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The corrosion inhibition effect of 3-amino-5-mercapto-1,2,4-triazole (AMT) on AA2024
aluminium alloy in 3.5 wt.% NaCl solution was investigated, and the corrosion inhibition
mechanism was revealed. The influence of AMT concentration on the corrosion inhibition
performance was evaluated by potentiodynamic polarization curve and electrochemical
impedance spectroscopy (EIS). Surface analysis and surface-enhanced Raman scattering
(SERS) spectra were used to study the adsorption process and corrosion inhibition
mechanism of AMT on the alloy surface. Polarization curve and EIS results showed
that when the AMT concentration was 1.5 g/L, the corrosion current density (icorr) was the
lowest and the resistance of adsorption film (Rf) was the largest, illustrating the highest
corrosion inhibition efficiency. Moreover, the adsorption kinetics process of AMT was
revealed by SERS measurement, and a positive correlation between the SERS intensity
and Rf values of AMT after different immersion time was achieved. It indicated that the
efficient adsorption of corrosion inhibitors significantly enhanced the corrosion inhibition
performance. Density functional theory (DFT) and molecular dynamics simulations were
used to give further insight into the adsorption and inhibition mechanism of AMT on the
aluminium alloy surface.

Keywords: aluminium alloy, 3-amino-5-mercapto-1,2,4-triazole, corrosion inhibition, surface-enhanced Raman
scattering, adsorption process

INTRODUCTION

Because of the high strength, low density (about 2.7 g/cm3), good electrical and thermal conductivity,
as well as easy mechanical processing, aluminium alloys have great application prospects and
irreplaceable importance in the fields of automotive manufacturing, light construction materials,
aerospace, shipping, and military hardware. One of the most widely used aluminium alloys is
AA2024 aluminium alloy, which has high specific strength and high fatigue strength (Marcelin and
Pébère, 2015; Wang et al., 2017). Although the presence of alloying elements such as copper and
magnesium enhances the mechanical properties of the aluminium matrix, it also reduces the
corrosion resistance due to the presence of intermetallic particles (IMPs) with segregation at grain
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boundaries (Recloux et al., 2018). The presence of IMPs results in
the high corrosion sensitivity of the alloy due to the potential
difference between the IMPs and the alloy matrix (Parvizi et al.,
2018). In particular, the Al2CuMg particles (also called S-phase)
with more negative potential and higher electrochemical activity
will be the initial sites of localized corrosion on the aluminium
alloy (Hashimoto et al., 2016).

The utilization of organic/inorganic inhibitors is considered as
one of the most useful means to prevent metals against corrosion
degradation (Wang et al., 2018; Al Zoubi and Ko, 2019). The
corrosion efficiency of these inhibitors depends on their
adsorption ability on the metal surface via active sites, such as
π-bonds, heteroatoms (N, S, and O), and polar functional groups
(Qiang et al., 2016). Thus, the adsorption films can be formed on
metals through covalent bonding (chemisorption) and/or
electrostatic interaction (physical adsorption), which can
protect metals from corrosive attack (Dutta et al., 2017; Hao
et al., 2017). Recently, novel corrosion inhibitors with low
toxicity, promising inhibitory efficacy and cost effectiveness
have been the subject of current and long-term research focus.
Among many nitrogenous compounds used as inhibitors,
triazoles, tetrazoles, imidazoles, thiadiazoles and their
derivatives are considered as environmental friendly chemicals
that are harmless to the human health and the environment
(Abdallah, 2004; El-Naggar, 2007; Obot et al., 2009).

3-amino-5-mercapto-1,2,4-triazole (AMT), a 5-membered
heterocyclic compound containing a thiol group and an amino
group, has been recognized as a good corrosion inhibitor for
copper and copper alloys because of its strong adsorption
ability on metal surfaces (Balbo et al., 2012). Yu et al.
(2010) investigated the corrosion inhibition effect of AMT
against copper corrosion in 3.5 wt.% NaCl solution. The
inhibition efficiency (IE) increased with the AMT
concentration, and the IE% maintained about 94% with an
AMT concentration of 5 × 10−3 mol/L. The adsorption of AMT
obeyed the Langmuir adsorption isotherm on copper surface,
and the adsorption type was chemical adsorption. Sherif and
Park (2006) studied the corrosion behavior of unalloyed
copper in 0.5 M HCl with and without AMT inhibitors. The
weight loss and corrosion rate of copper decreased with the
increase of AMT concentration. The strong adsorption of
AMT on the copper surface was confirmed by Raman
spectra, hence preventing the formation of cuprous chloride
and oxychloride complex. However, to the best of our
knowledge, the corrosion inhibition effect of AMT on
aluminium alloy has not been investigated yet. The
fundamental mechanism of the proposed inhibiting
interactions and the formation of corrosion protective layer
for aluminium alloy are not well-understood, which are pivotal
in evaluating the inhibitory performance of AMT molecules.

In this study, the adsorption performance and corrosion
inhibition mechanism of AMT on AA2024 aluminium alloy in
3.5 wt.% NaCl solution are presented. The corrosion inhibition
effect of AMT was evaluated by potentiodynamic polarization
curve, electrochemical impedance spectroscopy (EIS) and surface
observation techniques. Surface-enhanced Raman scattering
(SERS) technique was applied to obtain the enhanced Raman

spectra of corrosion inhibitors adsorbed on the surface of
aluminium alloy after different immersion time. Furthermore,
the corresponding adsorption and inhibition mechanism at the
molecular level are proposed by density functional theory (DFT)
and molecular dynamics simulations. This work provides new
insights into the inhibition mechanism of organic inhibitors and
offers practical guidance for the application of AMT as an
effective inhibitor in industrial applications.

MATERIAL AND METHODS

Materials
AA20204 alloy (4.0 × 3.0 × 0.1 cm3) consists the following
compositions: Cu 3.94 wt.%, Mg 1.46 wt.%, Mn 0.85 wt.%, Fe
0.45 wt.%, Zn 0.10 wt.%, Cr 0.05 wt.%, Si 0.05 wt.% and Al
balance. The AA2024 alloy was successively polished by 400,
800, 1,500 and 2,000 grit sandpapers, and was washed thoroughly
by ethanol before use. AMT and NaCl were purchased from
Aladdin and used as received.

Electrochemical Tests
EIS and potentiodynamic polarization curves were performed by
CHI 660E workstation based on a three-electrode system at room
temperature. AA2024 aluminium alloy, platinum foil, and
saturated calomel electrode were employed as the working
electrode (WE), the counter electrode, and the reference
electrode (RE), respectively. Before each measurement, the
AA2024 alloy was dipped into 3.5 wt.% NaCl solution at an
open circuit potential (OCP) for half an hour. Thereafter, EIS
tests were recorded in the frequency range from 0.01 Hz to
100 kHz with a sinusoidal perturbation of 10 mV potential
amplitude. Potentiodynamic polarization curves were obtained
by scanning within ±250 mV potential range at 0.1666 mV s−1

versus OCP. Three parallel tests were performed under the same
condition. To calculate the inhibition efficiency from polarization
measurements, Equation 1 was used:

IE(%) � icorr,0 − icorr,i
icorr,0

× 100 (1)

where icorr,0 and icorr,i are the corrosion current densities in the
absence and presence of corrosion inhibitors, respectively.

Surface Analysis
The corrosion morphology and chemical composition of the
alloy surfaces after immersion in 3.5 wt.% NaCl solution for
72 h without and with AMT inhibitor were characterized by
scanning electron microscopy (SEM, Merlin, Zeiss) and energy
dispersive X-ray spectroscopy (EDX). The surface roughness
of AA2024 surfaces was tested by confocal laser scanning
microscopy (CLSM, VK-X, Keyence). Water contact angle
(WCA) was calculated by a contact angle meter
(Dataphysics OCA25) with a DI water drop volume of 5 μL
at room temperature. A high-resolution camera was used to
capture the static water images, and WCAs were calculated
using the image processing software. The chemical
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compositions of the uninhibited and inhibitor adsorbed alloy
surfaces were analyzed by X-ray photoelectron spectroscopy
(XPS, K-Alpha, Thermo Scientific).

Surface-Enhanced Raman Scattering
Detection
To characterize the adsorption of AMT on the AA2024 alloy
surface, SERS spectra were measured by a Raman spectrometer
(i-Raman Plus, B&WTEK Inc.) equipped with a 785 nm laser and
at a laser power of 150 mW (Wang et al., 2021). A SERS active
tape was pasted onto the alloy surface before SERS detection. The
diameter of the laser spot was ~80 μm, and the acquisition time
was set to be 10 s for each detection spot. Five spectra were
recorded on each substrate to ensure reproducibility.

Density Functional Theory Study
To investigate the electronic structure of AMT inhibitor, the
quantum calculation method was adopted by DFT at the level
B3LYP/6-311G++ base set (d) using the Gaussian 09 and
GaussView 5.0.8 software (Zhang et al., 2020). Besides, the
Fukui indices can be used to reflect the local reactivity of
molecules. They determine the electron density in response to
electrophilic or nucleophilic attack. The Fukui indices calculated
from Mulliken’s population value are as follows (El-Hajjaji et al.,
2020), where Pk(N + 1), Pk(N) and Pk(N−1) are the charge values
of k atoms to cations, neutral and anions, respectively.

For nuclearophilic attack

fk+ � Pk(N + 1) − Pk(N) (2)
For electrophilic attack

fk− � Pk(N) − Pk(N − 1) (3)
Moreover, it is necessary to study the adsorption mode and

binding strength of inhibitor on metal surface. The interaction
nature between the inhibitor molecule and aluminium was

performed using molecular mechanics method as implemented
in Forcite module of Material studio 8.0 software. A simulation
box of 34.18 × 34.18 × 68.86 Å3 dimension containing six layers of
Al (111), one inhibitor molecule, 500 H2Omolecules, 5 Cl−, 5 Na+

and 40 Å vacuum layer was established. The periodic boundary
condition and COMPASS force field were used in this system. A
fine quality simulation was accomplished with 500 ps simulation
time and 1 fs time step using NVT canonical ensemble.

RESULTS AND DISCUSSION

Potentiodynamic Polarization
The corrosion inhibition effect of AMT on AA2024 substrate was
first assessed by potentiodynamic polarization. Figure 1 shows
the polarization curves of aluminium alloy after 6 h of immersion
in 3.5 wt.% NaCl solution without and with various
concentrations of AMT (1.0, 1.5, 2.0 g/L). It can be seen that
the application of inhibitors made the corrosion potential (Ecorr)
shift towards the negative potential and significantly decreased
the corrosion current density (icorr). The cathodic current density
decreased evidently, indicating that AMT mainly acted as a
cathode-type inhibitor to restrict the oxygen diffusion process
(Shen et al., 2013). In the anodic branch, the polarization curve of
the sample immersed in blank NaCl solution showed immediate
pitting and the Ecorr was around −0.60 V. With the addition of
AMT, a passivation behavior of the alloy was observed, which was
associated with the formation of a protective film via the
adsorption of inhibitors. The fitted Ecorr and icorr parameters
along with the inhibition efficiency are listed in Table 1. As can be
seen, the icorr values decreased apparently with the addition of
inhibitors. The lowest icorr value was observed for aluminium
alloy in the presence of 1.5 g/L AMT (0.239 μA/cm2), which was
reduced by one order of magnitude compared with that of the
blank alloy sample (2.397 μA/cm2). The inhibition efficiencies
were calculated to be 87.6% for 1.0 g/L AMT, 90.0% for 1.5 g/L
AMT, and 82.6% for 2.0 g/L AMT, respectively, demonstrating
superior suppression of the corrosion process in saline solutions.

Electrochemical Impedance Spectroscopy
The corrosion inhibition effect of AMT was further examined by
EIS measurement. Figure 2 shows the Nyquist diagrams and
Bode plots of AA2024 aluminium alloy in 3.5 wt.% NaCl solution
containing different concentrations of AMT inhibitors. The
measured impedance implies the capacitive and resistive
properties of the inhibitor film and is related to the corrosion
kinetic of the metal in aggressive media. In the Nyquist diagrams,
the capacitive loops of the blank alloy sample were relatively
small, which decreased gradually with the increase of immersion
time. After the addition of AMT, the diameter of capacitive loops
increased significantly, and enlarged with the prolonging of
immersion time. When the AMT concentration was 1.5 g/L,
the capacitive loops reached the maximum. The impedance
modulus plots illustrated similar trend, i.e., the impedance
magnitude of aluminium alloy increased considerably after the
addition of AMT, and reached the highest values when the AMT
concentration was 1.5 g/L. In general, the low frequency

FIGURE 1 | Polarization curves of aluminium alloy after 6 h of immersion
in 3.5 wt.% NaCl solution without and with various concentrations of AMT
(1.0, 1.5, 2.0 g/L).
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impedance modulus |Z|0.01Hz is used as a semi-quantitative
measure of the corrosion resistance property. After 72 h, the
exposure to AMT solution led to the increase of |Z|0.01Hz value by
more than 50 times compared to that of the blank alloy.
Regarding to the phase angle plots, the blank AA2024 alloy
possessed two time constants, the one in the low frequency
(10−2–100 Hz) represented the charge transfer process, and the
one in the mid frequency (100−103 Hz) was assigned to the
formation of metal oxide layer on the substrate (Liu et al.,
2016; Ma et al., 2021). In contrast, with the addition of AMT
inhibitors, the corrosion electrochemical process in the low-
frequency region was greatly suppressed (Liao et al., 2017),
and the broader time constant in the middle-to-high
frequency indicated that the corrosion inhibitor was effectively
adsorbed on the surface of aluminium alloy to form a robust
protection layer (Zeng et al., 2021).

To verify the EIS interpretation, the electric equivalent
circuits (EECs) in Figure 3 are selected to fit the data in
Figure 2, (Coelho et al., 2018). The EEC without
inductance includes a solution resistance (Rs) in series with
a constant phase element (CPEf) in parallel with a film
resistance (Rf) in series with another constant phase
element (CPEdl) in parallel with a charge transfer resistance
(Rct). The inductive loop (L) occurred due to the alloy
dissolution during the adsorption process or due to the
presence of the by-products on the electrode surface.
Without AMT, Rf and CPEf represent the resistance and the
constant phase element of the native oxide layer (Fekry et al.,
2014). For the inhibited substrates, Rf and CPEf are assigned to
the resistance and constant phase element of the inhibitor film
(Yan et al., 2020; Zhu et al., 2021; Cao et al., 2022). CPEdl
corresponds to the double layer capacitance. The fitted EIS
parameters are presented in Table 2 and Figure 4. It is shown
that the addition of AMT increased the Rct and Rf values and
the inhibition performance was promoted with increasing the
AMT concentration. At the same time, the values of CPEf and
CPEdl tended to decrease as the increase of AMT concentration
due to the increase of AMT layer thickness and/or the local
dielectric constant. It can be concluded that the addition of
AMT formed an adsorption film on the alloy surface, thus
slowing down the corrosion process of aluminium alloy in
NaCl solution.

Surface Characterization
To assess the surface morphology of AA2024 aluminium alloy
exposed to the aggressive media, 3D profilometry and SEM
images were performed on the alloy after immersion in

3.5 wt.% NaCl solution for 72 h without and with 1.5 g/L
AMT inhibitor. It is clearly seen in Figure 5 that the
unprotected alloy surface was remarkably corroded with the
appearance of many pits and corrosion products, and the
surface roughness was as high as ~0.389 μm. On the
contrary, the AMT protected aluminium surface was
relative smooth and uniform, with a lower surface
roughness value of 0.225 μm. It is known that the AA2024
alloy is highly susceptible to corrosion in NaCl solution due to
the existence of IMPs, which have been demonstrated to be the
active sites for localized corrosion (Zheludkevich et al., 2005).
The EDX analysis from the red spot in Figure 5A revealed the
presence of Al, Cu, Mg, Mn, C and O elements on the alloy
surface, and the very high oxygen content verified the presence
of corrosion products such as Al(OH)3 and Al2O3 on the alloy
matrix (Visser et al., 2019). For the AMT protected AA2024
surface, no corrosion pit was visible. The EDX results from the
blue spot and the green spot in Figure 5B showed much lower
oxygen content and higher Al content, demonstrating a low
level of corrosion products on the alloy surface. Hence, the
surface analysis data are in good agreement with the
electrochemical data, indicating that AMT can considerably
improve the corrosion resistance property of the
aluminium alloy.

To investigate the hydrophilic and hydrophobic nature of
different surfaces, the WCAs were tested on the AA2024
aluminium alloy after immersion in 3.5 wt.% NaCl solution for
72 h without and with 1.5 g/L AMT inhibitor. As shown in
Figure 6, the blank alloy exhibited a WCA of 65.3°, and the
inhibitor adsorbed alloy displayed a higher WCA of 76.8°. These
results indicate that the corrosive media can reach the
uninhibited alloy surface more easily, whereas there is a
competitive adsorption between inhibitors and water
molecules in solution on the AMT adsorbed surface. The
increase of the adsorption ability of corrosion inhibitors
strengthens the hydrophobicity of the metal surface, hence
decreasing the corrosion tendency (Zhang et al., 2021).

Surface-Enhanced Raman Scattering
Detection of Inhibitors
SERS technology is one of the most important surface
analytical methods because of its rapid detection, high
sensitivity, high selectivity, and in-situ characterization of
the surface composition (Yue et al., 2022). The adsorption
kinetics of AMT molecules on AA2024 alloy surfaces after
different exposure time to NaCl solution was characterized by

TABLE 1 | Polarization curve fitting data of AA2024 aluminium alloy in 3.5 wt.% NaCl solution containing different concentrations of AMT.

AMT concentration Ecorr (V) icorr (×10
−6A/cm2) -βc (mV dec−1) βa (mV dec−1) IE (%)

0 −0.601 2.397 1,092.8 15.5 —

1.0 g/L −0.753 0.298 96.6 171.5 87.6%
1.5 g/L −0.812 0.239 98.2 176.8 90.0%
2.0 g/L −0.776 0.418 97.8 110.1 82.6%
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SERS measurement, using silver nanorods decorated SERS
active tape as the Raman signal amplifier (Wang et al.,
2021; Ma et al., 2020). Figure 7A shows the SERS spectra of
AMT molecules adsorbed on the surface of AA2024
aluminium alloy after immersing in 3.5 wt.% NaCl solution
with 1.5 g/L AMT for different times. The SERS spectra clearly
revealed the characteristic Raman bands of AMT molecules,

including 702, 856, 929, 1,130, 1,405, and 1,606 cm−1. The
peaks at 702 and 929 cm−1 are attributed to triazole ring
torsion. The peak at 856 cm−1 corresponds to the triazole
ring breathing pattern. The peak value at 1,130 cm−1 is
attributed to the N-N bending vibration. The peak at
1,405 cm−1 is assigned to the tensile vibration of the triazole
ring. The peak at 1,606 cm−1 belongs to the bending vibration

FIGURE 2 | (A,C,E,G)Nyquist diagrams and (B,D,F,H)Bode plots of AA2024 aluminium alloy in 3.5 wt.%NaCl solution containing different concentrations of AMT
inhibitors.
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FIGURE 3 | EECs of AA2024 aluminium alloy in 3.5wt.% NaCl solution containing AMT.

TABLE 2 | EIS fitting data of AA2024 alloy in 3.5 wt.% NaCl solution containing different concentrations of AMT.

CAMT Time Qf nf Rf Qdl ndl Rct L RL χ2

(g/L) (h) (Ω−1·cm−2 Sn) (Ω·cm2) (Ω−1·cm−2·Sn) (Ω·cm2) (H cm−2) (Ω·cm2) (×10−3)

0 2 1.03 × 10−5 0.93 9.37 × 103 7.70 × 10−5 1.00 3.82 × 103 — — 4.8
12 1.27 × 10−5 0.92 1.46 × 104 9.61 × 10−5 1.00 4.62 × 103 — — 2.0
24 1.76 × 10−5 0.89 7.40 × 103 2.77 × 10−4 0.94 3.92 × 103 — — 1.1
48 1.52 × 10−5 0.88 8.34 × 103 3.92 × 10−4 1.00 3.16 × 103 — — 1.1
72 1.09 × 10−5 0.90 6.97 × 103 4.32 × 10−4 0.97 2.26 × 103 — — 1.9

1.0 2 8.06 × 10−6 0.94 5.14 × 104 3.87 × 10−5 1.00 4.43 × 104 — — 5.1
12 8.29 × 10−6 0.94 5.96 × 104 2.84 × 10−5 1.00 5.03 × 104 — — 1.5
24 7.65 × 10−6 0.90 6.94 × 104 6.40 × 10−6 0.94 6.42 × 104 — — 1.9
48 7.21 × 10−6 0.91 7.63 × 104 7.23 × 10−7 1.00 7.83 × 104 1.83 × 103 3.03 × 104 1.6
72 5.93 × 10−6 0.92 8.71 × 104 7.72 × 10−7 1.00 1.06 × 105 — — 4.0

1.5 2 6.94 × 10−6 0.94 7.34 × 104 8.22 × 10−7 1.00 1.55 × 105 — — 4.3
12 6.21 × 10−6 0.95 1.35 × 105 5.82 × 10−7 1.00 2.11 × 105 — — 1.7
24 6.08 × 10−6 0.94 1.95 × 105 5.42 × 10−7 1.00 2.68 × 105 1.23 × 104 5.82 × 104 0.6
48 4.26 × 10−6 0.94 2.43 × 105 3.99 × 10−7 0.98 3.07 × 105 3.10 × 104 8.24 × 104 0.6
72 3.03 × 10−6 0.94 2.62 × 105 1.30 × 10−7 0.96 6.91 × 105 1.11 × 105 1.03 × 105 0.9

2.0 2 6.16 × 10−6 0.93 4.49 × 104 9.66 × 10−7 1.00 6.64 × 104 — — 0.8
12 6.21 × 10−6 0.94 5.61 × 104 9.64 × 10−7 0.88 8.88 × 104 — — 5.1
24 5.96 × 10−6 0.87 7.97 × 104 6.84 × 10−7 1.00 9.32 × 104 — — 1.3
48 5.12 × 10−6 0.98 8.62 × 104 8.65 × 10−7 1.00 2.06 × 105 — — 3.2
72 5.66 × 10−6 0.88 1.25 × 105 7.97 × 10−7 1.00 6.21 × 105 — — 1.1

FIGURE 4 | Evaluation of (A) Rf and (B) Qf parameters of AA2024 aluminium alloy in 3.5wt.% NaCl solution containing AMT.
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of NH2 (Sherif et al., 2010; Wang et al., 2011; Xavier and
Gobinath, 2012). The appearance of these characteristic
Raman peaks indicates that AMT molecules have been
effectively adsorbed on the surface of AA2024 alloy. More
importantly, the variation of Raman intensity can reflect the
adsorption kinetics process of analytes. It is noted that with the
increase of immersion time, the SERS signals on the
aluminium alloy surface increased gradually. From 2 to
48 h, the SERS signals of corrosion inhibitors increased
significantly, indicating that the adsorption rate was
relatively high. Subsequently, the SERS intensity and
corresponding adsorption amount reached saturation from
48 to 72 h. To correlate the AMT adsorption behavior with
the corrosion inhibition property on the AA2024 alloy surface,
Figure 7B plots the Rf values of the substrate immersed in
3.5 wt.% NaCl solution containing 1.5 g/L AMT versus the

corresponding SERS peak intensities at 1,606 cm−1. A positive
correlation was clearly shown between the SERS signals and Rf

values. Since the Rf parameter can reflect the surface coverage
of inhibitor film, the dramatic increase of Rf value indicates the
gradual coverage of metal surface via inhibitor adsorption,
which is confirmed by the continuous increase and saturation
of SERS signals during immersion.

XPS Characterization
To further identify the adsorption of corrosion inhibitors on
the alloy surface, the chemical compositions of surface films
were studied by XPS. Figure 8 shows the XPS survey spectra
and high resolution spectra of AA2024 aluminium alloy
surface after immersion for 72 h in 3.5 wt.% NaCl solution
without or with 1.5 g/L AMT inhibitors. It is seen that the
peaks of Al, C and O elements were detected on the alloy

FIGURE 5 | SEM images after immersing the AA2024 aluminium alloy in 3.5 wt.% NaCl solution for 72 h (A) without and (B) with 1.5 g/L AMT inhibitors; CLSM
images after immersing the AA2024 alloy in 3.5 wt.% NaCl solution for 72 h (C)without and (D)with 1.5 g/L AMT inhibitors; (E) EDX calculation results from the red, blue
and green areas.

FIGURE 6 | The WCA of the AA2024 aluminium alloy after immersion in 3.5 wt.% NaCl solution for 72 h (A) without and (B) with 1.5 g/L AMT inhibitor.
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surface in blank solution. After adding inhibitors, new
elemental peaks of S and N were shown, which were
assigned to the AMT molecules. Figure 8B shows the high
resolution peaks of Al 2p in the blank and inhibitor adsorbed
alloy surfaces. The Al 2p spectrum consisted of three
components at binding energies of 74.9, 74.3, and 73.1 eV,

corresponding to Al(OH)3, Al2O3 and AlOx, respectively
(Kozlica et al., 2021). Figure 8C illustrates the high
resolution peaks of S 2p. The S element signal was not
observed on the surface of blank AA2024 alloy. In the
presence of AMT, the S 2p spectrum with two peaks was
clearly seen. The peaks at 161.8 and 164.0 eV can be ascribed to

FIGURE 8 | The XPS survey spectra and high resolution spectra of AA2024 aluminium alloy surface after immersion for 72 h in 3.5 wt.% NaCl solution without or
with 1.5 g/L AMT inhibitors.

FIGURE 7 | (A) SERS spectra of AMT molecules adsorbed on the surface of AA2024 aluminium alloy after immersing in 3.5 wt.% NaCl solution with 1.5 g/L AMT
for different times; (B) the Rf values of the substrate immersed in 3.5 wt.% NaCl solution containing 1.5 g/L AMT versus the corresponding SERS peak intensities at
1,606 cm−1.
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the sulfhydryl group and C-S bond between heterocycle and
sulfhydryl group. As for the N 1s spectrum (Figure 8D), in the
presence of AMT, it can be fitted into three peaks of 400.0,
399.4 and 398.6 eV, which were ascribed to the C-N/C=N, N-N
and NH2 bonds of AMT molecules (Huang and Bu, 2020).
Therefore, the AMT inhibitors are successfully adsorbed on
the alloy surface, which is in agreement with the results from
EDS and Raman measurements.

Molecular Modeling
Quantum chemistry calculation of AMT molecules was carried
out to further investigate the corrosion protection mechanism of

AMT. Figure 9 shows the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO)
as well as the electrostatic potential (ESP) of AMT molecules.
According to the Frontier molecular orbital theory, the transition
of the electrons is mainly related to the HOMO and LUMO of a
molecule (Pareek et al., 2019; Wang et al., 2022). As for AMT, the
HOMO is distributed uniformly over the entire surface of the
molecule, and the LUMO is localized around the S atom, which
exhibits an extremely strong electron gaining ability as can be
seen from the huge red region in the molecular orbital diagram.

We used condensed Fukui functions to analyze the local
reactivity of molecules and quantitatively describe the
possibility of each atom as an adsorption site. The sites
with larger f values exhibit increased activity and are
potential candidates to be adsorbed on metal surfaces (El-
Hajjaji et al., 2020). Table 3 shows the condensed Fukui
functions and f values for the C, N, and S atoms of AMT
molecules. Figure 10 shows the corresponding graphs. As can
be seen, N4 and N7 have large f− values, which indicate that
these atoms are preferred sites for electrons transfer from
AMT molecules to metals during electrophilic attacks. S atom
exhibits great electron-giving and electron-accepting ability
owing to the much larger f+ and f− values, which is consistent

FIGURE 9 | Frontier molecular density distribution of the AMT molecule.

TABLE 3 | Fukui indices of AMT.

Atoms f− f+ f0

C1 0.06 0.06 0.06
N2 0.05 0.05 0.05
N4 0.17 0.07 0.12
N5 0.08 0.04 0.07
C6 0.07 0.03 0.06
N7 0.16 0.03 0.10
S10 0.21 0.40 0.31

FIGURE 10 | (A) The optimized structure of AMT molecular; (B) Fukui indices and components of molecular orbitals of AMT.
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with the conclusion of molecular orbital analysis. Therefore,
special attention should be paid to these highly active sites
when calculating the adsorption model of AMT molecule on
metal surface.

Molecular dynamics simulation can provide novel insights
into the interfacial interactions between organic molecules and
metal substrates (Kovačević and Kokalj, 2011). Figure 11
shows the side and the top views of the equilibrium
adsorption configuration of AMT molecule on Al (111)
surface. AMT adsorbs on the Al surface in a nearby flat
manner, which is beneficial for improving the surface
coverage of AMT on the metal surface (Bouoidina et al.,
2021). The electron-giving and electron-receiving processes
of AMT adsorption are promoted by S and N atoms (Luo
et al., 2021). These interactions lead to the formation of
coordination bonds between AMT and Al surface, and can
form a compact film that prevents the aggressive media to reach
the metal surface (Ammouchi et al., 2020; Li et al., 2022).

The radial distribution function (RDF) g (r) derived from MD
orbital data is a good method to estimate the bond information.
Generally, peak bond lengths from 1 to 3.5 Å are associated with
the chemisorption, while those beyond 3.5 Å are assigned to the

physical interactions (Lgaz et al., 2017; Singh et al., 2018).
Figure 12 shows the RDF analysis of the major heteroatoms
of the AMTmolecule on the Al (111) surface. As can be seen from
the figure, the bond lengths of Fe-N7 (3.45 Å) and Fe-S (3.5 Å) are
no more than 3.5 Å, which means that the N7 and S atoms are
attached to the metal substrate via chemisorption; on the other
hand, N4 (3.65 Å) is adsorbed on the metal substrate as physical
adsorption. These findings confirm that these active centers have
great ability for donating and accepting electrons to/from Al that
lead to good inhibition performance of the studied AMT
molecules.

CONCLUSION

In this work, the excellent corrosion inhibition effect of AMT on
AA2024 aluminium alloy in 3.5 wt.% NaCl solution was
demonstrated by electrochemical test and surface analysis, and
the corrosion inhibition mechanism was explained by DFT and
molecular dynamics simulation. AMT mainly acted as a cathode-
type corrosion inhibitor, and the highest corrosion inhibition
efficiency was achieved when the concentration of AMT was

FIGURE 11 | Adsorption equilibrium configuration of AMT molecules on Al (111) surface.

FIGURE 12 | The relevant RDF analysis of AMT molecule (A) Fe-S, (B) Fe-N7 and (C) Fe-N4.
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1.5 g/L. SERS spectra characterized the adsorption kinetics
process of AMT on the alloy surface, and a positive
correlation between the SERS signals and Rf values was clearly
shown, which indicated that the continuous adsorption of AMT
strengthened the corrosion inhibition efficiency. The
heterogeneous donor atoms (N and S) of AMT molecule can
act as the active sites to contribute to the bonding of the metal
surface. The adsorbed AMTmolecules tended to adsorb on the Al
(111) surface in the parallel orientation to obtain the maximum
coverage.
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