The B method is a formal method to design software components and to prove that they are compliant with some formalized requirements, giving a way to build safety-critical programs. However, the correctness of the obtained programs obviously rely on the correctness of those formalized software requirements. Using the CLEARSY Safety Platform, a vital processing solution developed by CLEARSY (SIL4 certified, Certifer 9594/0262) with native B capabilities, we demonstrate here a method to develop vital software with formal proofs directly attached to the key system properties. For instance, a train localization system is proven regarding the property stating that the computed location interval shall always contain the actual train. Such proofs become possible by combining software variables with variables representing physical entities and their timed evolution, thanks to the guaranteed time and deadlines of the CLEARSY Safety Platform. Thus, we avoid the problem of ensuring the correctness of a complex set of formalized software requirements by directly ensuring the wanted system properties. Assumptions and properties for the non-software parts are included in the same B model used to develop the software on the CLEARSY Safety Platform.KeywordsFormal modellingSystem reliability