GNSS signals may arrive at the receiving antenna not only through the direct path, i.e. the line-of-sight (LOS) path, but also on multiple indirect paths, due to different electromagnetic effects as signal reflection or diffraction. These signal components arrive with a certain delay, phase, and amplitude difference relative to the LOS component. We will call these signal components multipath components (MPCs) and the phenomena multipath propagation.
Multipath propagation degrades the positioning accuracy. Moreover, in precise applications, multipath errors dominate the total error budget. Despite the different approaches developed, several aspects of multipath propagation are still not fully understood. The generally unknown number of MPCs and their path geometry, the signal characteristics, the diffraction and reflection effects as well as their changing nature together with a complex antenna and receiver design make multipath mitigation very challenging. Furthermore, the site-dependent characteristics of multipath decorrelate the errors caused by multipath propagation at different antenna locations and thus, differential techniques, like e.g. double differences (DD), cannot mitigate it.
The superposition of the MPCs and the LOS signals yields a compound signal at the receiving antenna. Depending on the relative phase between the MPCs and the LOS signal, constructive or destructive interference appears. As a result, during signal tracking the correlation output between the received signal and the local pseudorandom noise (PRN) code replica generated by the receiver is deformed. Since MPCs arrive generally at the receiving antenna with small extra paths, up to 20 m, relative to the LOS signal, the correlation output is biased and the receiver is not able to discriminate between MPC and the LOS signals. This correlation output is the fundamental input for the next iteration of the code and phase tracking loops of the receiver as well as for C/N0 estimation algorithms. As a result, the three GNSS observables code-phase, carrier-phase, and C/N0 are biased by multipath propagation. In this text, errors in code-phase and carrier-phase observations caused by multipath propagation are referred to as code multipath and carrier-phase multipath, respectively, and in general as multipath errors.
In the observation domain, multipath errors are not constant in time. They show a sinusoidal behavior which can be noticed in carrier-phase residuals from Precise Point Positioning (PPP), double differences (DD) or C/N0 time series. This behavior is due to the change of the relative phase between the direct and indirect signals as the satellite vehicle moves above the local horizon of the antenna. The magnitude of these oscillations depends on the relative amplitude of the MPC which varies as geometry changes. The C/N0 observable is the only GNSS observation type in which multipath propagation effects are directly visible without any sophisticated data pre-processing. In contrast, in the phase or code domain, residuals should be analyzed or differences should be formed in order to eliminate all other errors sources. This is one of the main reasons why signal strength measures have attracted much attention in GNSS multipath studies. Since the relative signal amplitude between the LOS and MPC signals plays a key role for the understanding of multipath propagation and also for the magnitude of the multipath error in the GNSS observables, the following contribution focuses on an extended description and proposes an analytical model for modeling GNSS signal amplitudes.
This chapter is structured as follows. A compact overview on different approaches for multipath mitigation or characterization will be presented next. The approaches are categorized into techniques in the observation domain, receiver-internal as well as antenna-related techniques and further methods. Cornerstone methods of each category will be highlighted. In the third section, the multipath phenomenon and its impact on GNSS code, carrier phase and C/N0 will be summarized. Special emphasize is given to the reflection process including signal polarization. An analytical model for GNSS signal amplitude is proposed. The equations for phase and code errors due to multipath propagation are extended so that the signal amplitude can be analytically calculated for each epoch. Finally, results from a dedicated experiment are shown in order to highlight the key features of multipath propagation.