Article

Effects of curvature on flame acceleration in micro channels

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The effects of channel curvature on the flame propagation are examined for premixed flames in micro channels. Previous studies have shown that curved channels can enhance the flame stretching, which can significantly increase the flame propagation speed. In this study, the effect of flame stretching was excluded by the narrow channel limit in order to study the effects of channel curvature on the flame propagation. An asymptotic approach was first extended to include the effects of channel curvature. Accordingly, the two-dimensional problem was reduced to an effective one-dimensional problem with a clear physical meaning of curvature. A parametric study of curvature was then performed to investigate its effects on the flame propagation. It was found that curvature inhibits both the convection and diffusion processes. An increase in the curvature results in a significantly reduced flame thickness and a significantly increased reaction rate. Furthermore, the initial flame propagation speed is smaller in the channel with a larger curvature, but its growth rate is higher under the same ignition condition. With a large channel curvature, the flame has a smaller propagation speed of the steady compressibility-driven flame and a shorter distance to reach the steady state.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
This paper presents a novel method to accelerate flame propagation and transition to detonation in a coiled channel. The objective is to bring to light the basic understanding of the phenomenon and to show its potential in the fields of highly efficient combustion or propulsion. It was found that the flame evolution in the coiled channel is significantly different from that in a straight channel. In the flame acceleration stage, the flame propagation velocity increases exponentially in the coiled channel while it increases linearly in the straight channel, primarily due to the existence of a strong velocity gradient in the transverse direction in the coiled channel. Deflagration to detonation transition (DDT) was only observed in the coiled channel under current settings, being triggered by a series of local explosions at the boundary layer. In general, the coiled channel can greatly accelerate the flame and shorten the distance of the DDT compared with the straight channel.
Article
We study the effects of non-parallel (diverging or converging) channel walls on flame propagation and acceleration in planar and cylindrical narrow channels, closed at the ignition end and open at the other, accounting for thermal expansion in both the zero Mach number and weakly compressible flow limits. For parallel channel walls, previous work has shown that thermal expansion induces an axial flow in the channel, which can significantly increase the propagation speed and acceleration of the flame. In this study, we consider examples of diverging/converging linear walls, although our asymptotic analysis is also valid for curved walls. The slope of the channel walls is chosen so that the magnitude of the thermal-expansion induced flow through the channel obtained for parallel walls is modified at leading-order, thereby influencing the leading-order flame propagation. For zero Mach number flows, the effect of the diverging/converging channel walls is moderate. However, for weakly compressible flows, the non-parallel walls directly affect the rate at which pressure diffuses through the channel, significantly inhibiting flame acceleration for diverging walls, whereas the flame acceleration process is enhanced for converging walls. We consider several values of the compressibility factor and channel wall slopes. We also show that the effect of a cylindrical channel geometry can act to significantly enhance flame acceleration relative to planar channels. The study reveals several new physical insights on how non-parallel channel walls can influence the ability of flames to accelerate by modifying the flow and pressure distribution induced by thermal expansion.
Article
This study focuses on the dynamics of compressibility-driven flames that emerge in narrow tubes, closed at their ignition end, when conductive heat losses through the walls are appreciable. A narrow gap approximation is used to reduce the governing equations to an effectively one-dimensional problem. In long channels this problem admits traveling-wave solutions which we have investigated numerically for finite values of the Zel’dovich number, and asymptotically in the limit of large Zel’dovich numbers. In particular, we describe the flame structure and the dependence of the propagation speed on the physico-chemical parameters, including the heat loss and compressibility parameters, and examine the transition from compressibility-driven to isobaric flames when systematically reducing the representative Mach number.
Article
We examine numerically the effect that detonation wavefront curvature has on gaseous detonation cellular structure in a circular arc geometry with rigid walls. For the model considered, a planar detonation is weakly unstable. The detonation curvature is induced by diffraction and flow divergence as the wave sweeps around the arc. We examine the effect of arc thickness, inner arc radius and activation energy on the cellular pattern. A combination of pseudo-Schlieren, pseudo-soot foil records and detonation shock and sonic flow loci are used to explore the observed detonation structures. We find that for sufficiently wide arcs, the detonation wavefront curvature renders the detonation hydrodynamically stable, i.e. laminar flow with no cells. The stable configuration consists of a broadly curved wave originating from the inner arc surface, which is typically connected to the outer arc boundary by a stable Mach stem. The stable detonation is driven by a small region of subsonic flow attached to the inner arc surface, outside of which the flow is supersonic. The initiation dynamics of a stable propagating wave case are explored. The evolution dynamics between an unstable (cellular) and stable arc thickness are also examined. Smaller inner arc radii and lower activation energies increase the range of stable solutions.
Article
The rotating detonation wave (RDW) propagation processes and influence factors are simulated in the plane-radial structure. The effects of inner radii of curvature, domain widths and stagnation pressures on propagation mode are studied. The RDW is initiated, and two kinds of propagation mode are obtained and analyzed. The flow field structure, parameters variation and influence factors on unstable propagation mode are explored in depth, and the geometrical and injection conditions of the unstable propagation are obtained. Results indicate that the decoupling and re-initiation occur repeatedly during the unstable propagation mode of the RDW, and the angular velocities of leading shock wave vary accordingly. When the domain width remains constant, the range of stagnation-pressure under unstable propagation mode increases as the inner radius increases. But the RDW propagates steadily when the inner radius increases to a certain value (Larger than 40 mm in this study). The effect of curvature radius and initial pressure ahead of detonation wave on the unstable propagation mode in this calculation model is similar to that in a curved channel. When ri +0.464pa > 80.932 or ri ≥ 40 mm, the detonation wave can propagate steadily in the annular domain. When the curvature radius remains constant, the stagnation-pressure range of the unstable propagation mode decreases as the domain width increases.
Article
We examine the dynamics of premixed flames in long, narrow, adiabatic channels focusing, in particular, on the effects of gas compressibility on the propagation. Recognising the importance of the boundary conditions, we examine and compare three cases: flame propagation in channels open at both ends, where the pressure must adjust to the ambient pressure at both ends and the expanding gas is allowed to leave the channel freely, and flame propagation in channels that remain closed at one of the two ends, where the burned/unburned gas remains trapped between the flame and one of the two walls. Earlier studies have shown that a flame accelerates when travelling down a narrow channel as a result of the combined effects of wall friction and thermal expansion. In the present work we show that compressibility effects enhance the transition to fast accelerating flames in channels open at both ends and in channels closed at the ignition end. In both situations, the accelerating flames could reach values that, depending on the effective Mach number, are as large as fifty times the laminar flame speed. In contrast, when the channel is closed at the far end, the acceleration is limited and the propagation speed is damped as the flame approaches the far boundary. Moreover, we show that, in channels closed at their ignition end, the flame in sufficiently long channels evolves into a steadily propagating compression-driven flame. The propagation speed of these flames depends exponentially on the constant-volume equilibrium temperature, which is higher than the (constant pressure) adiabatic flame temperature, and is therefore larger than for ordinary isobaric flames. Fast propagating compression waves cannot emerge in channels that remain open at their ignition end because of the reduced pressure forced by the open boundary.
Article
The propagation mechanism of steady cellular detonations in curved channels is investigated numerically with a detailed chemical reaction mechanism. The numerical results demonstrate that as the radius of the curvature decreases, detonation fails near the inner wall due to the strong expansion effect. As the radius of the curvature increases, the detonation front near the inner wall can sustain an underdriven detonation. In the case where detonation fails, a transverse detonation downstream forms and re-initiates the quenched detonation as it propagates toward the inner wall. Two kinds of propagation modes exist as the detonation is propagating in the curved channel. One is that the detonation fails first, and then a following transverse detonation initiates the quenched detonation and this process repeats itself. The other one is that without detonation failure and re-initiation, a steady detonation exists which consists of an underdriven detonation front near the inner wall subject to the diffraction and an overdriven detonation near the outer wall subject to the compression.
Article
This article presents numerical results of detonation in a two-dimensional curved channel in order to discuss its propagation behavior and the stable propagation limit. We simulated the detonation with various channel widths in two types of the ratios of inner and outer radii (Rout/Rin), which are 1.5 and 2. Two propagation modes, named as marginal and stable modes, were observed. In marginal mode, curved detonation propagates with repetition of decay, re-ignition, and propagation. Its velocity varies from underdriven to overdriven in one cycle. In a stable mode, the detonation propagates steadily while keeping a curved shock front structure and a constant detonation velocity in the circumferential direction. The idea of quasi-steady solution to the numerical results is applied for stable detonation limit. We confirmed that the detonation propagates steadily in the case that a shock radius of the detonation front is larger than the critical value of quasi-steady solution.
Article
Motivated by recent theoretical developments in the dynamics of slow isobaric flames evolving in narrow channels (thick flames), the present study is concerned with non-isobaric flames. A reduced Darcy-like one-dimensional model capable of capturing an abrupt transition from slow conduction-driven to fast compression-driven burning is derived through an appropriate asymptotic procedure. Specifically, the adopted approach is based on the distinguished limit where the scaled width of the channel is deemed comparable to the system’s Mach number, used as a parameter of expansion. The transition is caused by the friction induced gradual pile up of the pressure and hence preheating of the unburned gas adjacent to the advancing flame. The preheating leads to an increase of the flame speed, which in turn promotes further precompression, and so on. Upon some induction period this development leads to a thermal runaway within the reaction zone, triggering the transition.
Article
The influence of thermal expansion on the dynamics of thick to moderately thick premixed flames (flame thickness less than or comparable to the channel height) for a variable-density flow in a narrow, rectangular channel is explored. The study is conducted within the framework of the zero-Mach-number, variable-density Navier–Stokes equations. Both adiabatic and non-adiabatic channel walls are considered. A small Péclet number asymptotic solution is developed for steady, variable-density flame propagation in the narrow channel. The dynamics of channel flames are also examined numerically for O(1) Péclet numbers in configurations which include flame propagation in a semi-closed channel from the closed to the open end of the channel, flame propagation in a semi-closed channel towards the closed end of the channel and flame propagation in an open channel in which a Poiseuille flow (flame assisting or flame opposing) is imposed at the channel inlet. Comparisons of the finite-Péclet-number dynamics are made with the behaviour of the small-Péclet-number solutions. We also compare how thermal expansion modifies the flow dynamics from those determined by a constant-density model. The small-Péclet-number variable-density solution for a flame propagating in a circular pipe is given in the Appendix.