Article

Nano Drive for Biomedical Science and Research

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

Article
Full-text available
The structural model of a nano drive is determined for biomedical research. The structural scheme of the piezo drive is obtained. The matrix equation is constructed for a nano drive.
Article
Full-text available
The transfer function and the transfer coefficient of a precision electromagnetoelastic engine for nanobiomedical research are obtained. The structural diagram of an electromagnetoelastic engine has a difference in the visibility of energy conversion from Cady and Mason electrical equivalent circuits of a piezo vibrator. The structural diagram of an electromagnetoelastic engine is founded. The structural diagram of the piezo engine for nanobiomedical research is written. The transfer functions of the piezo engine or are obtained.
Article
Full-text available
This work determines the coded control of a sectional electroelastic engine at the elastic–inertial load for nanomechatronics systems. The expressions of the mechanical and adjustment characteristics of a sectional electroelastic engine are obtained using the equations of the electroelasticity and the mechanical load. A sectional electroelastic engine is applied for coded control of nanodisplacement as a digital-to-analog converter. The transfer function and the transient characteristics of a sectional electroelastic engine at elastic–inertial load are received for nanomechatronics systems.
Article
Full-text available
A electroelastic engine with a longitudinal piezoeffect is widely used in nanotechnology for nanomanipulators, laser systems, nanopumps, and scanning microscopy. For these nanomechatronics systems, the transition between individual positions of the systems in the shortest possible time is relevant. It is relevant to solve the problem of optimizing the nanopositioning control system with a minimum control time. This work determines the optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect and minimal control time for an optimal nanomechatronics system. The expressions of the control function and switching line are obtained with using the Pontryagin maximum principle for the optimal control system of the multilayer electroelastic engine at a longitudinal piezoeffect with an ordinary second-order differential equation of system. In this optimal nanomechatronics system, the control function takes only two values and changes once.
Article
Full-text available
We obtained the condition absolute stability on the derivative for the control system of electromagnetoelastic actuator for communication equipment. We applied the frequency methods for Lyapunov stable control system to calculate the condition absolute stability control system of electromagnetoelastic actuator. We used Yakubovich criterion absolute stability system with the condition on the derivative. The aim of this work is to determine the condition of the absolute stability on the derivative for the control system of electromagnetoelastic actuator. We received the stationary set of the control system of the hysteresis deformation of the electromagnetoelastic actuator. The stationary set is the segment of the straight line.
Article
Full-text available
In this work, the parametric structural schematic diagrams of a multilayer electromagnetoelastic actuator and a multilayer piezoactuator for nanomechanics were determined in contrast to the electrical equivalent circuits of a piezotransmitter and piezoreceiver, the vibration piezomotor. The decision matrix equation of the equivalent quadripole of the multilayer electromagnetoelastic actuator was used. The structural-parametric model, the parametric structural schematic diagram, and the matrix transfer function of the multilayer electromagnetoelastic actuator for nanomechanics were obtained.
Article
Full-text available
The parametric block diagram of the electromagnetoelastic actuator nanodisplacement or the piezoactuator is determined in contrast the electrical equivalent circuit types Cady or Mason for the calculation of the piezoelectric transmitter and receiver, the vibration piezomotor with the mechanical parameters in form the velosity and the pressure. The method of mathematical physics is used. The parametric block diagram of electromagnetoelastic actuator is obtained with the mechanical parameters the displacement and the force. The transfer functions of the electroelastic actuator are determined. The the generalized parametric block diagram, the generalized matrix equation for the electromagnetoelastic actuator nanodisplacement are obtained. The deformations of the electroelastic actuator for the nanotechnology are described by the matrix equation. Block diagram and structural-parametric model of electromagnetoelastic actuator nanodisplacement for nanodisplacement of the communications systems are obtained, its transfer functions are bult. Effects of geometric and physical parameters of electromagnetoelastic actuators and external load on its dynamic characteristics are determined. For calculations the communications systems with the piezoactuator for nanodisplacement the parametric block diagram and the transfer functions of the piezoactuator are obtained.
Article
Full-text available
The generalized parametric structural schematic diagram, the generalized structural-parametric model, and the generalized matrix transfer function of an electromagnetoelastic actuator with output parameters displacements are determined by solving the wave equation with the Laplace transform, using the equation of the electromagnetolasticity in the general form, the boundary conditions on the loaded working surfaces of the actuator, and the strains along the coordinate axes. The parametric structural schematic diagram and the transfer functions of the electromagnetoelastic actuator are obtained for the calculation of the control systems for the nanomechanics. The structural-parametric model of the piezoactuator for the transverse, longitudinal, and shift piezoelectric effects are constructed. The dynamic and static characteristics of the piezoactuator with output parameter displacement are obtained.
Book
Full-text available
The field of mechatronics using piezoelectric and electrostrictive materials is growing rapidly with applications in many areas, including MEMS, adaptive optics, and adaptive structures. Piezoelectric Actuators and Ultrasonic Motors provides in-depth coverage of the theoretical background of piezoelectric and electrostrictive actuators, practical materials, device designs, drive/control techniques, typical applications, and future trends in the field. Industry engineers and academic researchers in this field will find Piezoelectric Actuators and Ultrasonic Motors an invaluable source of pertinent scientific information, practical details, and references. In the classroom, this book may be used for graduate level courses on ceramic actuators.
Article
Structural-parametric models, parametric structural schematic diagrams and transfer functions of electromagnetoelastic actuators are determined. A generalized parametric structural schematic diagram of the electromagnetoelastic actuator is constructed. Effects of geometric and physical parameters of actuators and external load on its dynamic characteristics are determined. For calculations the mechatronic systems with piezoactuators for nano- and microdisplacement the parametric structural schematic diagrams and the transfer functions of piezoactuators are obtained.
Article
In this paper we have determined the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. In the visibility of energy conversion the structural schema of an electromagnetoelastic actuator has a difference from Cady and Mason electrical equivalent circuits of a piezo vibrator. The matrix equation and the matrix transfer function of an electromagnetoelastic actuator are received.
Article
We received the structural circuit of the multilayer piezo engine for nanomedicine research. The characteristics of the multilayer piezo engine are obtained
Article
The block diagram and the transfer functions of the electromagnetoelastic actuator are received for control systems in nanoscience and nanotechnology. The block diagram of the electromagnetoelastic actuator is reflected the transformation of electrical energy into mechanical energy, in contrast to Cady’s and Mason’s electrical equivalent circuits of piezotransducer. The electromagnetoelasticity equation and the second order linear ordinary differential equation with boundary conditions are solved for calculations the block diagram of the electromagnetoelastic actuator. The block diagram of the piezoactuator is obtained with using the reverse and direct piezoelectric effects. The back electromotive force is determined from the direct piezoelectric effect equation. The transfer functions of the piezoactuators are obtained for control systems in nanoscience and nanotechnology.
Article
The transfer functions of multilayer nano- and microdisplacement piezotransducers are obtained under the conditions of longitudinal and transverse piezo-optic effects. The absolute stability conditions are derived for the strain control systems of multilayer nano- and microdisplacement piezotransducers. Some compensating devices ensuring the stability of strain control systems of multilayer piezotransducers are chosen.
Article
The use of nano- and micro-scale piezomotors in precision electromechanical systems is considered. The deformation of the piezoconverter corresponding to its stress state is investigated.
Article
Based on the solution of a wave equation, a structural-parametric model of electromagnetoelastic converter for the electromechanical drive of nano-and micrometric movements was constructed. A transformation was conducted for the structural-parametric model and the parametric structural circuits. The influence of the geometric and physical parameters of this converter and of the external load on the static and dynamical characteristics was estimated.
Article
We design the static and dynamic characteristics of a piezoelectric nanomicrotransducer intended for use in nanotechnology and microelectronic hardware, devise its parametric structural schematic diagram, and determine the influence of its physical and geometric parameters on its static and dynamic characteristics.
Article
We study the compression diagrams and elastic compliances of composite piezoelectric transducers. We find the typical points on the compression diagram which correspond to the mechanical stress of clearance cutting and smoothing the microroughnesses and to the ultimate compression strength with crack formation on the edges of piezoelectric crystal plates. We construct mechanical and adjusting characteristics of piezoelectric transducers and determine their static and dynamic characteristics.
Article
The stability conditions for a system controlling the deformation of an electromagnetoelastic transducer under deterministic and random actions are discussed. Manufacturing high-precision electromechanical drives based on electromagnetoelasticity are offering challenges under the scope of nanotechnology, nanobiology, power engineering, microelectronics, and adaptive optics. High precision drives are operated within operating loads ensuring elastic strains of the executive electromagnetoelastic transducer. A system designed for the control of micro and nanoscale strains of an electromagnetoelastic transducer. The absolute stability conditions for a system with hysteresis nonlinearity are analytically described by using Yakubovic's absolute stability criterion. The absolute stability conditions obtained for a system can be used for stability estimation and the calculation of the characteristics of the control system.
Article
The use of the solution to the wave equation to construct a generalized structural parametric model of an electromagnetoelastic transducer to determine the effect of its geometry and physical parameters is discussed. High-precision electromechanical drives are operated under working loads ensuring elastic strains of the executive device. Piezoelectric transducers are characterized by high piezoelectric moduli and they are frequently used to produce nanoscale displacements. The solution of the wave equation supplemented with the corresponding electromagnetoelasticity equation and boundary conditions on the transducer's two working surfaces allows to construct a structural parametric model of an electromagnetoelastic transducer. The transfer functions of a piezoelectric transducer are derived from its generalized structural parametric model and are obtained as the ratio of the Laplace transform of the transducer face displacement to the Laplace transform of the input electric parameter.
Article
A study was conducted to prepare a structural parametric model of a pie piezoelectric nanodisplacement transducer. The structural parametric model was prepared to investigate the potential application of the piezoelectric transducer in the equipment of nanotechnology, microbiology, microelectronics, astronomy, for high-precision superposition, compensation, and wavefront correction. It was found that the piezoelectric transducer operates on the basis of the inverse piezoelectric effect, in which a displacement is due to the deformation of the piezoelectric element, caused by the application of an external electric voltage. The wave equations also needed to solved, to construct a structural parametric model of the voltage-controlled piezoelectric transducer.
Equivalent circuit modeling of piezoelectric energy harvesters
  • Y Yang
  • Tang
Y Yang, L Tang (2009) Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures 20(18): 2223-2235.
Decision wave equation and block diagram of electro magneto elastic actuator nano-and microdisplacement for communications systems
  • S M Afonin
Afonin SM (2016) Decision wave equation and block diagram of electro magneto elastic actuator nano-and microdisplacement for communications systems. International Journal of Information and Communication Sciences 1(2): 22-29.
Structural-parametric model and transfer functions of electroelastic actuator for nano-and microdisplacement
  • S M Afonin
Afonin SM (2015) Structural-parametric model and transfer functions of electroelastic actuator for nano-and microdisplacement. Journal of Applied Mechanical 225-242.
A structural-parametric model of electro elastic actuator for nano-and micro displacement of mechatronic system
  • S M Afonin
Afonin SM (2017) A structural-parametric model of electro elastic actuator for nano-and micro displacement of mechatronic system. Advances in Nanotechnology pp. 259-284.
Electro magnetoelastic nano-and micro actuators for mechatronic systems
  • S M Afonin
Afonin SM (2018) Electro magnetoelastic nano-and micro actuators for mechatronic systems. Russian Engineering Research 38(12): 938-944.
Calculation deformation of an engine for nano biomedical research
  • S M Afonin
Afonin SM (2021) Calculation deformation of an engine for nano biomedical research. International Journal of Biomed Research 1(5): 1-4.
Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano-and microdisplacement
  • S M Afonin
Afonin SM (2016) Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano-and microdisplacement. International Journal of Mathematical Analysis and Applications 3(4): 31-38.
Structural scheme actuator for nano research
  • S M Afonin
Afonin SM (2020) Structural scheme actuator for nano research. COJ Reviews and Research 2(5): 1-3.
Multilayer engine for microsurgery and nano biomedicine
  • S M Afonin
Afonin SM (2020) Multilayer engine for microsurgery and nano biomedicine. Surgery & Case Studies Open Access Journal 4(4): 423-425.
Structural diagram of actuator for nanobiotechnology
  • S M Afonin
Afonin SM (2021) Structural diagram of actuator for nanobiotechnology. Open Access Journal of Biogeneric Science and Research 7(4): 1-6.