Preprint
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

The paper — Seaweed ecosystems may not mitigate CO2 emissions (Gallagher et al., 2022) — claims that seaweed ecosystems are carbon sources rather than carbon sinks because ‘respiration subsidies’ (from inputs of allochthonous organic carbon) create negative net ecosystem production. That is, that seaweed ecosystems produce more CO2 than they draw down, and thus may not mitigate CO2 emissions. They make this claim using a compiled dataset which shows that, on average, seaweed ecosystems are net heterotrophic. However, their assessment is flawed and conceptually misleading as key terms are misinterpreted, the data presented are biased, and the conclusions are not supported statistically. Here we discuss four flaws in the argument presented by Gallagher et al., which we believe risk confusing further research on seaweed blue carbon and unjustifiably seeding doubt around motivations and initiatives to protect and restore seaweed forests.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

... Nevertheless, the productivity of seaweed ecosystems is comparable to or even greater than saltmarshes and seagrass meadows, with a recent study reporting global average net primary productivity rates of 1711 g C −2 m−2 yr−1 −1 for intertidal habitats and 656 g C −2 m−2 yr−1 −1 for subtidal habitats [6]. Recent studies have called for the inclusion of seaweed habitats within Blue Carbon frameworks, given their high rates of productivity, extensive spatial extent (6.06-7.22 million km 2 ) and function as carbon donors within coastal ecosystems [6][7][8][9]. Moreover, firstorder estimates suggest that ~11% of this primary production may be sequestered as either particulate organic carbon (POC) or dissolved organic carbon (DOC) in the deep sea or continental shelf sediments [10]. ...
Article
Full-text available
Blue carbon habitats, which exhibit high rates of natural carbon sequestration, typically refer to salt marshes, seagrass meadows, and mangrove forests. Recent studies, however, have argued for the inclusion of seaweed‐dominated habitats, like kelp forests, into blue carbon frameworks. Farmed seaweed may also function as a blue carbon habitat, with large‐scale seaweed aquaculture suggested as a climate change mitigation strategy, but the evidence base remains limited. Here, existing knowledge on the mechanisms influencing carbon uptake, release, transport, and storage from kelp farms was synthesised, and a literature review was conducted to quantify associated rates of carbon sequestration. We identified strong geographical and methodological biases in the literature, with the majority of studies conducted in Asia and focusing on primary production rates as a proxy for carbon sequestration potential. Estimates of carbon release and storage rates were highly variable across locations, species, and approaches, and a scarcity of research on dissolved organic carbon, sedimentary carbon, and net ecosystem productivity was identified. Although the European kelp farming industry is in its infancy, it is predicted to expand to meet increasing demand for seaweed biomass. This is incentivised by perceived associated ecosystem service benefits such as enhanced carbon sequestration. However, multiple factors including environmental concerns, a lack of quantitative evidence, operational challenges, and regulatory complexities hinder industry expansion. Based on both the synthesised empirical evidence and an examination of key barriers and knowledge gaps, we identify future challenges and research priorities needed to assess the role of seaweed farming for climate change mitigation.
... First order estimates suggest that only~11% of exported macroalgal derived C is permanently sequestered (Duarte and Cebriań, 1996). While the net contribution of macroalgae to the global C cycle is up for debate (Filbee-Dexter et al., 2022;Gallagher et al., 2022), these ecosystems potentially sequester~0.68 GtCO 2 eq annually (equivalent to two-thirds of total emissions from the U.S. industrials sector (EPA, 2021). ...
Article
Full-text available
To keep global surface warming below 1.5°C by 2100, the portfolio of cost-effective CDR technologies must expand. To evaluate the potential of macroalgae CDR, we developed a kelp aquaculture bio-techno-economic model in which large quantities of kelp would be farmed at an offshore site, transported to a deep water “sink site”, and then deposited below the sequestration horizon (1,000 m). We estimated the costs and associated emissions of nursery production, permitting, farm construction, ocean cultivation, biomass transport, and Monitoring, Reporting, and Verification (MRV) for a 1,000 acre (405 ha) “baseline” project located in the Gulf of Maine, USA. The baseline kelp CDR model applies current systems of kelp cultivation to deep water (100 m) exposed sites using best available modeling methods. We calculated the levelized unit costs of CO2eq sequestration (LCOC; tCO2eq1).Underbaselineassumptions,LCOCwas tCO2eq⁻¹). Under baseline assumptions, LCOC was 17,048 tCO2eq⁻¹. Despite annually sequestering 628 tCO2eq within kelp biomass at the sink site, the project was only able to net 244 C credits (tCO2eq) each year, a true sequestration “additionality” rate (AR) of 39% (i.e., the ratio of net C credits produced to gross C sequestered within kelp biomass). As a result of optimizing 18 key parameters for which we identified a range within the literature, LCOC fell to $1,257 tCO2eq⁻¹ and AR increased to 91%, demonstrating that substantial cost reductions could be achieved through process improvement and decarbonization of production supply chains. Kelp CDR may be limited by high production costs and energy intensive operations, as well as MRV uncertainty. To resolve these challenges, R&D must (1) de-risk farm designs that maximize lease space, (2) automate the seeding and harvest processes, (3) leverage selective breeding to increase yields, (4) assess the cost-benefit of gametophyte nursery culture as both a platform for selective breeding and driver of operating cost reductions, (5) decarbonize equipment supply chains, energy usage, and ocean cultivation by sourcing electricity from renewables and employing low GHG impact materials with long lifespans, and (6) develop low-cost and accurate MRV techniques for ocean-based CDR.
... First order estimates suggest that only~11% of exported macroalgal derived C is permanently sequestered (Duarte and Cebriań, 1996). While the net contribution of macroalgae to the global C cycle is up for debate (Filbee-Dexter et al., 2022;Gallagher et al., 2022), these ecosystems potentially sequester~0.68 GtCO 2 eq annually (equivalent to two-thirds of total emissions from the U.S. industrials sector (EPA, 2021). ...
Preprint
Full-text available
To keep global surface warming below 1.5 °C by 2100, the portfolio of cost-effective CDR technologies must expand. To evaluate the potential of macroalgae CDR, we developed a kelp aquaculture bio-techno-economic model in which large quantities of kelp would be farmed at an offshore site, transported to a deep water "sink site", and then deposited below the sequestration horizon (1,000 m). We estimated the costs and associated emissions of land-based nursery production, permitting, farm construction, ocean cultivation, biomass transport, and C Monitoring, Reporting, and Verification (MRV) for a 1,000 acre (405 ha) "baseline" project located in the Gulf of Maine, USA. The baseline kelp CDR model applies current systems of kelp cultivation in a realistic way to deep water (100 m) exposed sites using best available modeling methods. We calculated the levelized unit costs of CO2eq sequestration (LCOC; tCO2eq1).Underbaselineassumptions,LCOCwas tCO2eq-1). Under baseline assumptions, LCOC was 17,048 tCO2eq-1. Despite annually sequestering 628 tCO2eq within kelp biomass at the sink site, the project was only able to net 244 C credits (tCO2eq) each year, a true sequestration "additionality" rate (AR) of 39% (i.e., the ratio of net C credits produced to gross C sequestered within kelp biomass). As a result of optimizing 18 key parameters for which we identified a range within the literature, LCOC fell to $1,257 tCO2eq-1 and AR increased to 91%, demonstrating that substantial cost reductions could be achieved through process improvement and decarbonization of production supply chains. Kelp CDR may be limited by high production costs and energy intensive operations, as well as CDR MRV uncertainty. To resolve these challenges, R&D must (1) de-risk farm designs that maximize lease space, (2) automate the seeding and harvest process, (3) leverage selective breeding to increase C yield, (4) assess the cost-benefit of gametophyte nursery culture as both a platform for selective breeding and driver of operating cost reductions, (5) decarbonize equipment supply chains, energy usage, and ocean cultivation by sourcing electricity from renewables and employing low GHG impact materials with long lifespans, and (6) develop low-cost and accurate ocean CDR MRV techniques.
Article
Full-text available
The magnitude and distribution of net primary production (NPP) in the coastal ocean remains poorly constrained, particularly for shallow marine vegetation. Here, using a compilation of in situ annual NPP measurements across >400 sites in 72 geographic ecoregions, we provide global predictions of the productivity of seaweed habitats, which form the largest vegetated coastal biome on the planet. We find that seaweed NPP is strongly coupled to climatic variables, peaks at temperate latitudes, and is dominated by forests of large brown seaweeds. Seaweed forests exhibit exceptionally high per-area production rates (a global average of 656 and 1711 gC m−2 year−1 in the subtidal and intertidal, respectively), being up to 10 times higher than coastal phytoplankton in temperate and polar seas. Our results show that seaweed NPP is a strong driver of production in the coastal ocean and call for its integration in the oceanic carbon cycle, where it has traditionally been overlooked.
Article
Full-text available
Aim Macroalgal habitats are believed to be the most extensive and productive of all coastal vegetated ecosystems. In stark contrast to the growing attention on their contribution to carbon export and sequestration, understanding of their global extent and production is limited and these have remained poorly assessed for decades. Here we report a first data-driven assessment of the global extent and production of macroalgal habitats based on modelled and observed distributions and net primary production (NPP) across habitat types. Location Global coastal ocean. Time period Contemporary. Major taxa studied Macroalgae. Methods Here we apply a comprehensive niche model to generate an improved global map of potential macroalgal distribution, constrained by incident light on the seafloor and substrate type. We compiled areal net primary production (NPP) rates across macroalgal habitats from the literature and combined this with our estimates of the global extent of these habitats to calculate global macroalgal NPP. Results We show that macroalgal forests are a major biome with a global area of 6.06–7.22 million km2, dominated by red algae, and NPP of 1.32 Pg C/year, dominated by brown algae. Main conclusions The global macroalgal biome is comparable, in area and NPP, to the Amazon forest, but is globally distributed as a thin strip around shorelines. Macroalgae are expanding in polar, subpolar and tropical areas, where their potential extent is also largest, likely increasing the overall contribution of algal forests to global carbon sequestration.
Article
Full-text available
The North Atlantic Ocean is a key region for carbon sequestration by the biological carbon pump (BCP). The quantity of organic carbon exported from the surface, the region and depth at which it is remineralized, and the subsequent timescale of ventilation (return of the remineralized carbon back into contact with the atmosphere), control the magnitude of BCP sequestration. Carbon stored in the ocean for >100 years is assumed to be sequestered for climate‐relevant timescales. We apply Lagrangian tracking to an ocean circulation and marine biogeochemistry model to determine the fate of North Atlantic organic carbon export. Organic carbon assumed to undergo remineralization at each of three vertical horizons (500, 1,000, and 2,000 m) is tracked to determine how much remains out of contact with the atmosphere for 100 years. The fraction that remains below the mixed layer for 100 years is defined as the sequestration efficiency (SEff) of remineralized exported carbon. For exported carbon remineralized at the 500, 1,000 and 2,000 m horizons, the SEff is 28%, 66% and 94%, respectively. Calculating the amount of carbon sequestered using depths ≤1,000 m, and not accounting for downstream ventilation, overestimates 100‐year carbon sequestration by at least 39%. This work has implications for the accuracy of future carbon sequestration estimates, which may be overstated, and for carbon management strategies (e.g., oceanic carbon dioxide removal and Blue Carbon schemes) that require long‐term sequestration to be successful.
Article
Full-text available
The coastal zone of the Canadian Arctic represents 10% of the world’s coastline and is one of the most rapidly changing marine regions on the planet. To predict the consequences of these environmental changes, a better understanding of how environmental gradients shape coastal habitat structure in this area is required. We quantified the abundance and diversity of canopy forming seaweeds throughout the nearshore zone (5–15 m) of the Eastern Canadian Arctic using diving surveys and benthic collections at 55 sites distributed over 3,000 km of coastline. Kelp forests were found throughout, covering on average 40.4% (±29.9 SD) of the seafloor across all sites and depths, despite thick sea ice and scarce hard substrata in some areas. Total standing macroalgal biomass ranged from 0 to 32 kg m–2 wet weight and averaged 3.7 kg m–2 (±0.6 SD) across all sites and depths. Kelps were less abundant at depths of 5 m compared to 10 or 15 m and distinct regional assemblages were related to sea ice cover, substratum type, and nutrient availability. The most common community configuration was a mixed assemblage of four species: Agarum clathratum (14.9% benthic cover ± 12.0 SD), Saccharina latissima (13% ± 14.7 SD), Alaria esculenta (5.4% ± 1.2 SD), and Laminaria solidungula (3.7% ± 4.9 SD). A. clathratum dominated northernmost regions and S. latissima and L. solidungula occurred at high abundance in regions with more open water days. In southeastern areas along the coast of northern Labrador, the coastal zone was mainly sea urchin barrens, with little vegetation. We found positive relationships between open water days (days without sea ice) and kelp biomass and seaweed diversity, suggesting kelp biomass could increase, and the species composition of kelp forests could shift, as sea ice diminishes in some areas of the Eastern Canadian Arctic. Our findings demonstrate the high potential productivity of this extensive coastal zone and highlight the need to better understand the ecology of this system and the services it provides.
Article
Full-text available
The seabed plays a key role in the marine carbon cycle as a) the terminal location of aerobic oxidation of organic matter, b) the greatest anaerobic bioreactor, and c) the greatest repository for reactive organic carbon on Earth. We compiled data on the oxygen uptake of marine sediments with the objective to understand the constraints on mineralization rates of deposited organic matter and their relation to key environmental parameters. The compiled database includes nearly 4000 O2 uptake data and is available as supplementary material. It includes also information on bottom water O2 concentration, O2 penetration depth, geographic position, water depth, and full information on the data sources. We present the different in situ and ex situ approaches to measure the total oxygen uptake (TOU) and the diffusive oxygen uptake (DOU) of sediments and discuss their robustness towards methodological errors and statistical uncertainty. We discuss O2 transport through the benthic and diffusive boundary layers, the diffusion- and fauna-mediated O2 uptake, and the coupling of aerobic respiration to anaerobic processes. Five regional examples are presented to illustrate the diversity of the seabed: Eutrophic seas, oxygen minimum zones, abyssal plains, mid-oceanic gyres, and hadal trenches. A multiple correlation analysis shows that seabed O2 uptake is primarily controlled by ocean depth and sea surface primary productivity. The O2 penetration depth scales with the DOU according to a power law that breaks down under the abyssal ocean gyres. The developed multiple correlation model was used to draw a global map of seabed O2 uptake rates. Respiratory coefficients, differentiated for depth regions of the ocean, were used to convert the global O2 uptake to organic carbon oxidation. The resulting global budget shows an oxidation of 212 Tmol C yr⁻¹ in marine sediments with a 5-95% confidence interval of 175-260 Tmol C yr⁻¹. A comparison with the global flux of particulate organic carbon (POC) from photic surface waters to the deep sea, determined from multiple sediment trap studies, suggests a deficit in the sedimentation flux at 2000 m water depth of about 70% relative to the carbon turnover in the underlying seabed. At the ocean margins, the flux of organic carbon from rivers and from vegetated coastal ecosystems contributes greatly to the budget and may even exceed the phytoplankton production on the inner continental shelf.
Article
Full-text available
Global seaweed carbon sequestration estimates are currently taken as the fraction of the net primary production (NPP) exported to the deep ocean. However, this perspective does not account for CO2 from the consumption of external subsidies. Here, we clarify: (i) the role of export relative to seaweed net ecosystem production (NEP) for a closed system and one more likely open to subsidies; (ii) the importance of subsidies by compiling published estimates of NEP from seaweed-dominated ecosystems; and (iii) discuss their impact on the global seaweed net carbon balance and other sequestration constraints as a mitigation service. Examples of seaweed NEP (n = 18) were sparse and variable. Nevertheless, the average NEP (−4.0 mmol C m–2 d–1 SE ± 12.2) suggested that seaweed ecosystems are a C source, becoming increasingly heterotrophic as their export is consumed. Critically, mitigation of greenhouse gas emissions was mixed relative to their replacement or baseline states, and where CO2 is supplied independently of organic metabolism and atmospheric exchange, we caution a sole reliance on NEP or NPP. This will ensure a more accurate seaweed mitigation assessment, one that does exceed their capacity and is effective within a compliance and carbon trading scheme.
Article
Full-text available
Accurately quantifying primary productivity of marine macrophytes is essential to further understanding of coastal ecosystem functioning and will allow its inclusion within marine ecosystem models. Traditional quantification of carbon standing stock and biomass accumulation only allow rough estimates of net primary production whereas incubations that measure photosynthesis in the laboratory lack realism and underestimate true photosynthetic rates. We developed in situ photorespirometry methods to estimate productivity of Laminaria hyperborea, the dominant forest‐building kelp species in Northeast Atlantic. We show that sub‐canopy individuals are better adapted to low light levels with higher photosynthetic efficiency and lower compensation point than larger canopy individuals. Laboratory incubations of L. hyperborea stipes revealed that productivity rates could be positive or negative, even at saturating irradiances, depending on whether they were dominated by autotrophic or heterotrophic communities, respectively. Scaling up productivity estimates based on local population demographics resulted in mean daily net productivity rates of 13.3 and −30.1 g C m−2 d−1, for shallow L. hyperborea forest during late summer and autumn, respectively. At saturating irradiances in the late summer–autumn study period, estimates of net and gross productivity reached 9.4 and 12 g C m−2 h−1, respectively. Sub‐canopy individuals were responsible for 12% of estimated daily productivity during summer, but 20% in autumn. We conclude that in situ photorespirometry provides a more direct measurement of production, unaffected by exudation of dissolved carbon or tissue loss, that can account for sub‐canopy and stipe components of the kelp forest, commonly excluded from traditional studies.
Article
Full-text available
Humans are rapidly transforming the structural configuration of the planet's ecosystems, but these changes and their ecological consequences remain poorly quantified in underwater habitats. Here, we show that the loss of forest‐forming seaweeds and the rise of ground‐covering ‘turfs’ across four continents consistently resulted in the miniaturization of underwater habitat structure, with seascapes converging towards flattened habitats with smaller habitable spaces. Globally, turf seascapes occupied a smaller architectural trait space and were structurally more similar across regions than marine forests, evidencing habitat homogenization. Surprisingly, such habitat convergence occurred despite turf seascapes consisting of vastly different species richness and with different taxa providing habitat architecture, as well as across disparate drivers of marine forest decline. Turf seascapes contained high sediment loads, with the miniaturization of habitat across 100s of km in mid‐Western Australia resulting in reefs retaining an additional ~242 million tons of sediment (four orders of magnitude more than the sediments delivered fluvially annually). Together, this work demonstrates that the replacement of marine forests by turfs is a generalizable phenomenon that has profound consequences for the ecology of temperate reefs. We show that the loss of forest‐forming seaweeds and the rise of ground‐covering ‘turfs’ across four continents consistently resulted in the homogenization and miniaturization of underwater habitat structure across regions. We estimate that this miniaturization led some reefs to retain several hundred million tons of additional sediment. This work demonstrates that the replacement of marine forests by turfs is a generalizable phenomenon that has profound consequences for the ecology of temperate reefs.
Preprint
Full-text available
Net primary productivity (NPP) plays a pivotal role in the global carbon balance, but estimating the NPP of underwater habitats remains a challenging task. Seaweeds (marine macroalgae) form the largest and most productive underwater vegetated habitat on Earth. Yet, little is known about the distribution of their NPP at large spatial scales, despite more than 70 years of local-scale studies being scattered throughout the literature. We present a global dataset containing NPP records for 242 seaweed species at 419 individual sites distributed on all continents from the intertidal to 55 m depth. All records are standardized to annual aerial carbon production (g C m-2 yr-1) and are accompanied by detailed taxonomical and methodological information. The dataset presented here provides a basis for local, regional and global comparative studies of the NPP of underwater vegetation, and is pivotal for achieving a better understanding of the role seaweeds play in the global coastal carbon cycle.
Article
Full-text available
Ensuring that global warming remains <2 °C requires rapid CO2 emissions reduction. Additionally, 100–900 gigatons CO2 must be removed from the atmosphere by 2100 using a portfolio of CO2 removal (CDR) methods. Ocean afforestation, CDR through basin-scale seaweed farming in the open ocean, is seen as a key component of the marine portfolio. Here, we analyse the CDR potential of recent re-occurring trans-basin belts of the floating seaweed Sargassum in the (sub)tropical North Atlantic as a natural analogue for ocean afforestation. We show that two biogeochemical feedbacks, nutrient reallocation and calcification by encrusting marine life, reduce the CDR efficacy of Sargassum by 20–100%. Atmospheric CO2 influx into the surface seawater, after CO2-fixation by Sargassum, takes 2.5–18 times longer than the CO2-deficient seawater remains in contact with the atmosphere, potentially hindering CDR verification. Furthermore, we estimate that increased ocean albedo, due to floating Sargassum, could influence climate radiative forcing more than Sargassum-CDR. Our analysis shows that multifaceted Earth-system feedbacks determine the efficacy of ocean afforestation. Ocean afforestation is considered as an important method to remove gigatons of CO2 from the atmosphere. Here the authors use the Great Atlantic Sargassum Belt as a natural analogue to show that the efficacy of ocean afforestation is determined by complicated feedbacks with the Earth system.
Article
Full-text available
The term ‘Blue Carbon’ was coined about a decade ago to highlight the important carbon sequestration capacity of coastal vegetated ecosystems. The term has paved the way for the development of programs and policies that preserve and restore these threatened coastal ecosystems for climate change mitigation. Blue carbon research has focused on quantifying carbon stocks and burial rates in sediments or accumulating as biomass. This focus on habitat-bound carbon led us to losing sight of the mobile blue carbon fraction. Oceans, the largest active reservoir of carbon, have become somewhat of a blind spot. Multiple recent investigations have revealed high outwelling (i.e., = lateral fluxes or horizontal exports) of dissolved inorganic (DIC) and organic (DOC) carbon as well as particulate organic carbon (POC) from blue carbon habitats. In this paper, we conceptualize outwelling in mangrove, saltmarsh, seagrass and macroalgae ecosystems, diagnose key challenges preventing robust quantification, and hopefully pave the way for future work integrating mobile carbon in the blue carbon framework. Outwelling in mangroves and saltmarshes is usually dominated by DIC (mostly as bicarbonate), while POC seems to be the major carbon species exported from seagrass meadows and macroalgae forests. Carbon outwelling science is still in its infancy, and estimates re- main limited spatially and temporally. Nevertheless, the existing datasets imply that carbon outwelling followed by ocean storage is relevant and may exceed local sediment burial as a long-term (>centuries) blue carbon sequestration mechanism. If this proves correct as more data emerge, ignoring carbon outwelling may underestimate the perceived sequestration capacity of blue carbon ecosystems.
Book
Full-text available
This report presents the main findings of the Nordic Blue Carbon Project (2017–2020) on the areal distribution and carbon budget of blue forests (kelp forests, seagrass meadows and rockweed beds) in the Nordic region. We have identified the main ecosystem effects of climate change and other human pressures on Nordic blue forests, tested the effect of moderating some of these pressures, and give scientific advice on management measures aimed at safeguarding these important coastal ecosystems for the future. Recently, there has been an increased focus on salt marshes as a blue forest habitat, however salt marshes were not covered in the Nordic Blue Carbon Project. Read online: https://pub.norden.org/temanord2020-541/#
Article
Full-text available
This paper provides a primer on the mathematical, physical, and numerical foundations of ocean models that are formulated using finite volume generalized vertical coordinate equations and that use the vertical Lagrangian‐remap method to evolve the ocean state. We consider the mathematical structure of the governing ocean equations in both their strong formulation (partial differential equations) and weak formulation (finite volume integral equations), thus enabling an understanding of their physical content and providing a physical‐mathematical framework to develop numerical algorithms. A connection is made between the Lagrangian‐remap method and the ocean equations as written using finite volume generalized vertical budgets. Thought experiments are offered to exemplify the mechanics of the vertical Lagrangian‐remap method and to compare with other methods used for ocean model algorithms.
Article
Full-text available
Contrary to most terrestrial organisms, which release their carbon into the atmosphere after death, carcasses of large marine fish sink and sequester carbon in the deep ocean. Yet, fisheries have extracted a massive amount of this “blue carbon,” contributing to additional atmospheric CO 2 emissions. Here, we used historical catches and fuel consumption to show that ocean fisheries have released a minimum of 0.73 billion metric tons of CO 2 (GtCO 2 ) in the atmosphere since 1950. Globally, 43.5% of the blue carbon extracted by fisheries in the high seas comes from areas that would be economically unprofitable without subsidies. Limiting blue carbon extraction by fisheries, particularly on unprofitable areas, would reduce CO 2 emissions by burning less fuel and reactivating a natural carbon pump through the rebuilding of fish stocks and the increase of carcasses deadfall.
Article
Full-text available
The arrival o f Sargassum horneri throughout the Southern California Bight and the Baja Peninsula has raised concern regarding kelp forest resilience and ecosystem function following the invasion of this non-native species. To understand how S. horneri impacts native algal abundance and community production, we removed S. horneri from experimental plots over a period of 11 mo. We measured impacts on native algal communities and community productivity using SCUBA surveys and benthic chambers equipped with oxygen, temperature, and light sensors. We observed a nearly 4-fold increase in recruitment of Macrocystis pyrifera and a 9-fold increase in adult M. pyrifera stipe density in S. horneri removal plots, but no discernable changes in net community production among treatments. We found ephemeral increases in gross community production and community respiration in the non-removal plots that coincided with periods of peak S. horneri biomass. To understand the temporal dynamics of community production, we deployed benthic chambers across a rocky reef dominated by S. horneri . Here, temporal variation in community production was most strongly related to corresponding variation in water temperature and changes in S. horneri biomass related to its annual lifecycle. Overall, our study indicates that S. horneri presence contributed to ephemeral increases in gross community production and community respiration, but it did not affect net community production. Moreover, S. horneri removal can lead to increases in native algal abundances given favorable abiotic conditions. We suggest that S. horneri thrives in a disturbed ecosystem rather than being a driver of ecosystem change.
Article
Full-text available
Macroalgal beds have drawn attention as one of the vegetated coastal ecosystems that act as atmospheric CO2 sinks. Although macroalgal metabolism as well as inorganic and organic carbon flows are important pathways for CO2 uptake by macroalgal beds, the relationships between macroalgal metabolism and associated carbon flows are still poorly understood. In the present study, we investigated carbon flows, including air–water CO2 exchange and budgets of dissolved inorganic carbon, total alkalinity, and dissolved organic carbon (DOC), in a temperate macroalgal bed during the productive months of the year. To assess the key mechanisms responsible for atmospheric CO2 uptake by the macroalgal bed, we estimated macroalgal metabolism and lateral carbon flows (i.e., carbon exchanges between the macroalgal bed and the offshore area) by using field measurements of carbon species, a field-bag method, a degradation experiment, and mass-balance modeling in a temperate Sargassum bed over a diurnal cycle. Our results showed that macroalgal metabolism and lateral carbon flows driven by water exchange affected air–water CO2 exchange in the macroalgal bed and the surrounding waters. Macroalgal metabolism caused overlying waters to contain low concentrations of CO2 and high concentrations of DOC that were efficiently exported offshore from the macroalgal bed. These results indicate that the exported water can potentially lower CO2 concentrations in the offshore surface water and enhance atmospheric CO2 uptake. Furthermore, the Sargassum bed exported 6 %–35 % of the macroalgal net community production (NCP; 302–1378 mmol C m-2 d-1) as DOC to the offshore area. The results of degradation experiments showed that 56 %–78 % of macroalgal DOC was refractory DOC (RDOC) that persisted for 150 d; thus, the Sargassum bed exported 5 %–20 % of the macroalgal NCP as RDOC. Our findings suggest that macroalgal beds in habitats associated with high water exchange rates can create significant CO2 sinks around them and export a substantial amount of DOC to offshore areas.
Article
Full-text available
Trophic interactions can result in changes to the abundance and distribution of habitat-forming species that dramatically reduce ecosystem functioning. In the coastal zone of the Aleutian Archipelago, overgrazing by herbivorous sea urchins that began in the 1990s resulted in widespread deforestation of the region’s kelp forests, which led to lower macroalgal abundances and higher benthic irradiances. We examined how this deforestation impacted ecosystem function by comparing patterns of net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (Re), and the range between GPP and Re in remnant kelp forests, urchin barrens, and habitats that were in transition between the two habitat types at nine islands that spanned more than 1000 kilometers of the archipelago. Our results show that deforestation, on average, resulted in a 24% reduction in GPP, a 26% reduction in Re, and a 24% reduction in the range between GPP and Re. Further, the transition habitats were intermediate to the kelp forests and urchin barrens for these metrics. These opposing metabolic processes remained in balance; however, which resulted in little-to-no changes to NEP. These effects of deforestation on ecosystem productivity, however, were highly variable between years and among the study islands. In light of the worldwide declines in kelp forests observed in recent decades, our findings suggest that marine deforestation profoundly affects how coastal ecosystems function.
Article
Full-text available
Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are ubiquitous members of plankton communities linking primary production to higher trophic levels and the deep ocean by serving as food and transferring “jelly‐carbon” (jelly‐C) upon bloom collapse. Global biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower limit for annual jelly‐C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco‐dmo.org/dataset/526852), upper ocean jelly‐C biomass and production estimates, organism vertical migration, jelly‐C sinking rates, and water column temperature profiles from GLODAPv2, we quantitatively estimate jelly‐C transfer efficiency based on Longhurst Provinces. From the upper 200 m production estimate of 0.038 Pg C year⁻¹, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches 2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and 0.01 Pg C year⁻¹, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly‐C fluxes and transfer efficiencies can occasionally exceed phytodetrital‐based sediment trap estimates in localized open ocean and continental shelves areas under large gelatinous blooms or jelly‐C mass deposition events, but this remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon reaching the ocean interior via jelly‐C constitutes an important component of the global biological soft‐tissue pump, and should be addressed in ocean biogeochemical models, in particular, at the local and regional scale.
Article
Full-text available
Global warming mediates and maintains the tropicalization of temperate marine ecosystems. Recent studies have demonstrated that this process causes shifts from algal forests to denuded non‐canopy states in temperate reefs. It has been suggested that these changes would incur significant consequences to ecosystem functioning. In this study, we tested how tropicalization affects habitat‐provisioning functions and carbon turnover of a shallow reef in the fast‐warming and highly invaded southeastern Mediterranean Sea, in‐situ. On a single shallow reef, we conducted measurements of these functions in three habitats: dwindling native brown algal (Cystoseira) forest, dominant turf (formed by overgrazing of tropical rabbitfish) and expanding tropical shrubs dominated by red calcifying algae (Galaxaura rugosa). Algal forest was an autotrophic net carbon sink and provided habitat for high species diversity and the largest community biomass. The denuded turf was heterotrophic and provided habitat for the lowest species diversity and community biomass. While diversity was as high in tropical shrubs as in the algal forest, it had lower biomass and functioned as a heterotrophic net carbon source. Synthesis. Our study exemplifies possible functional consequences of tropicalization‐driven regime shifts on shallow temperate rocky reefs, and how these can invert the net trophic state and carbon balance.
Article
Full-text available
Extreme climatic events have recently impacted marine ecosystems around the world, including foundation species such as corals and kelps. Here, we describe the rapid climate-driven catastrophic shift in 2014 from a previously robust kelp forest to unproductive large scale urchin barrens in northern California. Bull kelp canopy was reduced by >90% along more than 350 km of coastline. Twenty years of kelp ecosystem surveys reveal the timing and magnitude of events, including mass mortalities of sea stars (2013-), intense ocean warming (2014–2017), and sea urchin barrens (2015-). Multiple stressors led to the unprecedented and long-lasting decline of the kelp forest. Kelp deforestation triggered mass (80%) abalone mortality (2017) resulting in the closure in 2018 of the recreational abalone fishery worth an estimated 44Mandthecollapseofthenorthcoastcommercialredseaurchinfishery(2015)worth44 M and the collapse of the north coast commercial red sea urchin fishery (2015-) worth 3 M. Key questions remain such as the relative roles of ocean warming and sea star disease in the massive purple sea urchin population increase. Science and policy will need to partner to better understand drivers, build climate-resilient fisheries and kelp forest recovery strategies in order to restore essential kelp forest ecosystem services.
Article
Full-text available
The term Blue Carbon (BC) was first coined a decade ago to describe the disproportionately large contribution of coastal vegetated ecosystems to global carbon sequestration. The role of BC in climate change mitigation and adaptation has now reached international prominence. To help prioritise future research, we assembled leading experts in the field to agree upon the top-ten pending questions in BC science. Understanding how climate change affects carbon accumulation in mature BC ecosystems and during their restoration was a high priority. Controversial questions included the role of carbonate and macroalgae in BC cycling, and the degree to which greenhouse gases are released following disturbance of BC ecosystems. Scientists seek improved precision of the extent of BC ecosystems; techniques to determine BC provenance; understanding of the factors that influence sequestration in BC ecosystems, with the corresponding value of BC; and the management actions that are effective in enhancing this value. Overall this overview provides a comprehensive road map for the coming decades on future research in BC science. The role of Blue Carbon in climate change mitigation and adaptation has now reached international prominence. Here the authors identified the top-ten unresolved questions in the field and find that most questions relate to the precise role blue carbon can play in mitigating climate change and the most effective management actions in maximising this.
Article
Full-text available
The role of macroalgae in Blue Carbon assessments has been controversial, partially due to uncertainties about the fate of exported macroalgae. Available evidence suggests that macroalgae are exported to reach the open ocean and the deep sea. Nevertheless, this evidence lacks systematic assessment. Here, we provide robust evidence of macroalgal export beyond coastal habitats. We used metagenomes and metabarcodes from the global expeditions Tara Oceans and Malaspina 2010 Circumnavigation. We discovered macroalgae worldwide at up to 5,000 km from coastal areas. We found 24 orders, most of which belong to the phylum Rhodophyta. The diversity of macroalgae was similar across oceanic regions, although the assemblage composition differed. The South Atlantic Ocean presented the highest macroalgal diversity, whereas the Red Sea was the least diverse region. The abundance of macroalgae sequences attenuated exponentially with depth at a rate of 37.3% km⁻¹, and only 24% of macroalgae available at the surface were expected to reach the seafloor at a depth of 4,000 m. Our findings indicate that macroalgae are exported across the open and the deep ocean, suggesting that macroalgae may be an important source of allochthonous carbon, and their contribution should be considered in Blue Carbon assessments.
Article
Full-text available
Rocky benthic communities are common in Antarctic coastal habitats; yet little is known about their carbon turnover rates. Here, we performed a broad survey of shallow ( < 65 m depth) rocky ice-scoured habitats of South Bay (Doumer Island, Western Antarctic Peninsula), combining (i) biodiversity assessments from benthic imaging, and (ii) in situ benthic dissolved oxygen (O2) exchange rates quantified by the aquatic eddy covariance technique. The 18 study sites revealed a gradual transition from macroalgae and coralline-dominated communities at ice-impacted depths (15–25 m; zone I) to large suspension feeders (e.g., sponges, bivalves) at depth zone II (25–40 m) and extensive suspension feeders at the deepest study location (zone III; 40–65 m). Gross primary production (GPP) in zone I was up to 70 mmol O2 m⁻² d⁻¹ and dark ecosystem respiration (ER) ranged from 15 to 90 mmol m⁻² d⁻¹. Zone II exhibited reduced GPP (average 1.1 mmol m⁻² d⁻¹) and ER rates from 6 to 36 mmol m⁻² d⁻¹, whereas aphotic zone III exhibited ER between 1 and 6 mmol m⁻² d⁻¹. Benthic ER exceeded GPP at all study sites, with daily net ecosystem metabolism (NEM) ranging from − 22 mmol m⁻² d⁻¹ at the shallow sites to − 4 mmol m⁻² d⁻¹ at 60 m. Similar NEM dynamics have been observed for hard-substrate Arctic habitats at comparable depths. Despite relatively high GPP during summer, coastal rocky habitats appear net heterotrophic. This is likely due to active drawdown of organic material by suspension-feeding communities that are key for biogeochemical and ecological functioning of high-latitude coastal ecosystems.
Article
Full-text available
Temperature sensitivity ( Q10 ) of soil organic matter (SOM) decomposition is a crucial parameter for predicting the fate of soil carbon (C) under global warming. However, our understanding of its regulatory mechanisms remains inadequate, which constrains its accurate parameterization in Earth system models and induces large uncertainties in predicting terrestrial C-climate feedback. Here, we conducted a long-term laboratory incubation combined with a two-pool model and manipulative experiments to examine potential mechanisms underlying the depth-associated Q10 variations in active and slow soil C pools. We found that lower microbial abundance and stronger aggregate protection were coexisting mechanisms underlying the lower Q10 in the subsoil. Of them, microbial communities were the main determinant of Q10 in the active pool, whereas aggregate protection exerted more important control in the slow pool. These results highlight the crucial role of soil C stabilization mechanisms in regulating temperature response of SOM decomposition, potentially attenuating the terrestrial C-climate feedback.
Article
Full-text available
Kelp forests are known as key habitats for species diversity and macroalgal productivity; however, we know little about how these biogenic habitats interact with seawater chemistry and phototroph productivity in the water column. We examined kelp forest functions at three locales along the Olympic Peninsula of Washington state by quantifying carbonate chemistry, nutrient concentrations, phytoplankton productivity, and seawater microbial communities inside and outside of kelp beds dominated by the canopy kelp species Nereocystis luetkeana and Macrocystis pyrifera. Kelp beds locally increased the pH, oxygen, and aragonite saturation state of the seawater, but lowered seawater inorganic carbon content and total alkalinity. Although kelp beds depleted nitrate and phosphorus concentrations, ammonium and dissolved organic carbon (DOC) concentrations were enhanced. Kelp beds also decreased chlorophyll concentrations and carbon fixed by phytoplankton, although kelp carbon fixation more than compensated for any difference in phytoplankton production. Kelp beds entrained distinct microbial communities, with higher taxonomic and phylogenetic diversity compared to seawater outside of the kelp bed. Kelp forests thus had significant effects on seawater chemistry, productivity and the microbial assemblages in their proximity. Thereby, the diversity of pathways for carbon and nitrogen cycling was also enhanced. Overall, these observations suggest that the contribution of kelp forests to nearshore carbon and nitrogen cycling is greater than previously documented.
Article
Full-text available
Macroalgae drive the largest CO2 flux fixed globally by marine macrophytes. Most of the resulting biomass is exported through the coastal ocean as detritus and yet almost no field measurements have verified its potential net sequestration in marine sediments. This gap limits the scope for the inclusion of macroalgae within blue carbon schemes that support ocean carbon sequestration globally, and the understanding of the role their carbon plays within distal food webs. Here, we pursued three lines of evidence (eDNA sequencing, Bayesian Stable Isotope Mixing Modeling, and benthic‐pelagic process measurements) to generate needed, novel data addressing this gap. To this end, a 13‐month study was undertaken at a deep coastal sedimentary site in the English Channel, and the surrounding shoreline of Plymouth, UK. The eDNA sequencing indicated that detritus from most macroalgae in surrounding shores occurs within deep, coastal sediments, with detritus supply reflecting the seasonal ecology of individual species. Bayesian stable isotope mixing modeling [C and N] highlighted its vital role in supporting the deep coastal benthic food web (22–36% of diets), especially when other resources are seasonally low. The magnitude of detritus uptake within the food web and sediments varies seasonally, with an average net sedimentary organic macroalgal carbon sequestration of 8.75 g C·m⁻²·yr⁻¹. The average net sequestration of particulate organic carbon in sediments is 58.74 g C·m⁻²·yr⁻¹, the two rates corresponding to 4–5% and 26–37% of those associated with mangroves, salt marshes, and seagrass beds, systems more readily identified as blue carbon habitats. These novel data provide important first estimates that help to contextualize the importance of macroalgal‐sedimentary connectivity for deep coastal food webs, and measured fluxes help constrain its role within global blue carbon that can support policy development. At a time when climate change mitigation is at the foreground of environmental policy development, embracing the full potential of the ocean in supporting climate regulation via CO2 sequestration is a necessity.
Article
Full-text available
Temperate marine ecosystems globally are undergoing regime shifts from dominance by habitat-forming kelps to dominance by opportunistic algal turfs. While the environmental drivers of shifts to turf are generally well-documented, the feedback mechanisms that stabilize novel turf-dominated ecosystems remain poorly resolved. Here, we document a decline of kelp Saccharina latissima between 1980 and 2018 at sites at the southernmost extent of kelp forests in the Northwest Atlantic and their replacement by algal turf. We examined the drivers of a shift to turf and feedback mechanisms that stabilize turf reefs. Kelp replacement by turf was linked to a significant multi-decadal increase in sea temperature above an upper thermal threshold for kelp survival. In the turf-dominated ecosystem, 45% of S. latissima were attached to algal turf rather than rocky substrate due to preemption of space. Turf-attached kelp required significantly (2 to 4 times) less force to detach from the substrate, with an attendant pattern of lower survival following 2 major wave events as compared to rock-attached kelp. Turf-attached kelp allocated a significantly greater percentage of their biomass to the anchoring structure (holdfast), with a consequent energetic trade-off of slower growth. The results indicate a shift in community dominance from kelp to turf driven by thermal stress and stabilized by ecological feedbacks of lower survival and slower growth of kelp recruited to turf.
Article
Full-text available
Shallow benthic habitats are hotspots for carbon cycling and energy flow, but metabolism (primary production and respiration) dynamics and habitat‐specific differences remain poorly understood. We investigated daily, seasonal, and annual metabolism in six key benthic habitats in the Baltic Sea using ~ 2900 h of in situ aquatic eddy covariance oxygen flux measurements. Rocky substrates had the highest metabolism rates. Habitat‐specific annual primary production per m2 was in the order Fucus vesiculosus canopy > Mytilus trossulus reef > Zostera marina canopy > mixed macrophytes canopy > sands, whereas respiration was in the order M. trossulus > F. vesiculosus > Z. marina > mixed macrophytes > sands > aphotic sediments. Winter metabolism contributed 22–31% of annual rates. Spatial upscaling revealed that benthic habitats drive > 90% of ecosystem metabolism in waters ≤5 m depth, highlighting their central role in carbon and nutrient cycling in shallow waters.
Article
Full-text available
Blue Carbon is a term coined in 2009 to draw attention to the degradation of marine and coastal ecosystems and the need to conserve and restore them to mitigate climate change and for the other ecosystem services they provide. Blue Carbon has multiple meanings, which we aim to clarify here, which reflect the original descriptions of the concept including (1) all organic matter captured by marine organisms, and (2) how marine ecosystems could be managed to reduce greenhouse gas emissions and thereby contribute to climate change mitigation and conservation. The multifaceted nature of the Blue Carbon concept has led to unprecedented collaboration across disciplines, where scientists, conservationists and policy makers have interacted intensely to advance shared goals. Some coastal ecosystems (mangroves, tidal marshes and seagrass) are established Blue Carbon ecosystems as they often have high carbon stocks, support long-term carbon storage, offer the potential to manage greenhouse gas emissions and support other adaptation policies. Some marine ecosystems do not meet key criteria for inclusion within the Blue Carbon framework (e.g. fish, bivalves and coral reefs). Others have gaps in scientific understanding of carbon stocks or greenhouse gas fluxes, or currently there is limited potential for management or accounting for carbon sequestration (macroalgae and phytoplankton), but may be considered Blue Carbon ecosystems in the future, once these gaps are addressed.
Article
Full-text available
Seascapes dominated by large, structurally complex seaweeds are ubiquitous. These critical ecosystems are under increasing pressure from human activities, and conceiving successful management strategies to ensure their persistence and/or recovery is of paramount importance. Currently, ecosystems dominated by large seaweeds are referred to as either ‘forests’ or ‘beds’. We demonstrate how this dual terminology is confusing, is used inconsistently, and reduces the efficiency of communication about the importance and perils of seaweed habitats. As a consequence, it undermines work to alleviate and mitigate their loss and impedes research on unifying principles in ecology. We conclude that there are clear benefits of simply using the more intuitive term ‘forest’ to describe all seascapes dominated by habitat-forming seaweeds. This is particularly true as researchers scramble to reconcile ecological functions and patterns of change across disparate regions and species to match the increasingly global scale of environmental forcing on these critical ecosystems.
Article
Full-text available
The exchange of energy and nutrients are integral components of ecological functions of benthic shallow‐water ecosystems and are directly dependent on in situ environmental conditions. Traditional laboratory experiments cannot account for the multidimensionality of interacting processes when assessing metabolic rates and biogeochemical fluxes of structurally complex benthic communities. Current in situ chamber systems are expensive, limited in their functionality and the deployment is often restricted to planar habitats (e.g. sediments or seagrass meadows) only. To overcome these constraints, we describe a protocol to build and use non‐invasive, cost‐effective and easy to handle in situ incubation chambers that provide reproducible measurements of biogeochemical processes in simple and structurally complex benthic shallow‐water communities. Photogrammetry tools account for the structural complexity of benthic communities, enabling to calculate accurate community fluxes. We tested the performance of the system in laboratory assays and various benthic habitats (i.e. algae growing on rock, coral assemblages, sediments and seagrass meadows). In addition, we estimated community budgets of photosynthesis and respiration by corals, rock with algae and carbonate sediments, which were subsequently compared to budgets extrapolated from conventional ex situ single‐organism incubations. The tests highlight the transparency (>90% light transmission) of the chambers and minimal water exchange with the surrounding medium on most substrates. Linear dissolved oxygen fluxes in dependence to incubation time showed sufficient mixing of the water by circulation pumps and no organismal stress response. The comparison to single‐organism incubations showed that ex situ measurements might overestimate community‐wide net primary production and underestimate respiration and gross photosynthesis by 20%–90%. The proposed protocol overcomes the paucity of observational and manipulative studies that can be performed in in situ native habitats, thus producing widely applicable and realistic assessments on the community level. Importantly, the tool provides a standardized approach to compare community functions across a wide range of benthic habitats. We identify multiple experimental strategies, including the manipulation of stressors/factors, and discuss how the method may be implemented in a variety of aquatic studies.
Article
Full-text available
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
Article
Full-text available
The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown alga Fucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated ~ 40 m 2 of the seabed surface area and documented considerable oxygen production by the canopy year-round. High net oxygen production rates of up to 35 AE 9 mmol m −2 h −1 were measured under peak irradiance of ~ 1200 μmol photosynthetically active radiation (PAR) m −2 s −1 in summer. However, high rates > 15 mmol m −2 h −1 were also measured in late winter (March) under low light intensities < 250 μmol PAR m −2 s −1 and water temperatures of ~ 1 C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces of F. vesiculosus. Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two-thirds of the year, and annual canopy NEM amounted to 25 mol O 2 m −2 yr −1 , approximately six-fold higher than net phyto-plankton production. Canopy C export was ~ 0.3 kg C m −2 yr −1 , comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.
Article
Full-text available
Aim Understanding the relative importance of climatic and non‐climatic distribution drivers for co‐occurring, functionally similar species is required to assess potential consequences of climate change. This understanding is, however, lacking for most ecosystems. We address this knowledge gap and forecast changes in distribution for habitat‐forming seaweeds in one of the world's most species‐rich temperate reef ecosystems. Location The Great Southern Reef. The full extent of Australia's temperate coastline. Methods We assessed relationships between climatic and non‐climatic environmental data known to influence seaweed, and the presence of 15 habitat‐forming seaweeds. Distributional data (herbarium records) were analysed with MAXENT and generalized linear and additive models, to construct species distribution models at 0.2° spatial resolution, and project possible distribution shifts under the RCP 6.0 (medium) and 2.6 (conservative) emissions scenarios of ocean warming for 2100. Results Summer temperatures, and to a lesser extent winter temperatures, were the strongest distribution predictors for temperate habitat‐forming seaweeds in Australia. Projections for 2100 predicted major poleward shifts for 13 of the 15 species, on average losing 78% (range: 36%–100%) of their current distributions under RCP 6.0 and 62% (range: 27%–100%) under RCP 2.6. The giant kelp (Macrocystis pyrifera) and three prominent fucoids (Durvillaea potatorum, Xiphophora chondrophylla and Phyllospora comosa) were predicted to become extinct from Australia under RCP 6.0. Many species currently distributed up the west and east coasts, including the dominant kelp Ecklonia radiata (71% and 49% estimated loss for RPC 6.0 and 2.6, respectively), were predicted to become restricted to the south coast. Main conclusions In close accordance with emerging observations in Australia and globally, our study predicted major range contractions of temperate seaweeds in coming decades. These changes will likely have significant impacts on marine biodiversity and ecosystem functioning because large seaweeds are foundation species for 100s of habitat‐associated plants and animals, many of which are socio‐economically important and endemic to southern Australia.
Chapter
Full-text available
Kelp forests are extensive underwater habitats that range along 25% of the world’s coastlines, providing valuable resources, habitat, and services for coastal communities. They grow best in cold, nutrient-rich water, where they attain some of the highest rates of primary production of any natural ecosystem. Kelps exhibit a great diversity of growth forms and life strategies, with the largest individuals reaching lengths of more than 30 m and biomasses of 42 kg. In the past half century, threats to kelp forests have increased in number and severity, leading to a global decline of kelp abundances of ~2% per year. Trajectories of change vary considerable across regions and include range contractions, range expansions, species replacements, establishment of invasive kelps, replacement by turf algae reefs or regime shifts to sea urchin barrens. These changes will likely have significant impacts on marine biodiversity and ecosystem functioning because kelps are foundation species for a plethora of habitat-associated plants and animals, many of which are socio-economically important. Some forms of management have been effective in restoring kelp forests, however in many cases the threats facing kelp forests in the future greatly exceed local conservation strategies, necessitating novel conservation solutions to protect and conserve these ecosystems. Although the diversity of changes to kelp forest globally make it challenging to generalize about their future, it seems almost certain that many kelp forests a few decades from now will differ substantially from what they are today.
Article
Full-text available
The temperature of seawater can affect marine plankton in various ways, including by affecting rates of metabolic processes. This can change the way carbon and nutrients are fixed and recycled and hence the chemical and biological profile of the water column. A variety of feedbacks on global climate are possible, especially by altering patterns of uptake and return of carbon dioxide to the atmosphere. Here we summarize and synthesize recent studies in the field of ecology, oceanography and ocean carbon cycling pertaining to possible feedbacks involving metabolic processes. By altering the rates of cellular growth and respiration, temperature-dependency may affect nutrient uptake and food demand in plankton and ultimately the equilibrium of pelagic food webs, with cascade effects on the flux of organic carbon between the upper and inner ocean (the “biological carbon pump”) and the global carbon cycle. Insights from modern ecology can be applied to investigate how temperature-dependent changes in ocean biogeochemical cycling over thousands to millions of years may have shaped the long-term evolution of Earth's climate and life. Investigating temperature-dependency over geological time scales, including through globally warm and cold climate states, can help to identify processes that are relevant for a variety of future scenarios.
Article
Full-text available
Climate change is driving a redistribution of species and the reconfiguration of ecological communities at a global scale. Persistent warming in many regions has caused species to extend their geographical ranges into new habitats, with thermally tolerant species often becoming competitively dominant over species with colder affinities. Although these climate‐driven changes in species abundance and diversity are well documented, their ecosystem‐level implications are poorly understood, and resolving whether reconfigured communities can maintain fundamental ecosystem functions represents a pressing challenge in an increasingly warmer world. Here, we investigated how climate‐driven substitutions of foundation species influence processes associated with the cycling of organic matter (biomass production, detritus flow, herbivory, decomposition) by comparing two habitat‐forming kelp species with contrasting thermal affinities. We examined the wider ecosystem consequences of such shifts for the observed (and predicted) emergence of novel marine forest communities in the NE Atlantic, which are expected to become more dominated by range‐expanding, warm‐temperate kelp species. Warm‐temperate kelps both accumulated and released 80% more biomass than the cold‐temperate species despite being taxonomically closely related and morphologically similar. Furthermore, the warm‐temperate species accumulated biomass and released detritus year‐round, whereas the cold‐temperate species did so during short, discrete periods. The warm‐temperate kelps supported higher densities of invertebrate grazers and were a preferred food source. Finally, their detritus decomposed 6.5 times faster, despite supporting comparable numbers of detritivores. Overall, our results indicate an important shift in organic matter circulation along large sections of NE Atlantic coastline following the climate‐driven expansion of a warm‐affinity kelp, with novel forests supplying large amounts of temporally continuous—yet highly labile—organic matter. Synthesis. Collectively, our results show that, like species invasions, climate‐driven range expansions and consequent shifts in the identity of dominant species can modify a wide range of important ecosystem processes. However, alterations in overall ecosystem functioning may be relatively limited where foundation species share similar ecological and functional traits.
Article
Full-text available
While changes in the abundance of keystone predators can have cascading effects resulting in regime shifts, the role of mesopredators in these processes remains underexplored. We conducted annual surveys of rocky reef communities that varied in the recovery of a keystone predator (sea otter, Enhydra lutris) and the mass mortality of a mesopredator (sunflower sea star, Pycnopodia helianthoides) due to an infectious wasting disease. By fitting a population model to empirical data, we show that sea otters had the greatest impact on the mortality of large sea urchins, but that Pycnopodia decline corresponded to a 311% increase in medium urchins and a 30% decline in kelp densities. Our results reveal that predator complementarity in size-selective prey consumption strengthens top-down control on urchins, affecting the resilience of alternative reef states by reinforcing the resilience of kelp forests and eroding the resilience of urchin barrens. We reveal previously underappreciated species interactions within a 'classic' trophic cascade and regime shift, highlighting the critical role of middle-level predators in mediating rocky reef state transitions.
Article
Full-text available
Macroalgae form the most extensive and productive benthic marine vegetated habitats globally but their inclusion in Blue Carbon (BC) strategies remains controversial. We review the arguments offered to reject or include macroalgae in the BC framework, and identify the challenges that have precluded macroalgae from being incorporated so far. Evidence that macroalgae support significant carbon burial is compelling. The carbon they supply to sediment stocks in angiosperm BC habitats is already included in current assessments, so that macroalgae are de facto recognized as important donors of BC. The key challenges are (i) documenting macroalgal carbon sequestered beyond BC habitat, (ii) tracing it back to source habitats, and (iii) showing that management actions at the habitat lead to increased sequestration at the sink site. These challenges apply equally to carbon exported from BC coastal habitats. Because of the large carbon sink they support, incorporation of macroalgae into BC accounting and actions is an imperative. This requires a paradigm shift in accounting procedures as well as developing methods to enable the capacity to trace carbon from donor to sink habitats in the ocean.
Article
Full-text available
Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests-one of the most extensive coastal vegetated habitat types in the NE Atlantic-along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm-water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year À1. This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate-driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of climate change on carbon cycling.
Article
Full-text available
Kelp forests are structurally complex habitats, which provide valuable services along 25% of the world's coastlines. Globally, many kelp forests have disappeared and been replaced by turf algae over the last decade. Evidence that environmental conditions are becoming less favorable for kelps, combined with a lack of observed recovery, raises concern that these changes represent persistent regime shifts. Here, we show that human activities mediate turf transitions through geographically disparate abiotic (warming and eutrophication) and biotic (herbivory and epiphytism) drivers of kelp loss. Evidence suggests kelp forests are pushed beyond tipping points where new, stabilizing feedback systems (sedimentation, competition, and Allee effects) reinforce turf dominance. Although these new locks on the degraded ecosystems are strong, a mechanistic understanding of feedback systems and interactions between global and local drivers of kelp loss will expose which processes are easier to control. This should provide management solutions to curb the pervasive trend of the flattening of kelp forests globally.
Article
Full-text available
Diverse biological communities mediate the transformation, transport, and storage of elements fundamental to life on Earth, including carbon, nitrogen, and oxygen. However, global biogeochemical model outcomes can vary by orders of magnitude, compromising capacity to project realistic ecosystem responses to planetary changes, including ocean productivity and climate. Here, we compare global carbon turnover rates estimated using models grounded in biological versus geochemical theory and argue that the turnover estimates based on each perspective yield divergent outcomes. Importantly, empirical studies that include sedimentary biological activity vary less than those that ignore it. Improving the relevance of model projections and reducing uncertainty associated with the anticipated consequences of global change requires reconciliation of these perspectives, enabling better societal decisions on mitigation and adaptation.
Article
Full-text available
Benthic dissolved oxygen fluxes were measured on the reef flat of Tallon Island, an intertidal reef platform in the Kimberley region of northwestern Australia, for periods of 2 weeks in the wet and dry seasons. This reef flat is strongly tidally forced by semidiurnal tides (spring range > 8 m) and experiences highly asymmet-ric water level variability, with ebb durations lasting 10h;thisresultsindielvariationsinwatertemperatureanddissolvedoxygen(DO)concentration(upto10 h; this results in diel variations in water temperature and dissolved oxygen (DO) concentration (up to 118C and 440 lM, respectively) that are among the most extreme recorded for reefs worldwide. Given the consistent tidal flow patterns, a one-dimensional control volume approach was used to make continuous Eulerian measurements of net production and community respiration from observed changes in DO within two zones: an inner zone dominated by seagrass and an outer zone dominated by macroalgae. Community respiration (R) was controlled primarily by DO concentration ; however, fluxes approached the limits of DO mass transfer at low flow speeds. Estimates of gross primary production (P) suggested that reef communities were able to fix carbon at rates comparable to other tropical seagrass and mixed reef flat communities despite short-term (hours)extremesinlight(upto1800lmolm22s21)andtemperature(>358C).Dailynetcommunityproductionfluctuatedbetweennetautotrophyandheterotrophyoverahours) extremes in light (up to 1800 lmol m 22 s 21) and temperature (> 358C). Daily net community production fluctuated between net autotro-phy and heterotrophy over a 15 d period depending on the phase difference between the solar and tidal cycles but was nonetheless metabolically balanced on time scales greater than weeks (P : R 5 1.0–1.
Article
Full-text available
Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of ~30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting ~38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning.
Article
Full-text available
Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.
Article
Aim Nutrient subsidies support high primary productivity, increasing herbivore abundance and influencing their top‐down control of producers. Wind‐driven upwelling events deliver cold nutrient‐rich water to coastlines, supporting highly productive marine environments. Results from studies comparing ecological processes across upwelling regimes are mixed: some reveal weaker herbivory in upwelling regions, while others report a positive relationship between upwelling and herbivory. In this synthesis we examine the influence of upwelling on top‐down control of producers across the globe. Location Global; marine ecosystems. Time period 1978–2017. Major taxa studied Marine herbivores and algae. Methods We used data from herbivory studies focusing specifically on the influence of upwelling activity (upwelling studies), and a broader collection of herbivore exclusion studies dating back four decades. For the upwelling studies we compared herbivore effects between experiments replicated across sites for which upwelling conditions were described by the authors. Meanwhile, for the broader collection of experiments we used externally sourced oceanographic data to characterize upwelling activity, and examined how herbivory changed along a gradient of upwelling activity. Results Our results consistently reveal that upwelling weakens herbivore effects on producers. Herbivory was, on average, four times weaker in upwelling sites relative to sites under weak upwelling or downwelling regimes in studies that specifically examined upwelling. The analysis of the broader herbivory literature revealed a similar weakening influence of upwelling on herbivory; however, the effect size was smaller and varied across producer functional groups. Main conclusions Nutrient subsidies from upwelling events reduce top‐down control by herbivores in coastal ecosystems; however, the negative relationship between upwelling intensity and herbivory is likely the result of a combination of co‐occurring processes. First, increased primary production overwhelms consumption by herbivores. Second, cold water reduces herbivore metabolism and activity. Finally, surface currents associated with upwelling activity transport herbivore larvae offshore, decoupling secondary production from herbivory.
Article
Inorganic carbon, nitrogen and phosphorus are the main elements required by seaweeds for photosynthesis and growth. This review focusses mainly on nitrogen, but the roles of carbon and phosphorus, which may interactively affect seaweed physiological processes, are also explored. Fundamental concepts such as limiting nutrients, sources, and ratios, mechanisms of nutrient uptake, nutrient assimilation and storage, patterns of uptake and preferences for different nitrogen sources are discussed. The roles of abiotic (water motion, light, temperature, salinity and desiccation) and biotic (life stages and age class) factors in nutrient (nitrogen, phosphorous, carbon) uptake are also reviewed. Understanding species-specific nitrogen physiologies and nitrogen source preferences will enable polyculture of different seaweed species and the use of seaweeds as biofilters in integrated multitrophic aquaculture systems.
Article
We welcome the recent synthesis by Howard et al. (2017), which drew attention to the role of marine systems and natural carbon sequestration in the oceans as a fundamental aspect of climate-change mitigation. The importance of long-term carbon storage in marine habitats (ie ?blue carbon?) is rapidly gaining recognition (Figure 1a) and is increasingly a focus of national and international attempts to mitigate rising atmospheric emissions of carbon dioxide. However, effectively managing blue carbon requires an appreciation of the inherent connectivity between marine populations and habitats. More so than their terrestrial counterparts, marine ecosystems are ?open?, with high rates of transfer of energy, matter, genetic material, and species across regional seascapes (Kinlan and Gaines 2003). We suggest that policy frameworks, and the science underpinning them, should focus not only on carbon sink habitats but also on carbon source habitats, which play critical roles in marine carbon cycling and natural carbon sequestration in the oceans. Howard et al. (2017) concluded that certain habitats and taxa (eg kelp forests, large vertebrates) are "unimportant? in natural carbon sequestration, which we argue is an oversimplification that fails to account for not only the magnitude of carbon transfer between living components of the cycle but also the interconnectedness of the highly dynamic and open marine environment. Crucially, developing carbon budgets for habitats in isolation ? without considering their connectivity and functioning as carbon ?fixers?, ?donors?, and ?recipients? ? is neither representative of marine ecosystems, nor a useful approach for prioritizing management. Here, we highlight the importance of carbon transfer between habitats, which is not currently recognized within policy frameworks, through two pertinent and widespread processes
Article
This study synthesizes a multidecadal dataset of annual growth of the Arctic endemic kelp Laminaria solidungula and corresponding measurements of in situ benthic irradiance from Stefansson Sound in the central Beaufort Sea. We incorporate long-term data on sea ice concentration (National Sea Ice Data Center) and wind (National Weather Service) to assess how ice extent and summer wind dynamics affect the benthic light environment and annual kelp production. We find evidence of significant changes in sea ice extent in Stefansson Sound, with an extension of the ice-free season by approximately 17 days since 1979. Although kelp elongation at 5-7 m depths varies significantly among sites and years (3.8 to 49.8 cm yr⁻¹), there is no evidence for increased production with either earlier ice break-up or a longer summer ice-free period. This is explained by very low light transmittance to the benthos during the summer season (mean daily percent surface irradiance ±SD: 1.7±3.6 to 4.5±6.6, depending on depth, with light attenuation values ranging from 0.5 to 0.8 m⁻¹), resulting in minimal potential for kelp production on most days. Additionally, on month-long timescales (35 days) in the ice-free summer, benthic light levels are negatively related to wind speed. The frequent, wind-driven resuspension of sediments following ice break-up significantly reduce light to the seabed, effectively nullifying the benefits of an increased ice-free season on annual kelp growth. Instead, benthic light and primary production may depend substantially on the 1-3 week period surrounding ice break-up when intermediate sea ice concentrations reduce wind-driven sediment resuspension. These results suggest that both benthic and water column primary production along the inner shelf of Arctic marginal seas may decrease, not increase, with reductions in sea ice extent.
Article
Continental margin systems collectively receive and store vast amounts of organic carbon (OC) derived from primary productivity both on land and in the ocean, thereby playing a central role in the global carbon cycle. The land-ocean interface is however extremely heterogeneous in terms of terrigenous input, marine primary productivity, sediment transport processes and depositional conditions (e.g. such as bottom water oxygen level). Continental margins are also highly dynamic, with processes occurring over a broad range of spatial and temporal scales. The rates of OC burial and oxidation are consequently variable over both space and time, hindering our ability to derive a global picture of OC cycling at the land-ocean interface. Here, we review the processes controlling the fate of organic matter in continental margin sediments, with a special emphasis on “hot spots” and “hot moments” of OC burial and oxidation. We present a compilation of compositional data from a set of illustrative settings, including fjords, small mountainous river margins, large deltaic systems and upwelling areas. Bulk OC stable isotope and radiocarbon compositions reveal the diversity and complexity characteristic of OC buried in marginal seas. This primarily relates to differences in marine and terrestrial inputs, the composition of the terrestrial component (e.g. vascular plant OC, soil, and petrogenic OC inputs), and processes modulating the fate of OC within the marine environment (e.g. priming). This widely contrasting behavior of OC among these systems illustrates that the reactivity of OC is a product of its chemical composition and regional conditions. Interpreted in the context of bulk compositional data as well as that obtained on specific molecular markers (e.g. lignin-derived phenols), the possibility exists to tease apart complex mixtures of terrestrial and marine inputs, and to shed light on the role of the myriad of depositional and post-depositional processes. Finally, we discuss a set of hot topics that warrant further investigation – such as the role of photochemistry, fungi, halogenation and reactive iron in dictating the fate of OC in the (changing) coastal ocean.