Article

Evidence of circalunar rhythmicity in young children's evening melatonin levels

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In adults, recent evidence demonstrates that sleep and circadian physiology change across lunar phases, including findings that endogenous melatonin levels are lower near the full moon compared to the new moon. Here, we extend these results to early childhood by examining circalunar fluctuations in children's evening melatonin levels. We analysed extant data on young children's circadian rhythms (n = 46, aged 3.0–5.9 years, 59% female). After following a strict sleep schedule for 5–7 days, children completed an in‐home, dim‐light circadian assessment (<10 lux). Salivary melatonin was assessed at regular 20‐ to 30‐min intervals until 1 h past each child's scheduled bedtime. Melatonin levels varied significantly across lunar phases, such that melatonin was lower in participants assessed near the full moon as compared to near the new moon. Significant differences were observed at 50 min (meanfull = 2.5 pg/ml; meannew = 5.4 pg/ml) and 10 min (meanfull = 7.3 pg/ml; meannew = 15.8 pg/ml) before children's scheduled bedtime, as well as at 20 min (meanfull = 15.5 pg/ml; meannew = 26.1 pg/ml) and 50 min (meanfull = 19.9 pg/ml; meannew = 34.3 pg/ml) after bedtime. To our knowledge, these are the first data demonstrating that melatonin secretion, a process regulated by the human circadian system, is sensitive to changes in lunar phase at an early age. Future research is needed to understand the mechanisms underlying this association (e.g., an endogenous circalunar rhythm) and its potential influence on children's sleep and circadian health.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Infradian rhythms can be related to geophysical and social cycles and include yearly, monthly and weekly fluctuations [83][84][85][86]. There is 10 indirect evidence that circaseptan (about-weekly) rhythms [87,88] and circa-lunar cycles [89][90][91] may also be partly endogenous. ...
Preprint
Wearable devices gain increasing attention for use in multifunctional applications related to health monitoring, particularly in research of the circadian rhythms of cognitive functions and metabolic processes. In this comprehensive review, we encompass how wearables can be used to study circadian rhythms in health and disease. We highlight the importance of these rhythms as markers of health and well-being, and as potential predictors for health outcomes. We focus on the use of wearable technologies in sleep research, circadian medicine, and chronomedicine beyond the -ircadian domain, with an emphasis on actigraphy as a validated tool for monitoring sleep, activity, and light exposure. We discuss various mathematical methods currently used to analyze actigraphic data, such as parametric and non-parametric approaches, applied to quantify circadian and non-circadian variability. We also introduce novel actigraphy-derived markers, which can be used as personalized proxies of health status, assisting in discriminating between health and disease, offering insights into neurobehavioral and metabolic status. We discuss how lifestyle factors such as physical activity and light exposure can modulate brain functions and metabolic health. We emphasize the importance of establishing reference standards for actigraphic measures to further refine data interpretation and improve clinical and research outcomes. The review calls for further research to refine existing tools and methods, deepen our understanding of circadian health, and develop personalized healthcare strategies.
... An association was found between melatonin and age, sleep, and gender. Virtually melatonin secretion levels in children are lower from birth to the first 6 months of life, peaking at 3 years, and then gradually decreasing (28)(29)(30). Guangdong is located in the tropical/subtropical region of China, with average temperatures from August to October 2019 and April to June 2020 of 25 ℃, and the days and nights were of equal length during these periods. All patients in this study were recruited during this period to avoid a shift in the circadian phase due to seasonal bias. ...
Article
Full-text available
Background: At present, minimally invasive surgery is often used in paediatric patients as a day surgery to promote rapid post-operative recovery. Obstructive Sleep Apnea Syndrome (OSAS) Patients recovery in the hospital or at home after surgery may differ in terms of recovery quality and circadian rhythm status because of sleep disruption; however, this remains unknown. Pediatric patients usually unable to explain their feelings effectively, and objective indicators to measure recovery situation in different environments are promising. This study was conducted to compare the impact of in-hospital and at-home postoperative recovery quality (primary outcome) and circadian rhythm (as measured via the salivary melatonin level) (secondary outcome) in preschool-age patients. Methods: This was a cohort, non-randomized and exploratory observational study. A total of 61 children aged 4 to 6 years who were scheduled to receive adenotonsillectomy were recruited and assigned to recover either in the hospital (Hospital group) or at home (Home group) after surgery. There were no differences in the patient characteristics and perioperative variables between the Hospital and Home groups at baseline. They received the treatment and anesthesia in the same way. The patients' preoperative and up to 28 days post-surgery OSA-18 questionnaires were harvested. Moreover, their pre- and post-surgery salivary melatonin concentrations, body temperature, three-night postoperative sleep diaries, pain scales, emergence agitation, and other adverse effects were recorded. Results: There were no significant differences in the postoperative recovery quality, as assessed by the OSA-18 questionnaire, body temperature, sleep quality, pain scales, and other adverse events (such as respiratory depression, sinus bradycardia, sinus tachycardia, hypertension, hypotension, nausea, and vomiting) between the two groups. The preoperative morning saliva melatonin secretion was decreased in both groups on the first postoperative morning (P<0.05), while a significantly greater decrease was found in the Home group on postoperative day 1 (P<0.05) and day 2 (P<0.05). Conclusions: The postoperative recovery quality of preschool kids in the hospital is as good as at home based on OSA-18 evaluation scale. However, the clinical importance of the significant decrease in morning saliva melatonin levels with at-home postoperative recovery remains unknown and warrants further study.
... Strong visual cues have been noted to have the ability to skew memories of events, ascribing stronger relationships and recall (Tanrıkulu, Chetverikov, & Kristjánsson, 2021). The full moon is an overt phenomenon with known scientific influence such as gravitational pressures on tides and melatonin levels in humans (Hartstein et al., 2022). Both of these theoretical frameworks were included in the development of this retrospective study. ...
Article
Full-text available
Light at night in adults suppresses melatonin in a nonlinear intensity-dependent manner. In children, bright light of a single intensity before bedtime has a robust melatonin suppressing effect. To our knowledge, whether evening light of different intensities is related to melatonin suppression in young children is unknown. Healthy, good-sleeping children (n = 36; 3.0–4.9 years; 39% male) maintained a stable sleep schedule for 7 days followed by a 29.5-h in-home dim-light circadian assessment (~1.5 lux). On the final night of the protocol, children received a 1-h light exposure (randomized to one of 15 light levels, ranging 5–5000 lux, with ≥2 participants assigned to each light level) in the hour before habitual bedtime. Salivary melatonin was measured to calculate the magnitude of melatonin suppression during light exposure compared with baseline levels from the previous evening, as well as the degree of melatonin recovery 50 min after the end of light exposure. Melatonin levels were suppressed between 69.4% and 98.7% (M = 85.4 ± 7.2%) during light exposure across the full range of intensities examined. Overall, we did not observe a light intensity-dependent melatonin suppression response; however, children exposed to the lowest quartile of light intensities (5–40 lux) had an average melatonin suppression (77.5 ± 7.0%) which was significantly lower than that observed at each of the three higher quartiles of light intensities (86.4 ± 5.6%, 89.2 ± 6.3%, and 87.1 ± 5.0%, respectively). We further found that melatonin levels remained below 50% baseline for at least 50 min after the end of light exposure for the majority (62%) of participants, and recovery was not influenced by light intensity. These findings indicate that preschool-aged children are highly sensitive to light exposure in the hour before bedtime and suggest the lighting environment may play a crucial role in the development and the maintenance of behavioral sleep problems through impacts on the circadian timing system.
Article
Full-text available
This study aimed to assess the effects of the lunar cycle on diurnal variation of biological, i.e, hormonal, biochemical, and hematological, profiles of diurnally active healthy men. Blood samples of 20 males were collected on four occasions [full moon (FM) and new moon (NM), in the morning (06:00–07:00 h) and evening (19:00–20:00 h)]. The results showed that melatonin and testosterone levels and neutrophils count were lower during the FM as compared to the NM in the morning (p < .001; d = 4.13, p < .001; d = 3.84, p < .01; d = 0.77, respectively) and evening (p < .001; d = 6.36, p < .001; d = 4.03, p < .05; d = 1.07, respectively) samples. However, cortisol level was higher during the FM compared to the NM, in the morning (p < .001; d = 0.74) and evening (p < .001; d = 3.54). Hemoglobinemia was higher only in the evening during the FM compared to the evening of the NM (p < .01; d = 1.22). In summary, this study confirmed that lunar cycle can affect human biological parameters independently of time of day.
Article
Full-text available
Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented “lunar-rhythmic” terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings which start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads towards pathways, as well as molecular markers. However, for each interpretation it is important to carefully consider the – partly substantially differing – conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Article
Full-text available
Although the light-induced melatonin suppression response is well characterized in adults, studies examining the dynamics of this effect in children are scarce. The purpose of this study was to quantify the magnitude of evening light-induced melatonin suppression in preschool-age children. Healthy children (n = 10; 7 females; 4.3 ± 1.1 years) participated in a 7-day protocol. On days 1–5, children followed a strict sleep schedule. On day 6, children entered a dim light environment (<15 lux) for 1-h before providing salivary samples every 20- to 30-min from the afternoon until 50-min after scheduled bedtime. On day 7, subjects remained in dim light conditions until 1-h before bedtime, at which time they were exposed to a bright light stimulus (~1000 lux) for 1-h and then re-entered dim light conditions. Saliva samples were obtained before, during, and after bright light exposure and were time anchored to samples taken the previous evening. We found robust melatonin suppression (87.6 ± 10.0%) in response to the bright light stimulus. Melatonin levels remained attenuated for 50-min after termination of the light stimulus (P < 0.008). Furthermore, melatonin levels did not return to 50% of those observed in the dim light condition 50-min after the light exposure for 7/10 children. Our findings demonstrate a robust light-induced melatonin suppression response in preschool-age children. These findings have implications for understanding the role of evening light exposure in the development of evening settling difficulties and may serve as experimental evidence to support recommendations regarding light exposure and sleep hygiene practices in early childhood.
Article
Full-text available
Beliefs that lunar phases affect human physiology started in ancient times. Research has recently revealed that a physical fitness index increased in sedentary students at the new moon (NM) and full moon (FM) compared to other moon phases. However, the effect of lunar cycle (moon illumination and gravitational pull) on physical performance in athletes was not examined. Therefore, this study aimed to evaluate whether short-term explosive performance can be influenced by the different phases of the lunar cycle. Fourteen young male Taekwondo athletes (age: 16.9 ± 0.7 years, height: 159.7 ± 50.6 cm, body mass: 62.85 ± 7.84 kg) performed the following tests to assess the explosive physical performance during the different phases of the lunar cycle (NM, FQ (first quarter), FM, and LQ (last quarter)): maximal isometric manual contraction (dominant hand (MIMCD) and non-dominant hand (MIMCND)), maximal back isometric contraction (MBIC), squat jump (SJ), countermovement jump (CMJ), and 10-m sprint (10 m). The testing sessions during the different moon phases were performed in a counterbalanced order. The order of tests remained the same (MIMCD, MIMCND, MBIC, SJ, CMJ, and 10 m), and all sessions were performed in the evening (6:00 to 8:00 p.m.) on the first day of each evaluated lunar phase. Each parameter was measured over two consecutive lunar months in the calendar. Analysis of variance tests showed that there was no significant effect of lunar cycle on all explosive test measures, p > 0.05. Our results failed to identify any effect of lunar phase on evening explosive performance (mainly involving phosphagen pathway-based efforts) among young trained athletes. Therefore, it appears that moon phase/illumination does not affect short-term physical performance in young trained adolescents.
Article
Full-text available
In order to verify if the full moon is associated with sleep and activity behaviors, we used a 12-country study providing 33,710 24-h accelerometer recordings of sleep and activity. The present observational, cross-sectional study included 5812 children ages 9–11 years from study sites that represented all inhabited continents and wide ranges of human development (Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, United Kingdom, and United States). Three moon phases were used in this analysis: full moon (±4 days; reference), half moon (±5–9 days), and new moon (±10–14 days) from nearest full moon. Nocturnal sleep duration, moderate-to-vigorous physical activity (MVPA), light-intensity physical activity (LPA), and total sedentary time (SED) were monitored over seven consecutive days using a waist-worn accelerometer worn 24 h a day. Only sleep duration was found to significantly differ between moon phases (~5 min/night shorter during full moon compared to new moon). Differences in MVPA, LPA, and SED between moon phases were negligible and non-significant (<2 min/day difference). There was no difference in the associations between study sites. In conclusion, sleep duration was 1% shorter at full moon compared to new moon, while activity behaviors were not significantly associated with the lunar cycle in this global sample of children. Whether this seemingly minimal difference is clinically meaningful is questionable.
Article
Full-text available
The four prominent phases of the lunar month are new moon, first quarter, full moon, and third quarter. According to the position of the moon in its orbit, the gravitational pull of the moon on earth changes and the amplitude of ocean tides also vary. A large number of investigations have shown the association of different lunar phases with the mental health or physical health and diseases, physical activity pattern, and reproduction of humans. The changes occurred may be due to either the disturbance of electromagnetic field of the earth or the changes of lunar gravitational force on earth and changes of "human tidal wave" or "biological tide" during different lunar phases. The altered autonomic neural activity and cardiovascular activity during different lunar phases is probably one of the fundamental causes of the changes of human physiology.
Article
Full-text available
Behaviours of several animal species have been linked to lunar periodicity. Evidence for such links in humans is weak; however, recently, shorter sleep duration was reported around full moon in two small samples of adults. As restrictions in sleep duration have been shown to adversely affect glucose regulation and physical activity to improve glucose regulation, one could speculate that cardiometabolic risk factors might also be affected by the lunar phase. We retrospectively examined 795 Danish children, aged 8-11 years, with more than 13 000 24-h accelerometer recordings of activity and sleep as well as 2000 measurements of different cardiometabolic risk factors, including insulin sensitivity, appetite hormones and blood pressure, during nine lunar phases. During the period around full moon, children were 5.0 and 3.2 min per day less active, slept 2.4 and 4.1 min per night longer, had 0.03 and 0.05 higher homeostatic model assessment of insulin resistance and 0.6 and 0.8 mmHg higher mean arterial blood pressure compared with days around half moon and new moon, respectively (all P ≤ 0.02). Furthermore, ghrelin was lower and leptin was higher during the period around full moon compared with days around half moon (both P < 0.001). The results suggest that physical activity rather than sleep is responsible for the metabolic alterations observed around full moon. However, we have no understanding of potential mechanisms that may mediate a potential true link between childhood behaviour and the lunar cycle or confounders that may explain this, apparently leading to fluctuation in a number of cardiometabolic risk markers conjointly with lunar phases. © 2015 The Authors. Clinical Obesity published by John Wiley & Sons Ltd on behalf of World Obesity.
Article
Lunar periodicity in human biology and behaviour, particularly sleep, has been reported. However, estimated relationships vary in direction (more or less sleep with full moon) if they exist at all, and studies tend to be so small that there is potential for confounding by weekly or monthly cycles. Lunar variation in physical activity has been posited as a driver of this relationship, but is likewise not well studied. We explore the association between lunar cycle, sleep and physical activity in a population-based sample of 1411 Germans age 14–17 years (46% male). Physical activity (daily minutes moderate-to-vigorous activity) was objectively assessed by accelerometry for a total of 8832 days between 2011 and 2014. At the same time, time in bed (h) and subjective sleep quality (1–6) were diaried each morning. In models corrected for confounding, we found that lunar phase was not significantly associated with physical activity, subjective sleep quality or time in bed in either sex, regardless of season. Observed relationships varied randomly in direction between models, suggesting artefact. Thus, this large, objectively-measured and well-controlled population of adolescents displayed no lunar periodicity in objective physical activity, subjective sleep quality or time in bed.
Article
Objectives Popular belief holds that the lunar cycle affects human physiology, behavior, and health, including sleep. To date, only a few and conflicting analyses have been published about the association between lunar phases and sleep. Our aim was to analyze the relationship between lunar phases and sleep characteristics. Methods In this retrospective, cross-sectional analysis, data from 319 patients who had been referred for sleep study were included. Individuals with apnea–hypopnea index ≥15/h were excluded. Socio-demographic parameters were recorded. All participants underwent one-night standard polysomnography. Associations between lunar cycle (new moon, full moon and alternate moon) and sleep parameters were examined in unadjusted and adjusted models. Results Fifty-seven percent of patients were males. Mean age for men was 45 ± 14 years and 51 ± 12 years for women. In total, 224 persons had their sleep study done during alternate moon, 47 during full moon, and 48 during new moon. Full moon was associated with lower sleep efficiency [median (%)(IQR): new moon 82 (18), full moon 74 (19), alternate moon 82 (15); P < 0.001], less deep sleep [median (%) (IQR): new moon 9 (9), full moon 6 (4), alternate moon 11 (9); P < 0.001] and increased REM latency [median (min) (IQR): new moon 98 (74), full moon 137 (152), alternate moon 97 (76); P < 0.001], even after adjustment for several covariables. Conclusion The results are consistent with a recent report and the widely held belief that sleep characteristics may be associated with the full moon.
Article
Three studies have retrospectively analysed different data-sets to assess whether there is an effect of lunar phase upon human sleep. The results and conclusions differ. Until specifically designed experiments, controlling for key variables, are undertaken this issue will remain open.
Article
Various human biological functions adhere to a circadian rhythm that to some extent may be affected by environmental factors, including light and temperature [1]. Recent evidence from Cajochen et al.[2] indicates that human sleep is influenced by the cycle of the moon, measured in conditions precluding the potential impact of nocturnal lunar illumination Here in a similarly retrospective study of 47 healthy volunteers (mean age 23.3, S.D. ±2.9 years) we demonstrate that total sleep time decreases by 25 minutes and cortical reactivity to environmental stimuli during sleep increases around full moon, and rapid eye movement (REM) sleep latency lengthens by 30 minutes around new moon. The findings strengthen the notion that human sleep is modulated by lunar phase but point to important deviations from the study of Cajochen et al. that need to be addressed, particularly with regard to individual susceptibility.
Article
Circadian phase and its relation to sleep are increasingly recognized as fundamental factors influencing human physiology and behavior. Dim light melatonin onset (DLMO) is a reliable marker of the timing of the circadian clock, which has been used in experimental, clinical, and descriptive studies in the past few decades. Although DLMO and its relationship to sleep have been well documented in school-aged children, adolescents, and adults, very little is known about these processes in early childhood. The purpose of this study was 1) to describe circadian phase and phase angles of entrainment in toddlers and 2) to examine associations between DLMO and actigraphic measures of children's nighttime sleep. Participants were 45 healthy toddlers aged 30 to 36 months (33.5 ± 2.2 months; 21 females). After sleeping on a parent-selected schedule for 5 days (assessed with actigraphy and diaries), children participated in an in-home DLMO assessment involving the collection of saliva samples every 30 minutes for 6 hours. Average bedtime was 2015 ± 0036 h, average sleep onset time was 2043 ± 0043 h, average midsleep time was 0143 ± 0038 h, and average wake time was 0644 ± 0042 h. Average DLMO was 1929 ± 0051 h, with a 3.5-hour range. DLMO was normally distributed; however, the distribution of the bedtime, sleep onset time, and midsleep phase angles of entrainment were skewed. On average, DLMO occurred 47.8 ± 47.6 minutes (median = 39.4 minutes) before bedtime, 74.6 ± 48.0 minutes (median = 65.4 minutes) before sleep onset time, 6.2 ± 0.7 hours (median = 6.1 hours) before midsleep time, and 11.3 ± 0.7 hours before wake time. Toddlers with later DLMOs had later bedtimes (r = 0.46), sleep onset times (r = 0.51), midsleep times (r = 0.66), and wake times (r = 0.65) (all p < 0.001). Interindividual differences in toddlers' circadian phase are large and associated with their sleep timing. The early DLMOs of toddlers indicate a maturational delay in the circadian timing system between early childhood and adolescence. These findings are a first step in describing the fundamental properties of the circadian system in toddlers and have important implications for understanding the emergence of sleep problems and the consequences of circadian misalignment in early childhood.
Article
Endogenous rhythms of circalunar periodicity (w29.5 days) and their underlying molecular and genetic basis have been demonstrated in a number of marine species [1, 2]. In contrast, there is a great deal of folklore but no consistent association of moon cycles with human physiology and behavior [3]. Here we show that subjective and objective measures of sleep vary according to lunar phase and thus may reflect circalunar rhythmicity in humans. To exclude confounders such as increased light at night or the potential bias in perception regarding a lunar influence on sleep, we retrospectively analyzed sleep structure, electroencephalographic activity during non-rapid-eye-movement (NREM) sleep, and secretion of the hormones melatonin and cortisol found under stringently controlled laboratory conditions in a cross-sectional setting. At no point during and after the study were volunteers or investigators aware of the a posteriori analysis relative to lunar phase. We found that around full moon, electroencephalogram (EEG) delta activity during NREM sleep, an indicator of deep sleep, decreased by 30%, time to fall asleep increased by 5 min, and EEG-assessed total sleep duration was reduced by 20 min. These changes were associated with a decrease in subjective sleep quality and diminished endogenous melatonin levels. This is the first reliable evidence that a lunar rhythm can modulate sleep structure in humans when measured under the highly controlled conditions of a circadian laboratory study protocol without time cues.
Article
Collectively the daily, seasonal, lunar and tidal geophysical cycles regulate much of the temporal biology of life on Earth. The increasing isolation of human societies from these geophysical cycles, as a result of improved living conditions, high-quality nutrition and 24/7 working practices, have led many to believe that human biology functions independently of them. Yet recent studies have highlighted the dominant role that our circadian clock plays in the organisation of 24 hour patterns of behaviour and physiology. Preferred wake and sleep times are to a large extent driven by an endogenous temporal program that uses sunlight as an entraining cue. The alarm clock can drive human activity rhythms but has little direct effect on our endogenous 24 hour physiology. In many situations, our biology and our society appear to be in serious opposition, and the damaging consequences to our health under these circumstances are increasingly recognised. The seasons dominate the lives of non-equatorial species, and until recently, they also had a marked influence on much of human biology. Despite human isolation from seasonal changes in temperature, food and photoperiod in the industrialised nations, the seasons still appear to have a small, but significant, impact upon when individuals are born and many aspects of health. The seasonal changes that modulate our biology, and how these factors might interact with the social and metabolic status of the individual to drive seasonal effects, are still poorly understood. Lunar cycles had, and continue to have, an influence upon human culture, though despite a persistent belief that our mental health and other behaviours are modulated by the phase of the moon, there is no solid evidence that human biology is in any way regulated by the lunar cycle.
Article
Popular belief holds that the lunar cycle affects human physiology, behaviour and health. We examined the influence of moon phase on sleep duration in a secondary analysis of a feasibility study of mobile telephone base stations and sleep quality. We studied 31 volunteers (18 women and 13 men, mean age 50 years) from a suburban area of Switzerland longitudinally over 6 weeks, including two full moons. Subjective sleep duration was calculated from sleep diary data. Data were analysed using multiple linear regression models with random effects. Mean sleep duration was 6 h 49 min. Subjective sleep duration varied with the lunar cycle, from 6 h 41 min at full moon to 7 h 00 min at new moon (P < 0.001). Average sleep duration was shortened by 68 min during the week compared with weekends (P < 0.001). Men slept 17 min longer than women (P < 0.001) and sleep duration decreased with age (P < 0.001). There was also evidence that rating of fatigue in the morning was associated with moon phase, with more tiredness (P = 0.027) at full moon. The study was designed for other purposes and the association between lunar cycle and sleep duration will need to be confirmed in further studies.