Conference PaperPDF Available

Organizing Just Intonation Pitches through Xenakis' Sieves and Prime Decomposition

Authors:

Abstract and Figures

In this article, we will present how we can create, organize and understand pitches of Just Intonation using 1) the theory of sieves (XENAKIS, 1992) to filter the numbers of the harmonic series, 2) the decomposition by prime-numbers (EXARCHOS et al., 2011) applied to the numbers resulted from the sieve, 3) the concept of harmonic identities by Johnston (2006), and finally, 4) the Combinations-Product Set (CPS) by Erv Wilson (NARUSHIMA, 2018), that allows us to see the relationships between harmonic identities. When we understand that only prime numbers generate new harmonic identities in the interval sense (JOHNSTON, 2006), and odd-numbers create just a new pitch-class from staking prime numbers, we can apply the prime-decomposition for all the numbers of one sieve and claim that: all the non-prime numbers can be understood how intersections between distinct harmonics series. Based on Exarchos' (2011) analysis of sieves, this idea can help us find a way to use the sieves of Xenakis in the Just Intonation context. Complementary with this compositional idea, we will present two OpenMusic libraries developed to help the compositional process.
Content may be subject to copyright.





Xenakis 22: Centenary International Symposium




          
 
           

        


            

                



 




limitidentity Diamond Theory
identity

identityprime number



    
                 


Figure 1 - OM patch to reproduce the microtonal system of String Quartet no. 2 and no. 3 of Ben Johnston.
identity
              

Figure 2: Hexany by Erv Wilson (Narushima, 2017, p. 153).
          
     





    


Figure 3 – The structure of harmonic series in Wilson (NEIMOG, 2021, p. 60).

 

      

  



          




             



      
















































                 







      

prime-decomposition

Figure 4 - Examples of the sieve analysis using the object prime-decomposition.


 
 

diamond-identity





Figure 5 - Patch example to create melodic contours with sieves.
          

Figure 6 - Patch that creates a modulation between two different JI systems.
                
interval-sob          perfil   


Figure 7 - This algorithm is best introduced in Neimog et al. (2022).


           



  


             
  



 

cribles
et al.
3.1. OM-JI: Partch, Johnston e Wilson theories


1. rt->mc
2. range-reduce  rt-octave         

3. filter-ac-inst
               
Techniques of flute playing

4. Modulation-notes modulation-notes-fund 

          



5. Ji-change-notes  sdif 
et al. 



          

3.2. OM-Sieves


crible sieve
1. 
Figure 8 - Comparison between the same procedure in MathTools and OM-Sieves.
2.               
u' 
i24@23 | 30@3 | 104@70 | 0@0

 
     

Figure 9 - Example of the creation of sieves using Ariza's (2005) syntax.
3. 
s-decompose

Figure 10 – The patch exemplifies the decomposition of one sieve in unions.
4. 
perfil
Figure 11 - It uses s-symmetry-perfil to find symmetrical sieves et al..
5. 
Figure 12 - The decomposition of non-prime modules proposed by Exarchos et al. (2011).
             
        





     
Computer Music Journal
     



Proceedings of the Xenakis International Symposium    



Maximum Clarity

Microtonality and the Tuning Systems of Erv WilsonMicrotonality and the Tuning
Systems of Erv Wilson
   Afinação Justa, Crivos e (as)Simetrias: Estratégias Composicionais Com
Implementação Em OpenMusic

Vortex.
Genesis of a Music
Composing Electronic Music
Formalized Music
ResearchGate has not been able to resolve any citations for this publication.
Article
In numerous publications from 1965 to 1992, composer, architect, and theorist Iannis Xenakis (1922-2001) developed an elegant and powerful system for creating integer-sequence generators called sieves. Xenakis used sieves (cribles) for the generation of pitch scales and rhythm sequences in many compositions, and he suggested their application to a variety of additional musical parameters. Though sieves are best calculated with the aid of a computer, no complete implementation has been widely distributed. Xenakis's published code is incomplete and insufficient for broad use. This article demonstrates a new object-oriented model and Python implementation of the Xenakis sieve. This model introduces a bi-faceted representation of the sieve, expands Xenakis's use of logic operators, employs a practical notation, produces sieve segments and transpositions, and easily integrates within higher-level systems. This modular implementation is deployed within athenaCL, a cross-platform, open-source, interactive command-line environment for algorithmic composition using Csound and MIDI. High-level, practical interfaces have been developed to provide athenaCL users with sieve-based tools for the algorithmic generation of pitches, rhythms, and general parameter values.
Iannis Xenakis and Sieve Theory an Analysis of the Late Music (1984-1993)". Goldsmiths
  • Dimitrios Exarchos
Exarchos, Dimitrios. 2007. "Iannis Xenakis and Sieve Theory an Analysis of the Late Music (1984-1993)". Goldsmiths, University of London. http://research.gold.ac.uk/16958/.
Sieve Analysis and Construction: Theory and Implementation
  • Dimitris Exarchos
  • Daniel Jones
Exarchos, Dimitris, and Daniel Jones. 2011. "Sieve Analysis and Construction: Theory and Implementation." Proceedings of the Xenakis International Symposium, no. 3 (April): 1-13.
Harmony, Voice Leading, and Microtonal Syntax in Ben Johnston' s String Quartet No. 5
  • Daniel Huey
Huey, Daniel. 2017. "Harmony, Voice Leading, and Microtonal Syntax in Ben Johnston' s String Quartet No. 5." https://scholarworks.umass.edu/dissertations_2/878/.
Maximum Clarity: and other writings on music
  • Ben Johnston
Johnston, Ben. 2006. Maximum Clarity: and other writings on music. Bob Gilmore (ed.). Chicago: University of Illinois Press.
Afinação Justa, Crivos e (as)Simetrias: Estratégias Composicionais Com Implementação Em OpenMusic
  • Charles Neimog
Neimog, Charles. 2021. "Afinação Justa, Crivos e (as)Simetrias: Estratégias Composicionais Com Implementação Em OpenMusic." Juiz de Fora. https://doi.org/10.34019/ufjf/di/2021/00061.
Genesis of a Music. 2ed
  • Harry Partch
Partch, Harry. 1974. Genesis of a Music. 2ed. New York: Da Capo Press.