tendon injury but also led to microenvironment deterioration. Mechanistically, a motif enrichment analysis of chromatin accessibility showed that FOXO1 was an upstream regulator of PRDX2 transcription, and we confirmed that functional blockade of FOXO1 activity induced PRDX2 silencing. The TNF signaling pathway was significantly activated in the PRDX2-low group, and TNF inhibition effectively restored diseased cell degradation. Discussion We revealed an essential role of diseased cells in tendinopathy and proposed the FOXO1-PRDX2-TNF axis is a potential regulatory mechanism for the treatment of tendinopathy.
Article
Tendinopathies are common injuries that typically occur from overuse and fatigue. Treatments target late-stage symptoms with limited success, leading to high rates of reinjury. Early intervention could halt tendinopathy progression to rupture but requires a better understanding of the biomechanical environment associated with early-stage disease. While fatigue injured tendons are further damaged by exercise that is initiated immediately after onset of injury, exercise that is initiated after a brief delay promotes repair. Similar macroscale mechanical properties and collagen damage throughout this delay period suggests that microscale, non-collagenous matrix changes after fatigue injury modulate tendon mechanotransduction and shifts the exercise response from detrimental to reparative. Glycosaminoglycans (GAGs) and proteoglycans (PGs) are increased during chronic tendinopathy, but their role in early-stage disease is unknown. We hypothesized that increased GAGs from fatigue injury modulate viscoelasticity and microscale strains to enable repair from exercise. Various GAG types were increased in the weeks after onset of fatigue injury in the extracellular and pericellular matrices of rat patellar tendons. Enzymatic removal of GAGs from these fatigued tendons increased microscale shear strain, suggesting that GAGs modulate the cell microenvironment after fatigue injury. GAG removal decreased dynamic modulus in the toe region and decreased loss tangent in the linear region of the stress-strain curve in fatigued tendons, suggesting the GAG increase modulates tendon multiscale mechanics and viscoelasticity during fiber uncrimping and fibril sliding and strain transfer. GAGs may influence repair in response to exercise and could serve as a therapeutic target for tendinopathy.
Article
PIEZO1 and PIEZO2 are mechanosensitive cation channels which are highly expressed in numerous tissues throughout the body and exhibit diverse, cell-specific functions in multiple organ systems. Within the musculoskeletal system, PIEZO1 functions to maintain muscle and bone mass, sense tendon stretch, and regulate senescence and apoptosis in response to mechanical stimuli within cartilage and the intervertebral disc. PIEZO2 is essential for transducing pain and touch sensations as well as proprioception in the nervous system, which can affect musculoskeletal health. PIEZO1 and PIEZO2 have been shown to act both independently as well as synergistically in different cell types. Conditions that alter PIEZO channel mechanosensitivity, such as inflammation or genetic mutations, can have drastic effects on these functions. For this reason, therapeutic approaches for PIEZO-related disease focus on altering PIEZO1 and/or PIEZO2 activity in a controlled manner, either through inhibition with small molecules, or through dietary control and supplementation to maintain a healthy cell membrane composition. While many opportunities to better understand PIEZO1 and PIEZO2 remain, the studies summarized in this review highlight how crucial PIEZO channels are to musculoskeletal health and point to promising possible avenues for their modulation as a therapeutic target.
Article
When focusing on quick movements in the analysis of animal behavior, a high-speed camera can be used as a powerful tool. There are many options for high-speed cameras to record movement. In recent years, the quality and sophistication of videos captured on cell phones have evolved so much that the iPhone's slow-motion video system can function as a tool for behavior analysis. Here, we describe a method to analyze the movement of the ankle joint and jump speed during the jumping action of mice, using an iPhone.
Article
Full-text available
PIEZO1 channels open in response to numerous mechanical stimuli, such as physical membrane deformations, which modulate the curvature of flexible domains called blades. Yet, whether different stimuli cause similar blade motions and whether these rearrangements correlate with pore opening remain unclear. Here, we scan local conformational changes along the PIEZO1 blade using fluorescent probes. We identify two distant probes, one intracellular proximal and the other extracellular distal, which independently and robustly respond to flow stimuli. Flow-induced signals from both probes exquisitely correlate with PIEZO1-dependent calcium influx and specifically increase in presence of fast-inactivating pore mutations. In contrast, both probes remain fluorimetrically silent to hypotonic shocks and indentations, two stimuli that otherwise evoke normal electrochemical responses in both engineered channels. This study reveals that flow-induced blade motions are functionally coupled to the pore and that at least two distant blade regions discriminate flow from two other stimuli, suggesting that PIEZO1 mobilizes distinct mechanisms to sense a broad range of mechanical cues. Teaser Fluorimetric evidence suggests that different mechanical stimuli impart distinct rearrangements in PIEZO1’s mechanosensory domains.
Article
Full-text available
Athletic performance relies on tendons, which enable movement by transferring forces from muscles to the skeleton. Yet, how load-bearing structures in tendons sense and adapt to physical demands is not understood. Here, by performing calcium (Ca2+) imaging in mechanically loaded tendon explants from rats and in primary tendon cells from rats and humans, we show that tenocytes detect mechanical forces through the mechanosensitive ion channel PIEZO1, which senses shear stresses induced by collagen-fibre sliding. Through tenocyte-targeted loss-of-function and gain-of-function experiments in rodents, we show that reduced PIEZO1 activity decreased tendon stiffness and that elevated PIEZO1 mechanosignalling increased tendon stiffness and strength, seemingly through upregulated collagen cross-linking. We also show that humans carrying the PIEZO1 E756del gain-of-function mutation display a 13.2% average increase in normalized jumping height, presumably due to a higher rate of force generation or to the release of a larger amount of stored elastic energy. Further understanding of the PIEZO1-mediated mechanoregulation of tendon stiffness should aid research on musculoskeletal medicine and on sports performance. The mechanosensitive ion channel PIEZO1 senses shear stress induced by collagen-fibre sliding in tendons, regulates their stiffness and influences jumping performance.
Article
Full-text available
Significance Osteoarthritis is a global health problem that affects load-bearing joints, causing loss of mobility and enormous healthcare costs. However, disease-modifying approaches are lacking. Here, we report a cellular mechanism of inflammatory signaling in chondrocytes, the cellular component of cartilage. We show how osteoarthritis-relevant levels of interleukin-1α reprogram articular chondrocytes so that they become more susceptible to mechanical trauma, which chondrocytes sense via Piezo1/2-mechanosensitive ion channels. We uncover that IL-1α enhances gene expression of P iezo 1 in primary articular chondrocytes underlying Piezo1 enhanced function. We elucidate signaling from membrane to nucleus, including transcription factors that enhance Piezo1 expression. We also define consequences of increased expression of Piezo1, for mechanotransduction and at rest, that implicate this reprogramming mechanism in osteoarthritis pathogenesis.
Article
Full-text available
Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here, we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca²⁺ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and ß-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/ß-catenin complex formation. Yap1 and ß-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced ß-catenin activities.
Article
Full-text available
Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca2+ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and β-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/β-catenin complex formation. Yap1 and β-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced β-catenin activities.
Article
Full-text available
Mechanical loading, such as caused by exercise, stimulates bone formation by osteoblasts and increases bone strength, but the mechanisms are poorly understood. Osteocytes reside in bone matrix, sense changes in mechanical load, and produce signals that alter bone formation by osteoblasts. We report that the ion channel Piezo1 is required for changes in gene expression induced by fluid shear stress in cultured osteocytes and stimulation of Piezo1 by a small molecule agonist is sufficient to replicate the effects of fluid flow on osteocytes. Conditional deletion of Piezo1 in osteoblasts and osteocytes notably reduced bone mass and strength in mice. Conversely, administration of a Piezo1 agonist to adult mice increased bone mass, mimicking the effects of mechanical loading. These results demonstrate that Piezo1 is a mechanosensitive ion channel by which osteoblast lineage cells sense and respond to changes in mechanical load and identify a novel target for anabolic bone therapy.
Article
Full-text available
Mechanical load of the skeleton system is essential for the development, growth, and maintenance of bone. However, the molecular mechanism by which mechanical stimuli are converted into osteogenesis and bone formation remains unclear. Here we report that Piezo1, a bona fide mechanotransducer critical for various biological processes, plays a critical role in bone formation. Knockout of Piezo1 in osteoblast lineage cells disrupts osteogenesis of osteoblasts and severely impairs bone structure and strength. Mechanical unloading induced bone loss is blunted in the Piezo1 knockout mice. Intriguingly, simulated microgravity treatment reduced the function of osteoblasts via suppressing the expression of Piezo1. Furthermore, osteoporosis patients show reduced expression of Piezo1, which is closely correlated with osteoblast dysfunction. These data collectively suggest that Piezo1 functions as a key mechanotransducer for conferring mechanosensitivity to osteoblasts and determining mechanical-load-dependent bone formation, and represents a novel therapeutic target for treating osteoporosis or mechanical unloading-induced severe bone loss.
Article
Full-text available
During tendon healing, it is postulated that tendon cells drive tissue regeneration, whereas extrinsic cells drive pathologic scar formation. Tendon cells are frequently described as a homogenous, fibroblast population that is positive for the marker Scleraxis (Scx). It is controversial whether tendon cells localize within the forming scar tissue during adult tendon healing. We have previously demonstrated that S100 calcium‐binding protein A4 (S100a4) is a driver of tendon scar formation and marks a subset of tendon cells. The relationship between Scx and S100a4 has not been explored. In this study, we assessed the localization of Scx lineage cells (ScxLin) following adult murine flexor tendon repair and established the relationship between Scx and S100a4 throughout both homeostasis and healing. We showed that adult ScxLin localize within the scar tissue and organize into a cellular bridge during tendon healing. Additionally, we demonstrate that markers Scx and S100a4 label distinct populations in tendon during homeostasis and healing, with Scx found in the organized bridging tissue and S100a4 localized throughout the entire scar region. These studies define a heterogeneous tendon cell environment and demonstrate discrete contributions of subpopulations during healing. These data enhance our understanding and ability to target the cellular environment of the tendon.—Best, K. T., Loiselle, A. E. Scleraxis lineage cells contribute to organized bridging tissue during tendon healing and identify a subpopulation of resident tendon cells. FASEB J. 33, 8578–8587 (2019). www.fasebj.org
Article
Full-text available
Significance PIEZOs are mechanically activated cation channels. Recently, loss-of-function mutations of human PIEZO1 were found among patients with familial lymphedema, suggesting a requirement of PIEZO1 in the lymphatic system. In this paper, utilizing mouse models lacking PIEZO1 in endothelial cells, we show that this ion channel is required for the formation of lymphatic valves, a key structure for proper circulation of lymph in the body. The requirement of PIEZO1 in valve formation provides mechanistic insight on how PIEZO1 variants cause lymphatic dysfunction in patients. This study also extends the relevance of PIEZOs beyond acute signaling molecules (e.g., touch sensation) and highlights the importance of these ion channels in controlling morphological/structural specification during development.
Article
Full-text available
Background: Tendinopathies are common and difficult to resolve due to the formation of scar tissue that reduces the mechanical integrity of the tissue, leading to frequent reinjury. Tenocytes respond to both excessive loading and unloading by producing pro-inflammatory mediators, suggesting that these cells are actively involved in the development of tendon degeneration. The transcription factor scleraxis (Scx) is required for the development of force-transmitting tendon during development and for mechanically stimulated tenogenesis of stem cells, but its function in adult tenocytes is less well-defined. The aim of this study was to further define the role of Scx in mediating the adult tenocyte mechanoresponse. Results: Equine tenocytes exposed to siRNA targeting Scx or a control siRNA were maintained under cyclic mechanical strain before being submitted for RNA-seq analysis. Focal adhesions and extracellular matrix-receptor interaction were among the top gene networks downregulated in Scx knockdown tenocytes. Correspondingly, tenocytes exposed to Scx siRNA were significantly softer, with longer vinculin-containing focal adhesions, and an impaired ability to migrate on soft surfaces. Other pathways affected by Scx knockdown included increased oxidative phosphorylation and diseases caused by endoplasmic reticular stress, pointing to a larger role for Scx in maintaining tenocyte homeostasis. Conclusions: Our study identifies several novel roles for Scx in adult tenocytes, which suggest that Scx facilitates mechanosensing by regulating the expression of several mechanosensitive focal adhesion proteins. Furthermore, we identified a number of other pathways and targets affected by Scx knockdown that have the potential to elucidate the role that tenocytes may play in the development of degenerative tendinopathy.
Article
Full-text available
ELife digest Cartilage is a flexible tissue that cushions the joints in our body, allowing them to move smoothly. It is made of cells called chondrocytes that are surrounded by a scaffold of proteins known as the extracellular matrix. Chondrocytes regularly experience mechanical forces, which can arise from the movement of fluid within the joints or be transmitted to chondrocytes via the extracellular matrix. These cells sense mechanical forces by a process known as mechanotransduction, which allows chondrocytes to alter the composition of the extracellular matrix in order to maintain an appropriate amount of cartilage. If mechanotransduction pathways are disrupted, the cartilage may become damaged, which can result in osteoarthritis and other painful joint diseases. The membrane that surrounds a chondrocyte contains proteins known as ion channels that are responsible for sensing mechanical forces. The channels open in response to mechanical forces to allow ions to flow into the cell. This movement of ions generates electrical signals that result in changes to the production of extracellular matrix proteins. However, there is little direct evidence that mechanical forces can activate ion channels in chondrocytes and it not known how these cells respond to different types of forces. To address these questions, Servin-Vences et al. exposed chondrocytes from mice to mechanical forces either at the point of contact between the cell and its surrounding matrix, or to stretch the cell membrane. The experiments show that two ion channels called PIEZO1 and TRPV4 both generate electrical currents in response to forces transmitted between cells and the extracellular matrix. However, only PIEZO1 generates a current when the cell membrane is stretched. Thus, chondrocytes are able to distinguish between different types of mechanical forces. More work is needed to understand how mechanical forces are able to activate these ion channels. Understanding how these processes work at the molecular level will hopefully lead to new therapies that boost cartilage production to treat joint diseases. DOI: http://dx.doi.org/10.7554/eLife.21074.002
Article
Full-text available
Tendinopathy is a multifactorial spectrum of tendon disorders that affects different anatomical sites and is characterized by activity-related tendon pain. These disorders are common, account for a high proportion (~30%) of referrals to musculoskeletal practitioners and confer a large socioeconomic burden of disease. Our incomplete understanding of the mechanisms underpinning tendon pathophysiology continues to hamper the development of targeted therapies, which have been successful in other areas of musculoskeletal medicine. Debate remains among clinicians about the role of an inflammatory process in tendinopathy owing to a lack of clinical correlation. The advent of modern molecular techniques has highlighted the presence of immune cells and inflammatory mechanisms throughout the spectrum of tendinopathy in both animal and human models of disease. Key inflammatory mediators — such as cytokines, nitric oxide, prostaglandins and lipoxins — play crucial parts in modulating changes in the extracellular matrix within tendinopathy. Understanding the links between inflammatory mechanisms, tendon homeostasis and resolution of tendon damage will be crucial in developing novel therapeutics for human tendon disease.
Article
Full-text available
Background The use of corticosteroids (e.g., dexamethasone) as treatment for tendinopathy has recently been questioned as higher risks for ruptures have been observed clinically. In vitro studies have reported that dexamethasone exposed tendon cells, tenocytes, show reduced cell viability and collagen production. Little is known about the effect of dexamethasone on the characteristics of tenocytes. Furthermore, there are uncertainties about the existence of apoptosis and if the reduction of collagen affects all collagen subtypes. Methods We evaluated these aspects by exposing primary tendon cells to dexamethasone (Dex) in concentrations ranging from 1 to 1000 nM. Gene expression of the specific tenocyte markers scleraxis (Scx) and tenomodulin (Tnmd) and markers for other mesenchymal lineages, such as bone (Alpl, Ocn), cartilage (Acan, Sox9) and fat (Cebpα, Pparg) was measured via qPCR. Cell viability and proliferation was calculated using a MTS Assay. Cell death was measured by LDH assay and cleaved caspase-3 using Western Blot. Gene expression of collagen subtypes Col1, Col3 and Col14 was analyzed using qPCR. Results Stimulation with Dex decreased cell viability and LDH levels. Dex also induced a significant reduction of Scx gene expression and a marked loss of fibroblast like cell shape. The mRNA for all examined collagen subtypes was found to be down-regulated. Among non-tendinous genes only Pparg was significantly increased, whereas Acan, Alpl and Sox9 were reduced. Conclusions These results indicate a Dex induced phenotype drift of the tenocytes by reducing scleraxis expression. Reduction of several collagen subtypes, but not cell death, seems to be a feature of Dex induced tissue degeneration.
Article
Full-text available
The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx(-/-) mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration.
Article
Full-text available
Purpose: The Achilles tendon (AT) must adapt to meet changes in demands. This study explored AT adaptation by comparing properties within the jump and non-jump legs of jumping athletes. Non-jumping control athletes were included to control limb dominance effects. Methods: AT properties were assessed in the preferred (jump) and non-preferred (lead) jumping legs of male collegiate-level long and/or high jump (jumpers; n=10) and cross-country (controls; n=10) athletes. Cross-sectional area (CSA), elongation, and force during isometric contractions were used to estimate the morphological, mechanical and material properties of the ATs bilaterally. Results: Jumpers exposed their ATs to more force and stress than controls (all p≤0.03). AT force and stress were also greater in the jump leg of both jumpers and controls than in the lead leg (all p<0.05). Jumpers had 17.8% greater AT stiffness and 24.4% greater Young’s modulus in their jump leg compared to lead leg (all p<0.05). There were no jump versus lead leg differences in AT stiffness or Young’s modulus within controls (all p>0.05). Conclusion: ATs chronically exposed to elevated mechanical loading were found to exhibit greater mechanical (stiffness) and material (Young’s modulus) properties.
Article
Full-text available
Although the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To maximise energy storage and return, energy-storing tendons need to be more extensible and elastic than tendons with a purely positional function. These properties are conferred in part by a specialisation of a specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy-storing and positional tendons, and that protein distribution varies between the fascicular matrix and the interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution in the energy-storing equine superficial digital flexor tendon and positional common digital extensor tendon was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy-storing superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in this tendon. A differential distribution of proteoglycans was identified between tendon types and regions, which may indicate a distinct role for each of these proteins in tendon. These data provide important advances into fully characterising structure-function relationships within tendon.
Article
Full-text available
Mechanoforces experienced by an organ is translated into biological information for cellular sensing and response. In mammals, the tendon connective tissue experiences and resists physical forces, with tendon-specific mesenchymal cells called “tenocytes” orchestrating extracellular matrix (ECM) turnover. We show that Mohawk (Mkx), a tendon specific transcription factor, is essential in mechano-responsive tenogenesis, through regulating its downstream ECM genes such as type I collagens and proteoglycans such as fibromodulin both in vivo and in vitro. WT mice demonstrated an increase in collagen fiber diameter and density in response to physical treadmill exercise, whereas in Mkx -/- mice, tendons failed to respond to the same mechanical stimulation. Furthermore, functional screening of the Mkx promoter region identified several upstream transcription factors that regulate Mkx. In particular, general transcription factor II-I repeat domain-containing protein 1 (Gtf2ird1) that is expressed in the cytoplasm of unstressed tenocytes, translocated into the nucleus upon mechanical stretch to activate the Mkx promoter through chromatin regulation. Here we demonstrated that Gtf2ird1 is essential for Mkx transcription, whilst also linking mechanical forces to Mkx-mediated tendon homeostasis and regeneration.
Article
Full-text available
Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms (SNPs) or the insertion/deletion variants in small, often heterogeneous cohorts have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic associations is often smaller than initially anticipated and, as such, large sample sizes are required to identify them robustly. Thus, alternative approaches involving large-scale, collaborative efforts, within which high-resolution genome-wide data is generated and interrogated using advanced bioinformatics approaches, are likely necessary for meaningful progress to be made. Accordingly, a symposium was held on the Greek island of Santorini from 14-17th May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium offered a forum for the development of a position stand. Among the participants, many were involved in ongoing collaborative studies. A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium.
Article
Full-text available
Little is known about the genesis and patterning of tendons and other connective tissues, mostly owing to the absence of early markers. We have found that Scleraxis, a bHLH transcription factor, is a highly specific marker for all the connective tissues that mediate attachment of muscle to bone in chick and mouse, including the limb tendons, and show that early scleraxis expression marks the progenitor cell populations for these tissues. In the early limb bud, the tendon progenitor population is found in the superficial proximomedial mesenchyme. Using the scleraxis gene as a marker we show that these progenitors are induced by ectodermal signals and restricted by bone morphogenetic protein (BMP) signaling within the mesenchyme. Application of Noggin protein antagonizes this endogenous BMP activity and induces ectopic scleraxis expression. However, the presence of excess tendon progenitors does not lead to the production of additional or longer tendons, indicating that additional signals are required for the final formation of a tendon. Finally, we show that the endogenous expression of noggin within the condensing digit cartilage contributes to the induction of distal tendons.
Article
Full-text available
Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in PIEZO1 cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of PIEZO1 loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in PIEZO1 (a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients' erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema.
Article
Full-text available
Background: Stroke survivors suffer from persistent disability, as well as severe sensorimotor and cognitive deficits. The preclinical assessment of such deficits is important for the development of novel interventions and therapeutics. New METHOD: The aim of this study was to develop a quantitative behavioral measure of hindlimb functionality in rodents, which could be used to assess deficits after a neural injury, such as stroke. Here we introduce a test to measure long jump behavior in mice. Results: Using this test we first showed that while male and female mice exhibited no differences in jump success rate, the female mice showed lower baseline jumping latencies. Next we demonstrated that the induction of a cerebral stroke via middle cerebral artery occlusion (MCAO) for 45minutes did not affect the jump success rate in either group; however, it did significantly increase jump latencies in both male and female mice. Finally, we used therapeutic interventions to explore mechanisms that may be involved in producing this increase in jump latency by administering the anti-depressant fluoxetine prior to the long jump assay, and also tested for potential changes in anxiety levels after stroke. Comparison with Existing METHODS: Other methods to assess hindlimb functionality are not specific, because they measure behaviors that rely not only on hindlimbs, but also on forelimbs and tail. Conclusions: This study introduces a novel assay that can be used to measure a stroke induced behavioral deficit with great sensitivity, and raises interesting questions about potential mechanisms regulating this effect.
Article
Full-text available
Obesity is a known risk factor for cardiometabolic disease. Increasing aerobic capacity (VO2max) reduces adiposity, maintains weight, and reduces the risk of developing obesity and cardiometabolic disease. Two major determinants of aerobic capacity are the metabolic properties specific to a particular muscle fiber type and the capacity of the cardiorespiratory system to deliver nutrient-rich content to the muscle. Recent research suggests that some race/ethnic groups, particularly non-Hispanic Black subjects, are predisposed to a reduced VO2max by way of muscle fiber type. Combined with insufficient physical activity, these characteristics place non-Hispanic Black subjects at an increased risk for obesity and other adverse health outcomes when compared with other race/ethnic groups. The purpose of this review was to suggest a model for explaining how skeletal muscle fiber type may contribute to reduced aerobic capacity and obesity among non-Hispanic Black subjects. Our review indicates that metabolic properties of type II skeletal muscle (e.g. reduced oxidative capacity, capillary density) are related to various cardiometabolic diseases. Based on the review, non-Hispanic Black subjects appear to have a lower maximal aerobic capacity and a greater percentage of type II skeletal muscle fibers. Combined with reduced energy expenditure and reduced hemoglobin concentration, non-Hispanic Black subjects may be inherently predisposed to a reduced maximal aerobic capacity compared with non-Hispanic White subjects, thereby increasing the risk for obesity and related metabolic diseases.
Article
Full-text available
Significance Cartilage, a mechanically sensitive tissue that covers joints, is essential for vertebrate locomotion by sustaining skeletal mobility. Transduction of mechanical stimuli by cartilage cells, chondrocytes, leads to biochemical–metabolic responses. Such mechanotransduction can be beneficial for tissue maintenance when evoked by low-level mechanical stimuli, or can have health-adverse effects via cartilage-damaging high-strain mechanical stress. Thus, high-strain mechanotransduction by cartilage mechanotrauma is relevant for the pathogenesis of osteoarthritis. Molecular mechanisms of high-strain mechanotransduction of chondrocytes have been elusive. Here we identify Piezo1 and Piezo2 mechanosensitive ion channels in chondrocytes as transduction channels for high-strain mechanical stress. We verify their functional link to the cytoskeleton as important for their concerted function and offer a remedial strategy by application of a Piezo1/2 blocking peptide, GsMTx4, from tarantula venom.
Article
Full-text available
Tendon injury is common in humans and horses, and incidence increases with age. The high-strain energy storing equine superficial digital flexor (SDFT) is injured more frequently than the low-strain positional common digital extensor (CDET). However, previous work indicated that matrix turnover is greater in the CDET than in the SDFT. It was hypothesised that matrix turnover is programmed by the cells’ strain environment; therefore high-strain energy storing tendons would have a lower rate of matrix turnover than low-strain positional tendons and the rate of matrix turnover would decrease with increasing age. The rate of matrix turnover was investigated by measuring the potential of the cells to synthesise and degrade matrix proteins, measuring the half-life of the collagenous and non-collagenous matrix proteins and assessing collagen turnover at the protein level. In vitro cell phenotype was also assessed in 2D and 3D culture and the effect of load on cells within native tissue was determined. The results show that turnover of collagenous and non-collagenous matrix proteins is differentially regulated in the functionally distinct SDFT and CDET. CDET tenocytes show greater potential for collagen turnover, whereas SDFT tenocytes have a greater potential for proteoglycan turnover; differences that are also present at the protein level. The differences in cell phenotype identified in vivo were lost in 2D and 3D culture, but tendon organ culture resulted in the maintenance of tenocyte phenotype. The cells’ ability to turnover the matrix does not decrease with increasing age, but collagen within the SDFT appears to become more resistant to degradation with ageing. This results in the accumulation of partially degraded collagen within the SDFT which may have a detrimental effect on tendon mechanical properties. These findings will help to elucidate the mechanisms behind the development of age-related tendinopathy and will be of use when developing treatment regimes.
Article
Full-text available
Using laboratory mouse models, the molecular pathways responsible for the metabolic benefits of endurance exercise are beginning to be defined. The most common method for assessing exercise endurance in mice utilizes forced running on a motorized treadmill equipped with a shock grid. Animals who quit running are pushed by the moving treadmill belt onto a grid that delivers an electric foot shock; to escape the negative stimulus, the mice return to running on the belt. However, avoidance behavior and psychological stress due to use of a shock apparatus can interfere with quantitation of running endurance, as well as confound measurements of postexercise serum hormone and cytokine levels. Here, we demonstrate and validate a refined method to measure running endurance in naïve C57BL/6 laboratory mice on a motorized treadmill without utilizing a shock grid. When mice are preacclimated to the treadmill, they run voluntarily with gait speeds specific to each mouse. Use of the shock grid is replaced by gentle encouragement by a human operator using a tongue depressor, coupled with sensitivity to the voluntary willingness to run on the part of the mouse. Clear endpoints for quantifying running time-to-exhaustion for each mouse are defined and reflected in behavioral signs of exhaustion such as splayed posture and labored breathing. This method is a humane refinement which also decreases the confounding effects of stress on experimental parameters.
Article
Full-text available
The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic1, 2, 3, 4, 5. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca2+-permeable non-selective cationic channels for detection of noxious mechanical impact6, 7, 8. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology.
Article
Full-text available
Aim: Despite our previous study demonstrating that human embryonic stem cells (hESCs) can be used as seed cells for tendon tissue engineering after stepwise induction, suboptimal tendon regeneration implies that a new strategy needs to be developed for tendon repair. We investigated whether overexpression of the tendon-specific transcription factor scleraxis (SCX) in hESC-derived mesenchymal stem cells (hESC-MSCs) together with knitted silk-collagen sponge scaffold could promote tendon regeneration. Methods and results: hESCs were initially differentiated into MSCs and then engineered with scleraxis (SCX+hESC-MSCs). Engineered tendons were constructed with SCX+hESC-MSCs and a knitted silk-collagen sponge scaffold, then mechanical stress was applied. SCX elevated tendon gene expression in hESC-MSCs and concomitantly attenuated their adipogenic and chondrogenic potential. Mechanical stress further augmented the expression of tendon-specific genes in SCX+hESC-MSCs engineered tendon. Moreover, in vivo mechanical stimulation promoted the alignment of cells and increased the diameter of collagen fibers after ectopic transplantation. In the in vivo tendon repair model, the SCX+hESC-MSC engineered tendon enhanced the regeneration process as shown by histological scores and superior mechanical performance compared to control cells, especially at early stages. Conclusion: Our study offers new evidence concerning the roles of SCX in tendon differentiation and regeneration. We demonstrated a novel strategy of combining hESCs, genetic engineering, and tissue-engineering principles for tendon regeneration, which are important for the future application of hESCs and silk scaffolds for tendon repair.
Article
Full-text available
THE hopping of kangaroos is reminiscent of a bouncing ball or the action of a pogo stick. This suggests a significant storage and recovery of energy in elastic elements. One might surmise that the kangaroo's first hop would require a large amount of energy whereas subsequent hops could rely extensively on elastic rebound. If this were the case, then the kangaroo's unusual saltatory mode of locomotion should be an energetically inexpensive way to move.
Article
Full-text available
Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment.
Article
Full-text available
Dehydrated hereditary stomatocytosis is a genetic condition with defective red blood cell membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations in the mechanically activated PIEZO1 (FAM38A) ion channel were associated with dehydrated hereditary stomatocytosis. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated dehydrated hereditary stomatocytosis cases, we identify three novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for dehydrated hereditary stomatocytosis. All the dehydrated hereditary stomatocytosis-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in red blood cells of dehydrated hereditary stomatocytosis patients. Our findings also suggest a new role for mechanotransduction in red blood cell biology and pathophysiology.
Article
Full-text available
Objective: To investigate the expression and function of Mohawk (MKX) in human adult anterior cruciate ligament (ACL) tissue and ligament cells from normal and osteoarthritis (OA)-affected knees. Methods: Knee joints were obtained at autopsy (within 24-48 hours postmortem) from 13 donors with normal knees (mean ± SD age 36.9 ± 11.0 years), 16 donors with knee OA (age 79.7 ± 11.4 years), and 8 aging donors without knee OA (age 76.9 ± 12.9 years). All cartilage surfaces were graded macroscopically. MKX expression was analyzed by immunohistochemistry and quantitative polymerase chain reaction. ACL-derived cells were used to study regulation of MKX expression by interleukin-1β (IL-1β). MKX was knocked down with small interfering RNA (siRNA) to analyze the function of MKX in extracellular matrix (ECM) production and differentiation in ACL-derived cells. Results: The expression of MKX was significantly decreased in ACL-derived cells from OA knees compared with normal knees. Consistent with this finding, immunohistochemistry analysis showed that MKX-positive cells were significantly reduced in ACL tissue from OA donors, in particular in cells located in disorientated fibers. In ACL-derived cells, IL-1β strongly suppressed MKX expression and reduced expression of the ligament ECM genes COL1A1 and TNXB. In contrast, SOX9, a chondrocyte master transcription factor, was up-regulated by IL-1β treatment. Importantly, knockdown of MKX expression with siRNA up-regulated SOX9 expression in ACL-derived cells, whereas the expression of COL1A1 and TNXB was reduced. Conclusion: Reduced expression of MKX is a feature of degenerated ACL in OA-affected joints, and this may be mediated in part by IL-1β. MKX appears necessary to maintain the tissue-specific cellular differentiation status and ECM production in adult human tendons and ligaments.
Article
Full-text available
Significance Familial xerocytosis in humans, which causes dehydration of red blood cells and hemolytic anemia, was traced to mutations in the mechanosensitive ion channel, PIEZO1. The mutations slowed inactivation and introduced a pronounced latency for activation. Loss of inactivation and increased latency for activation could modify groups of channels simultaneously, suggesting that they exist in common spatial domains. The hereditary xerocytosis mutants affect red cell cation fluxes: slow inactivation increases them, and increased latency decreases them. These data provide a direct link between pathology and mechanosensitive channel dysfunction in nonsensory cells.
Article
Full-text available
Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.
Article
Full-text available
The load-bearing capacity of today's tissue-engineered (TE) cartilage is insufficient. The arcade-like collagen network in native cartilage plays an important role in its load-bearing properties. Inducing the formation of such collagen architecture in engineered cartilage can, therefore, enhance mechanical properties of TE cartilage. Considering the well-defined relationship between tensile strains and collagen alignment in the literature, we assume that cues for inducing this orientation should come from mechanical loading. In this study, strain fields prescribed by loading conditions of unconfined compression, sliding indentation and a novel loading regime of compression-sliding indentation are numerically evaluated to assess the probability that these would trigger a physiological collagen architecture. Results suggest that sliding indentation is likely to stimulate the formation of an appropriate superficial zone with parallel fibres. Adding lateral compression may stimulate the formation of a deep zone with perpendicularly aligned fibres. These insights may be used to improve loading conditions for cartilage tissue engineering.
Article
Iron overload causes progressive organ damage and is associated with arthritis, liver damage, and heart failure. Elevated iron levels are present in 1%–5% of individuals; however, iron overload is undermonitored and underdiagnosed. Genetic factors affecting iron homeostasis are emerging. Individuals with hereditary xerocytosis, a rare disorder with gain-of-function (GOF) mutations in mechanosensitive PIEZO1 ion channel, develop age-onset iron overload. We show that constitutive or macrophage expression of a GOF Piezo1 allele in mice disrupts levels of the iron regulator hepcidin and causes iron overload. We further show that PIEZO1 is a key regulator of macrophage phagocytic activity and subsequent erythrocyte turnover. Strikingly, we find that E756del, a mild GOF PIEZO1 allele present in one-third of individuals of African descent, is strongly associated with increased plasma iron. Our study links macrophage mechanotransduction to iron metabolism and identifies a genetic risk factor for increased iron levels in African Americans.
Article
Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.
Article
Purpose: The purpose of this study was to determine whether architectural characteristics of skeletal muscle differ by race. Methods: Skeletal muscle architectural characteristics and body composition were studied in 13 black and 31 white male college football players. Fat-free mass (FFM) and percentage body fat (% fat) were determined by hydrostatic weighing technique. Muscle thickness (MTH) was measured by B-mode ultrasound at 13 anatomical sites. Isolated MTH and muscle pennation angle (PANG) of the triceps long head, vastus lateralis, and gastrocnemius medialis muscles were measured by ultrasound, and fascicle length was estimated. Results: There were no significant differences between blacks and whites in isolated MTH, PANG, and fascicle length in the triceps long head, vastus lateralis, and gastrocnemius medialis muscles. On average, % fat and FFM of black and white football players were 18.8 ± 4.6% and 17.2 ± 5.6% for % fat, and 89.9 ± 15.6 kg and 89.1 ± 10.4 kg for FFM, respectively. Blacks had a significantly greater, 30%-quadriceps (P < 0.05), 50%-hamstrings (P < 0.05), biceps (P < 0.01), and abdomen (P < 0.01) MTH than those of whites. Standing height and body weight were similar between blacks and whites, but the ratio of leg length to standing height was significantly greater in blacks compared with whites. Conclusions: It appears that although there may be race differences in anatomical stature, muscle architecture is likely independent of race.
Article
The pathologic development of heterotopic ossification (HO) is well described in patients with extensive trauma or with hyperactivating mutations of the bone morphogenetic protein (BMP) receptor ACVR1. However, identification of progenitor cells contributing to this process remains elusive. Here we show that connective tissue cells contribute to a substantial amount of HO anlagen caused by trauma using postnatal, tamoxifen-inducible, scleraxis-lineage restricted reporter mice (Scx-creERT2/tdTomatofl/fl). When the scleraxis-lineage is restricted specifically to adults prior to injury marked cells contribute to each stage of the developing HO anlagen and coexpress markers of endochondral ossification (Osterix, SOX9). Furthermore, these adult preinjury restricted cells coexpressed mesenchymal stem cell markers including PDGFRα, Sca1, and S100A4 in HO. When constitutively active ACVR1 (caACVR1) was expressed in scx-cre cells in the absence of injury (Scx-cre/caACVR1fl/fl), tendons and joints formed HO. Postnatal lineage-restricted, tamoxifen-inducible caACVR1 expression (Scx-creERT2/caACVR1fl/fl) was sufficient to form HO after directed cardiotoxin-induced muscle injury. These findings suggest that cells expressing scleraxis within muscle or tendon contribute to HO in the setting of both trauma or hyperactive BMP receptor (e.g., caACVR1) activity. Stem Cells 2016
Article
Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25Hz, 8h/day) in a bioreactor the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex-vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Article
The transcription factor Mohawk (Mkx) is expressed in developing tendons and is an important regulator of tenogenic differentiation. However, the exact roles of Mkx in tendinopathy and tendon repair remain unclear. Utilizing gene expression Omnibus datasets and Immunofluorescence assays, we found that Mkx expression level was dramatically lower in human tendinopathy tissue and it is activated at specific stages of tendon development. In mesenchymal stem cells (MSCs), ectopic Mkx expression strikingly promoted tenogenesis more efficiently than Scleraxis (Scx), a well-known master transcription factor of tendon. Significantly higher levels of tenogenic gene expression and collagen fibril growth were observed with Mkx versus Scx. Interestingly, it was observed that Mkx dramatically up-regulated Scx through binding to the Tgfb2 promoter. Additionally, the transplantation of Mkx expressing-MSC sheets promoted tendon repair in a mouse model of Achilles-tendon defect. Taken together, these data shed light on previously unrecognized roles of Mkx in tendinopathy, tenogenesis, and tendon repair, as well as in regulating the TGFβ pathway. Stem Cells 2014
Article
Using light- and electron-microscopic immunohistochemistry, it was shown that primary sensory nerve endings in Golgi tendon organs of the grey short-tailed opossum (Monodelphis domestica) contain immunoreactivities to a polyclonal antibody directed against calcitonin gene-related peptide (CGRP). Myelinated afferent axons (6–9 μm in diameter) of the Golgi tendon organs stained moderately for CGRP. Sensory nerve endings within the sensory compartment of the Golgi tendon organs displayed electron-dense accumulations corresponding to dark-brown staining in adjacent semithin sections. On the outer surface of tendon organs C fibre bundles were observed showing CGRP-like immunoreactivity.
Article
The mechanical behaviour of horse and human tendon, as characterised by the stress-strain curve, has been examined with respect to load-strain cycling and strain rate. It was found that the tendon stress-strain curve for successive cycles was reporducible provided that strain on the specimen did not exceed 2·0–4·0%. If this strain level was exceeded, a permanent deformation occurred. This phenomenon was verified by histological studies on strained tendon which showed that some of the collagen fibres did not return to their original orientation. Variation in the rate of strain was found to affect both the magnitude and the shape of the stress-strain curve. Additionally, it was found that the stress relaxation phenomenon for tendon was essentially the same as that found for other connective tissues.
Article
Hereditary xerocytosis (HX, MIM 194380) is an autosomal dominant hemolytic anemia characterized by primary erythrocyte dehydration. Copy number analyses, linkage studies, and exome sequencing were used to identify novel mutations affecting PIEZO1, encoded by the FAM38A gene, in 2 multigenerational HX kindreds. Segregation analyses confirmed transmission of the PIEZO1 mutations and cosegregation with the disease phenotype in all affected persons in both kindreds. All patients were heterozygous for FAM38A mutations, except for 3 patients predicted to be homozygous by clinical and physiologic studies who were also homozygous at the DNA level. The FAM38A mutations were both in residues highly conserved across species and within members of the Piezo family of proteins. PIEZO proteins are the recently identified pore-forming subunits of channels that mediate mechanotransduction in mammalian cells. FAM38A transcripts were identified in human erythroid cell mRNA, and discovery proteomics identified PIEZO1 peptides in human erythrocyte membranes. These findings, the first report of mutation in a mammalian mechanosensory transduction channel-associated with genetic disease, suggest that PIEZO proteins play an important role in maintaining erythrocyte volume homeostasis.
Article
Mechanical forces influence homeostasis in virtually every tissue [1, 2]. Tendon, constantly exposed to variable mechanical force, is an excellent model in which to study the conversion of mechanical stimuli into a biochemical response [3-5]. Here we show in a mouse model of acute tendon injury and in vitro that physical forces regulate the release of active transforming growth factor (TGF)-β from the extracellular matrix (ECM). The quantity of active TGF-β detected in tissue exposed to various levels of tensile loading correlates directly with the extent of physical forces. At physiological levels, mechanical forces maintain, through TGF-β/Smad2/3-mediated signaling, the expression of Scleraxis (Scx), a transcription factor specific for tenocytes and their progenitors. The gradual and temporary loss of tensile loading causes reversible loss of Scx expression, whereas sudden interruption, such as in transection tendon injury, destabilizes the structural organization of the ECM and leads to excessive release of active TGF-β and massive tenocyte death, which can be prevented by the TGF-β type I receptor inhibitor SD208. Our findings demonstrate a critical role for mechanical force in adult tendon homeostasis. Furthermore, this mechanism could translate physical force into biochemical signals in a much broader variety of tissues or systems in the body.
Article
Although elastin fibres and oxytalan fibres (bundles of microfibrils) have important mechanical, biochemical and cell regulatory functions, neither their distribution nor their function in cruciate ligaments has been investigated. Twelve pairs of cruciate ligaments (CLs) were obtained from 10 adult dogs with no evidence of knee osteoarthritis. Elastic fibres were identified using Verhoeff's and Miller's staining. Fibrillins 1 and 2 were immunolocalised and imaged using confocal laser scanning microscopy. Hydrated, unfixed tissue was analysed using Nomarski differential interference microscopy (NDIC), allowing structural and mechanical analysis. Microfibrils and elastin fibres were widespread in both CLs, predominantly within ligament fascicles, parallel to collagen bundles. Although elastin fibres were sparse, microfibrils were abundant. We described abundant fibres composed of both fibrillin 1 and fibrillin 2, which had a similar pattern of distribution to oxytalan fibres. NDIC demonstrated complex interfascicular and interbundle anatomy in the CL complex. The distribution of elastin fibres is suggestive of a mechanical role in bundle reorganisation following ligament deformation. The presence and location of fibrillin 2 in oxytalan fibres in ligament differs from the solely fibrillin 1-containing oxytalan fibres previously described in tendon and may demonstrate a fundamental difference between ligament and tendon.
Article
Mitochondrial DNA (mtDNA) is inherited solely along the matriline, giving insight into both ancestry and prehistory. Individuals of sub-Saharan ancestry are overrepresented in sprint athletics, suggesting a genetic advantage. The purpose of this study was to compare the mtDNA haplogroup data of elite groups of Jamaican and African-American sprinters against respective controls to assess any differences in maternal lineage. The first hypervariable region of mtDNA was haplogrouped in elite Jamaican athletes (N=107) and Jamaican controls (N=293), and elite African-American athletes (N=119) and African-American controls (N=1148). Exact tests of total population differentiation were performed on total haplogroup frequencies. The frequency of non-sub-Saharan haplogroups in Jamaican athletes and Jamaican controls was similar (1.87% and 1.71%, respectively) and lower than that of African-American athletes and African-American controls (21.01% and 8.19%, respectively). There was no significant difference in total haplogroup frequencies between Jamaican athletes and Jamaican controls (P=0.551 ± 0.005); however, there was a highly significant difference between African-American athletes and African-American controls (P<0.001). The finding of statistically similar mtDNA haplogroup distributions in Jamaican athletes and Jamaican controls suggests that elite Jamaican sprinters are derived from the same source population and there is neither population stratification nor isolation for sprint performance. The significant difference between African-American sprinters and African-American controls suggests that the maternal admixture may play a role in sprint performance.
Article
The objective of this study was to investigate the role of lubricin in the lubrication of tendon fascicles. Lubricin, a glycoprotein, lubricates cartilage and tendon surfaces, but the function of lubricin within the tendon fascicle is unclear. We developed a novel method to assess the gliding resistance of a single fascicle in a mouse tail model and used it to test the hypothesis that gliding resistance would be increased in lubricin knockout mice. Thirty-six mouse tails were used from 12 wild type, 12 heterozygous, and 12 lubricin knockout mice. A 15 mm long fascicle segment was pulled proximally after being divided distally. The peak resistance during fascicle pullout and the fascicle perimeter were measured. Lubricin expression was evaluated by immunohistochemistry. The peak gliding resistance in the lubricin knockout mice was significantly higher than in the wild type (p < 0.05). Fascicles from heterozygous mice were intermediate in value, but not significantly different from either wild type or lubricin knockout fascicles in peak gliding resistance. No significant difference was found in fascicle perimeter among the three groups. No correlation was observed between fascicle perimeter and gliding resistance. While lubricin was detected by immunostaining on the fascicle surface in wild type and heterozygous mice, lubricin was not detectable in the tendons of knockout mice. We conclude that the absence of lubricin is associated with increased interfascicular friction and that lubricin may play an important role in interfascicular lubrication.