Preprint

Researcher reasoning meets computational capacity: Machine learning for social science

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Computational power and digital data have created new opportunities to explore and understand the social world. A special synergy is possible when social scientists combine human attention to certain aspects of the problem with the power of algorithms to automate other aspects of the problem. We review selected exemplary applications where machine learning amplifies researcher coding, summarizes complex data, relaxes statistical assumptions, and targets researcher attention. We then seek to reduce perceived barriers to machine learning by summarizing several fundamental building blocks and their grounding in classical statistics. We present a few guiding principles and promising approaches where we see particular potential for machine learning to transform social science inquiry. We conclude that machine learning tools are accessible, worthy of attention, and ready to yield new discoveries.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.