BookPDF Available

7. WABO Student Conference 2022: Featuring future in forest and soil sciences - Book of Abstracts

Authors:

Abstract and Figures

Program and Book of Abstracts of the seventh Student Conference "Featuring future in forest and soil sciences" at the Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 16. May 2022. 22 oral presentations in 4 sessions and 36 poster presentations highlight a large part of BOKUs' current research projects on soils and forests driven by early stage researchers. In 4 Keynote presentations, senior experts will give insights into recent topic of Forest and Soil Sciences.
Content may be subject to copyright.
Universität für Bodenkultur Wien / University of Natural Resources and Life
Sciences, Vienna
Department of Forest and Soil Sciences
7. WABO Student Conference 2022:
Featuring future in forest
and soil sciences
Book of Abstracts
16. May 2022, Vienna
2
The student conference comprises the following BOKU courses (2022S)
Bachelorseminar 910110,
Masterseminar 910301, and
Dissertantenseminar 910400
Version: 16052022 (final)
ISBN 978-3-900932-99-2 Universität für Bodenkultur Wien
7. WABO Student Conference 2022: Featuring future in forest and soil
sciences - Book of Abstracts. B. Rewald (Ed.). University of Natural
Resources and Life Sciences, Department of Forest and Soil Sciences,
Vienna. 75 p.
Cite contributions e.g. as: “AUTHOR NAME(S)” (2022) “ABSTRACT TITLE”. In:
Rewald, B. (Ed.), 7. WABO Student Conference 2022: Featuring future in forest
and soil sciences - Book of Abstracts. 16.05.2022, Conference location: Vienna,
Austria. University of Natural Resources and Life Sciences, Vienna, Austria. p.
“PAGE#”
Table of Content
TableofContent..............................................................................................................................................3
Program...........................................................................................................................................................4
OralPresentations...........................................................................................................................................5
Session1–Festsaal(MENH‐03/01)&online(9–11am)...........................................................................5
Session2–MENH|HSVIII(MENH‐03/39)(9.30–10.45am)....................................................................6
Session3–Festsaal(MENH‐03/01)&online(11.15am–12.45pm)........................................................7
Session4–Festsaal(MENH‐03/01)&online(2.30–4.30pm)..................................................................8
PosterPresentations(Festsaal,1.30–2.30pm).............................................................................................9
InstituteofSoilResearch.............................................................................................................................9
InstituteofForestEcology.........................................................................................................................10
InstituteofSilviculture..............................................................................................................................11
InstituteofForestGrowth.........................................................................................................................11
InstituteofForestEngineering..................................................................................................................12
InstituteofForestEntomology,ForestPathologyandForestProtection................................................12
OtherBOKUInstitutes...............................................................................................................................12
Abstracts........................................................................................................................................................13
InstituteofSoilResearch...........................................................................................................................13
InstituteofForestEcology.........................................................................................................................26
InstituteofSilviculture..............................................................................................................................41
InstituteofForestGrowth.........................................................................................................................45
InstituteofForestEngineering..................................................................................................................55
InstituteofForestEntomology,ForestPathologyandForestProtection................................................59
OtherBOKUInstitutes...............................................................................................................................70
IndexofContributors....................................................................................................................................71
Acknowledgments.........................................................................................................................................75
PRINTING: Please note that the document has been optimized for duplex printing mode.
Program
4
Program
The“7thWABOStudentConference2022:Featuringfutureinforestandsoilsciences”takesplaceon
May16th,2022(9amto4.30pmCEST)atthemainBOKUbuilding(Mendelhaus),3rdfloor(3.OG),
Festsaal(MENH‐03/01)&
lecturehall8(MENH|HSVIII(MENH‐03/39)).
Presentations are given LIVE/in presence,in
the morning in parallel (Sessions 1 & 2), and
are partially streamed (Sessions 1, 3, 4) via
Zoom.
JointheM eetingviaZ OOM(Ses sio ns1,3&4 ):
https://bokuvienna.zoom.us/j/92691296517,
Meeting‐ID: 926 9129 6517,oruseamobile
phone to listen in: +436703090165,
+43720115988(inAustria)
Oral presenations: Participants are kindly
asked to briefly check their presentation
before the conference or during breaks with
thechairorMartinWresowarforfunctionality.
Beforethesessionstarts,pleaseloadyour
presentation via an USB drive to the
computers provided & introduce yourself
briefly to the chair. Computers will hold
Windows 10 OS and MS Powerpoint 2016 or
equivalent.Both pptx and pdf file can be
displayed.
Pleasekeepthegiventimelimitsstrictly!!Itisofcpermitted/encouragedtochangesessionsbetweentalks
accordingtointerest.
Posterspresentations:Postersizemax.A0,“portrait”(discussplottingwithyoursupervisors).Posterscan
be placed from ~8.30 am onthepreparedposterboardsatFestsaal(MENH03/01), following the
numbering(abovetheabstractandonpages9ff).Needles/pinsareprovided.Pleaseputtheminplace
until11amatthelatest.Duringthepostersession(afterlunch,corehour~13.30‐14.30o’clock),pleasebe
nexttoyourpostertoallowvisitorstoaskquestions/startadiscission.PosterawardsatBSc,MScandPhD
careerstageswillbeannouncedat~16.20(Festsaal).Supervisors/staffscientistsarekindlyaskedtodrop
the“votes”intheballotboxatFestsaalbefore3pm;pleaseaskBorisRewaldfortheballotpapers.Please
taketheposterdownAFTERthePosterAwardceremony,weneedtoleavetheposterboardsempty!
Figure1:Wordcloudoftheconferenceabstracts
Oralpresentations
5
Oral Presentations
Session 1 – Festsaal (MENH-03/01) & online (9 – 11 am)
Chair:SophieZechmeister‐Boltenstern
Time Presenter Title
09.00!! AngelaSessitschKEYNOTE‐Theplantmicrobiome:fromrhizospheretoseedsand
applicationstoimprovecropperformance
09.30 Nazerke
Amangeldy
Effectofcropresiduemanagementonsoilgreenhousegasfluxes
inanAustrianlong‐termexperiment
09.45 OrrachaSae‐Tun Field‐basedevidenceofsoilorganiccarbonaccumulation
mechanismsunderdifferenttillageintensities
10.00 ItzelLopez‐
Montoya
Responseofmethanotrophicbacteriatosoildryingandrewetting
inAustrianforests
10.15 FrancoA.González
(online)
SoilcarbondioxidefluxesfromtwoAustrianforestsunderdrying
rewettingstress
10.30 ArminHofbauer ImpactofforestmanagementandsoilcompactiononsoilGHG
fluxesofatemperateforest
10.45 Maximilian
Behringer
Theinfluenceofforestsitepreparationonsoilfunctionsofan
alluvialforestintheupperRhinevalley,Vorarlberg
11.00‐
11.15 CoffeeBreak Festsaal/‐hallway
Oralpresentations
6
Session 2 – MENH | HS VIII (MENH-03/39) (9.30 – 10.45 am)
Chair:KarlStampfer
Time Presenter Title
09.00  ‐
09.30 Jeanine
Jägersberger
ÜberführungspotenzialevonNiederwälderninder
UrbarialgemeindeOggau
09.45 JohannaKiene WachstumvonFichte,LärcheundZirbeinHochlagenaufforstungen
10.00 MarkusTonner EntwicklungundEvaluierungvonautomatischen
AuswerteroutinenzurdynamischenVermessungvon
HackguthaufenmithilfevonLaserscanning‐Systemen
10.15 PierreSimon DigitaleSeillinienplanungmittelspersonengetragenem
Laserscanner
10.30 Laura‐Marie
Ketzmerick
GenetischeDiversitätundPopulationsstrukturderAuerhuhn‐
Vorkommen(Tetraourogallus)inVorarlberg
10.45 
11.00‐
11.15 CoffeeBreakFestsaal/‐hallway
Oralpresentations
7
Session 3 – Festsaal (MENH-03/01) & online (11.15 am – 12.45 pm)
Chair:DouglasL.Godbold
Time Presenter Title
11.15 MarioPesendorfer KEYNOTE‐Thedriversandconsequencesofmast‐seedingin
temperateforesttrees
11.45 JohannZollitsch Analysingrecentmastdynamicsoffir(Abiesalba)treesinAustria
12.00 Darius‐George
Hardalau
Comparativeassessmentofnaturalregenerationacrossnatural
forestreservesinAustria
12.15 Anna‐SofiaKraus Analysisofthecarbonneutralitypotentialofpolyethylene
terephthalate(PET)inGermany
12.30 AnneCharlott
Fitzky
DiversityandinterrelationsamongtheconstitutiveBVOCemission
blendsandeffectsofsaltanddroughtstress
12.45‐
14.30
Lunchbreak+
Postersession
Postersession(corehour:13.30‐14‐30)andlunch(Pizza;~13
o’clock)atFestsaal/‐hallway
Oralpresentations
8
Session 4 – Festsaal (MENH-03/01) & online (2.30 – 4.30 pm)
Chair:MartinSchebeck
TimePresenterTitle
14.30 ThomasKirisits KEYNOTE‐Eschen(trieb)sterben:WissensstandundInitiativenzur
ErhaltungderEsche
15.00 AndreasFera AnfälligkeitheimischerundnichtheimischerEschenartenfürden
ErregerdesEschentriebsterbens,Hymenoscyphusfraxineus
15.15 PascalRabl IstdieBläulingszikade(Metcalfapruinosa)einpotentieller
ÜberträgerdesWelkepilzesVerticilliumnonalfalfae?
15.30 EvaPapek PhylogeographyoftheMediterraneanpineparkbeetle
Orthotomicuserosus–runningintopitfalls
15.45 AndreasHolzinger KEYNOTE‐Human‐CenteredAIforSmartFarmandForest
Operations
~16.20 BorisRewald BESTPosterAWARDs(@BSc,MSc&PhDcareerstages)
Theconferencewillendaround16.30o’clock.
Posterpresentations
9
Poster Presentations (Festsaal, 1.30 – 2.30 pm)
(per Institute, then in Alphabetical order (last name), Titel)
Institute of Soil Research
Poster# Contribution Career
stage
1 JuliaFohrafellner‐QualityAssessmentofMeta‐analysisonSOCResearch PhD
2 HeleneGerzabekEffectsoflong‐termenhancedgamepopulationdensityonsoil
nutrientdynamics,plantstressandplantproductivity.
MSc
3 MiriamHartmann‐Thelinkbetweensoilandplantdiversityunderdifferentsoil
tillageintensities
MSc
4 NatasaMaksimovic‐Covercropsandlimingeffectstosoilorganicmatterandit's
dissolvedandmineralassociatecarbonformsinbulkandrhizospheresoil
MSc
5 JonathanSorger‐Domenigg‐Evaluationofmeasurestoincreaseorganiccarbon
contentsinagriculturalsoils
MSc
6 LéopoldineTaïrou‐Studyoftheresponseofsoilmicrobialcommunitytodrying
alongageographicgradientinGreenland
MSc
23 FlorianTrummer‐Influenceoftopographyandsoilerosiononsiteassessment
andfieldsoilevaluationatselectedlocationsinSoutheastStyria
MSc
Posterpresentations
10
Institute of Forest Ecology
Poster# Contribution Career
stage
7 KlausBrandner‐EinflussunterschiedlicherBaumartenauf
BodenkohlenstoffgehalteundCO2AusgasungimNationalparkHoheTauern
BSc
8
LeonorCanadas‐Agroforestrysystemsasafarmingalternativetoadaptto
climatechangeinSantoAntão,CapeVerde:factorsconstrainingagroforestry
adoption
MSc
9 AlbertDirnberger‐Soilwateravailabilityinrelationtovegetationandtopological
strataalongahigh‐altitudetransectattheSchrankogelmountain,Tyrol
MSc
10 EnrichettaFasano‐AnalysisofCO2emissionsata"higherlevel" PhD
11 AnnesophieGrøndahl‐Linkingsoilmicrobialcommunityabovetreelineto
vegetationandsoilproperties
MSc
12 AlešKučeraetal.‐Semidetaildistributionofforestsoilmoisturelimitsinthe
CzechRepublic:approachesandperspectives
PhD
13
MarieLambropoulos‐Climate‐smartforests:Mitigatingdroughtstress‐induced
mortalityoftreeseedlingswithsoilamendments‐evaluationofhydrogelsand
plantingtechniques
PhD
14 MartinaPerzl,IrisOberklammer,JernejaHarmel‐Treeseedsforclimate‐fit
forestsinAustria(FORSEE)
PhD
15 LisaT.Gasser‐Comparingtreegrowthinmonoculturesandmixedplantationsof
Acerplatanoides,Carpinusbetulus,QuercusroburandTiliacordata
MSc
16 JohannaStuhler‐RoottraitsofalpinegrassesonMt.SchrankogelinTyrol,Austria BSc
17 Hanna Teuchert ‐ The influence of planting methods on the establishment and
survivalrateoftreeseedlings
MSc
Posterpresentations
11
Institute of Silviculture
Poster# Contribution Career
stage
18 SebastianSchmid,AntonSinger,RudolfStotter‐WaldbaulicheBestandesanalyse
vonEichen‐undTannenwälderimWaldviertelundderSüd‐Oststeiermark
BSc
19 TeresaAschenbrenner‐AnalyzinganAustrianforestbusinessunitwiththeDPSIR
frameworkandfindingparticipatorysolutionswithaPPGISapplication
MSc
Institute of Forest Growth
Poster# Contribution Career
stage
20 MatthiasBernardini,ChristophWieser‐ErkennungundVermessungvon
HolzernteschädenanhandterrestrischerLaserscans
BSc
21 StefanEbner‐ModellierungundBerechnungderBaumbiomassevonPiceaabies
anhandmobilerLaserscandaten
MSc
22
RaphaelAndreasKatzenschlager,JosefAloisOberlindober,FelixThaler‐
VergleicheinesLeicaBLK2GOundeinesGeoSLAMZEBHorizon
personengetragenenLaserscanners(PLS)zurBaumentdeckung,Durchmesser‐,
Höhen‐undKronendimensionsschätzungaufWaldinventurstichprobenpunkten
BSc
24 ChristinaKirchner‐EntwicklungderWaldbiodiversitätimBiosphärenpark
WienerwaldanhandmessbarerTeilaspektederWaldstruktur
MSc
25 LukasMoik‐VermessungvonHolzpolternmittelsterrestrischerLaserscansMSc
26
ValentinSarkleti‐DigitaleWaldinventur–Stichprobeninventurmit
PersonengetragenemLaserscanning(PLS)undflächenscharfeVorratsschätzung
überräumlichstatistischeModelle
MSc
27 SarahWagner‐Automaticrecognitionofmarkedtreesbyusingpoint‐cloudsfrom
PersonalLaserScanning(PLS)
BSc
28
SarahWitzmann‐Developmentandevaluationofalgorithmsfortheautomatic
marker‐freeregistrationofforestpointcloudsobtainedfromPersonalLaser
Scanning
MSc

Posterpresentations
12
Institute of Forest Engineering
Poster# Contribution Career
stage
29 JosefHofer‐EinsatzeinesterrestrischenLaserscanners(TLS)zurautomatischen
DetektionundVermessungvonFahrbahnveränderungenaufForststraßen
MSc
Institute of Forest Entomology, Forest Pathology and Forest Protection
Poster# Contribution Career
stage
30 MagdalenaEbner‐Evaluationofbarkbeetledevelopmentanddroughtstressby
useofPHENIPS‐TDEFfortwoLowerAustrianNorwaysprucestands
MSc
31
Anna‐LenaFerstl‐Honeydewproducingaphidsonspruce(Piceaabies)and
Douglasfir(Pseudotsugamenziesii)andtheirimportanceforhoneyproductionin
Austria
MSc
32 VivianeKaserer‐GefahrenpotentialdurchdenIpscembraeinLärchenbeständen
imVinschgau
MSc
33
MartinMayrhofer‐Thespectrumofparasitoidsinoakstandswithvarying
abundanceofwintermoths(Operophterabrumata,Erannisdefoliaria)andoak
leafroller(Tortrixviridana)
MSc
34 MarianSchöttl‐Impactofatargetedstem‐inoculationwithVerticillium
nonalfalfaeontheseedqualityofTree‐of‐Heaven
BSc
35
StellaAntoniaWaszilovics‐UntersuchungenzurÜbertragungvonVerticillium
nonalfalfaevonAilanthusaltissimaüberWurzelkontakteaufbenachbarteNicht‐
ZielArten
MSc
Other BOKU Institutes
Poster# Contribution Career
stage
36 MaximilianOschmann,DavidKrumböck‐TrockenstressMonitoringmitHilfevon
Thermalkameras
BSc
Abstracts
13
Abstracts
Institute of Soil Research
KEYNOTE presentation
The plant microbiome: from rhizosphere to seeds and applications to improve crop
performance
Angela Sessitsch 1*
1 AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Konrad-
Lorenz-Straße 34, 3430 Tulln, Austria
*Correspondence: angela.sessitsch@ait.ac.at
Abstract
Theplantmicrobiomeisconsideredasanaccessorygenomeforplantprovidingcomplementaryfunctions
totheirhostsuchasnutrientmobilizationandacquisitionorfunctionstobettercopewithbioticandabiotic
stresses.Differentplantcompartmentsfromtherhizospheretoseedshostdiversemicrobiomes,whichare
shapedbysoil,hostandenvironment.Furthermore,anumberofmicroorganismshasbeenidentifiedand
selectedfor applicationas biofertilizer,plant strengtheneror biopesticide andbenefits seen inlab and
greenhousetrialsarehighlypromising.Nevertheless,fieldapplicationremainsachallenge.Reasonsforthis
include the extreme complexity of plant‐associated microbiota with which an inoculant strain has to
competeorthepooravailabilityofsuitabledeliveryapproachesformicrobialinoculants.Furthermore,still
mechanisticunderstandingonplant‐microbeinteractionsoronholobiontinteractionsismissing.Ecological
understanding,science‐drivenproductdevelopmentandsmartdeliveryapproachesarelikelytoimprove
plantmicrobiomeapplicationsandwillpavethewaytotheintegrationofmicrobiomefunctionsinsmart
agriculturalsystems.Inthistalkdifferentaspectsonmicrobiome understanding and the use of new
applicationapproacheswillbe presented.Also,anoverviewoftheEU‐fundedCoordinationandSupport
ActionMICROBIOMESUPPORTtargetingfoodsystemsmicrobiomeswillbegiven. 
Abstracts
14
Oral presentation – MSc
Effect of crop residue management on soil greenhouse gas fluxes in an Austrian
long-term experiment
Nazerke Amangeldy 1*, Ulises Ramón Esparza Robles 1, Taru Sandén 2, Heide Spiegel 2, Sophie
Zechmeister-Boltenstern 1, Ana Meijide 3, Eugenio Díaz-Pinés 1
1 Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety, Vienna, Austria
3 Department of Crop Sciences, Division Agronomy, University of Göttingen, Germany
*Correspondence: nazerke.amangeldy@students.boku.ac.at
Abstract
Agricultureistheprimarysourceoffoodandfeedproduction.Theincreasingdemandduetothegrowing
populationandtheexposuretoclimatechangeisstressingagriculturallands.Adaptationiscrucialtosustain
andimproveproductionundertherapidchangesinourclimate.Further,greenhousegas(GHG)emissions
fromagriculture,forestryandotherlandusescontributetoabout25%oftheglobalanthropogenicGHG
emissions. Specifically, agriculture is highly responsible for nitrous oxide (N2O) and methane (CH4)
emissions. These emissions are strongly influenced by human activity and, therefore, management
practicesplayacrucialroleinclimatechange mitigationefforts.Untilnow,moststrategieshavetriedto
increasetheamountofsoilorganiccarbon,toreducecarbondioxide(CO2)intheatmosphere.Oneonthese
managementstrategiesistheincorporationofcropresiduesintothesoil(insteadofremovingthem);this
wayhasbeenprovedtobeaneffectivewaytoincreasesoilorganicmatterinputs.However,littleisknown
abouttheeffectsofcropresiduemanagementpracticeonsoilCH4andN2Ofluxes,whichareimportantfor
thesoil GHGbalance. In thiscontext, we investigatealong‐term researchsite,Rutzendorf, wherecrop
residueincorporationandremovalhavebeeninvestigatedfor40years.Previousresultsshowanincrease
insoil organic Cstockswhenresiduesareincorporated.Wehypothesizedthattheincorporationof crop
residuesleadstoanincreaseinsoilN2Ofluxescomparedtotheremovalofcropresidues,duetothelarger
availabilityofsubstrateformicrobial activities. WemonitoredsoilCO2,CH4andN2Ofluxeswithmanual
staticchambers.MeasurementsstartedinJuly2021andarestillongoing.ResultsofsoilGHGfluxeswillbe
presented, along with selected microbial and chemical soil parametersunderthetwomanagement
strategies.
Abstracts
15
Poster presentation – PhD #1
Quality assessment of meta-analysis on SOC research
Julia Fohrafellner 1*, Sophie Zechmeister-Boltenstern 2, Rajasekaran Murugan 2, Elena Valkama 3
1 BIOS Science Austria, Dietrichgasse 27, 1130 Vienna, Austria
2 Institute of Soil Research (IBF), Department of Forest- and Soil Sciences, University of Natural Resources and Life
Sciences, Vienna (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
3 Natural Resources Institute Finland (Luke), Bioeconomy and environment, Sustainability Science and Indicators.
Tietotie 4, 31600 Jokioinen, Finland
*Correspondence: Julia.fohrafellner@boku.ac.at
Abstract
Thenumberofmeta‐analysespublishedinthefieldofagricultureiscontinuouslyrising.Simultaneously,
moreandmorearticlesrefertotheirsynthesisworkasameta‐analysis,despiteapplyinglessthanrigorous
methodologies.Allthisgivesreasontoassumethatcorecriteria,necessaryinproducingmeta‐analyses,are
notcleartomanyresearchers.Asaresult,poorqualitymeta‐analysesarepublished,whichmayleadto
questionableconclusionsandrecommendations.Thisstudyaims toprovideresearcherswithaneasy‐to‐
use set of criteria to assess the quality of existing soil and agricultural meta‐analyses. Alongside, a
quantitativescoringschemesupportstheassessment.
Soil organic carbon (SOC) is a potential sink for carbon dioxide. Agricultural management practices can
support carbon sequestration and therefore offer potential removal strategies. We analyzed 31 meta‐
analysesstudying the effectsofdifferent managementpractices onSOC between theyears 2005‐2020.
Moreover,theretrievedmeta‐analyseswerestructuredaccordingtomanagementpracticecategories(e.g.,
tillage,covercropsetc.)whichallowedustoassessthestate‐of‐knowledgeonthesecategories.Thecriteria
werealsousedtoevaluatemeta‐analysescitedintheIPCCreport.Althoughoverallqualitywasrising,meta‐
analysesonSOCstillneedtoimprove. Major deficiencies were foundintheuseofstandard metrics for
effectsizecalculation,standarddeviationextractionandweightingbytheinverseofvariance.Onlyoneout
of31 SOC meta‐analyses,whichstudied theeffectsof no‐till/reduced‐tillagecomparedto conventional
tillage,wasfoundtobeofhighquality.
Weconcludethat,despiteeffortsoverthelast15years,thequalityofmeta‐analysesonSOCresearchis
still low. In order for the scientific community to provide high quality synthesis work and to make
advancements in the sustainable management of agricultural soils, we need to adapt rigorous
methodologiesofmeta‐analysisasquicklyaspossible.
Abstracts
16
Poster presentation – MSc #2
Effects of long-term enhanced game population density on soil nutrient dynamics,
plant stress and plant productivity
Helene Gerzabek 1*, Martin H. Gerzabek 1, Ursula Nopp-Mayr 2, Erich Inselsbacher 1
1 Institute of Soil Research (IBF), Department of Forest- and Soil Sciences, University of Natural Resources and Life
Sciences, Vienna (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
2 Institute of Wildlife Biology and Game Management (IWJ), Department of Integrative Biology and Biodiversity
Research, Vienna (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
*Correspondence: helene.gerzabek@students.boku.ac.at
Abstract
Forestsarecriticallyinfluencedbygameanimalsandahighpopulationofgameaffectsvariousprocesses
inforest ecosystems.Plantsthatarebrowsedbyherbivorousgameanimalsshow stressreactionswhich
canevenleadtoachangeinplantspeciescomposition.Ontheotherhand,ahighgamepopulationdensity
leadstohighnutrientandcarboninputsviaexcrementand,incaseoffeeding,viafodderinputs.Inturn,
such inputs positively affect plant nutrition and growth as well as soil organic carbon build‐up. While
previous studies have focused on various topics related to the effects of game animals on forest
ecosystems, we still lack a more holistic view on game animal‐soil‐plant interactions and feedback
reactions.Theaimofthisstudyistotacklethisshortcoming and elucidating the effect of long‐term
enhancedgamepopulationdensity on soils. Thestudysite is locatedinWeikendorf,LowerAustria,and
consistsofafencedareawithhighgame animal populationdensityandadirectlyadjacent, open forest
withloweranimaldensity,servingasacontrol.Soilsamplesweretakenfromthreedepths(0‐10cm,10‐20
cm, 20‐50 cm) from 10 sites differing in vegetation cover. Samples will be analysed for a range of soil
physicalandchemicalparameters(soildensity,particlesizedistribution,pH,electricconductivity,totalC
andN,microbialbiomassCandN,plant‐availablenutrients,rootdensity)tostudytheeffectofincreased
nutrientandcarboninputsinthestudyarea.Theresultsgainedinthisstudywillserveasscientificbasisfor
asubsequent,long‐termresearchandmonitoringstrategy.
Abstracts
17
Oral presentation (ONLINE) – MSc
Soil carbon dioxide fluxes from two Austrian forests under drying rewetting stress
Franco A. González 1 *, Dylan Goff 1, Barbara Kitzler 2, Alexander Knohl 3, Sophie Zechmeister-
Boltenstern 1, Eugenio Díaz-Pinés 1
1 Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Austrian Federal Office and Research Centre for Forests (BFW), Vienna, Austria
3 Centre of Biodiversity and Sustainable Land Use, Georg-August-Universität Göttingen, Germany
*Correspondence: francoalexis.gonzalez@students.boku.ac.at
Abstract
Anthropogenicgreenhousegasemissions,mainlyofcarbondioxide(CO2),driveclimatechange.Forestsoils
cycle huge amounts of CO2 yearly. Besides warming, current climate projections anticipate a higher
frequencyandintensityofextremeweatherevents,whichwillimpactforestecosystemsandtheirfunctions
andprocesses.Specifically,soilmicrobialactivitymaybeaffected,herebyinfluencingtheCO2releasedby
thesoilintotheatmosphere,withpotentialfeedbacksonourclimatesystem.Weaimtoassesstheeffect
ofdrying‐rewettingstressonthesoilCO2fluxesintwomatureEuropeanbeech(FagussylvaticaL.)forests
inEasternAustria.WealsoaimedtouncoverthecontrollingparametersofsoilCO2fluxesintheseforest
ecosystems.WeexpectsoilCO2fluxestodeclineprogressivelyaftertheonsetofthedroughtstress,peak
aftertherewetting event,andthen return to loweremissions comparedto naturalconditions.We also
expect selected soil properties to affect soil CO2 fluxes and their response to drying‐rewetting. The
experimental design included plots under natural precipitation conditions, drought stress, increased N
depositionratesandtheircombination.Forthis,rain‐outsheltersincombinationwithanirrigationsystem
wereused.Insummer2021,wemonitoredsoilCO2emissionsforfourweeks,coveringa droughtperiod
andthesubsequentrewetting.Weusedautomatedchamberstoobtainhightemporalresolutionfluxdata,
andwemeasuredseveralsoilparametersinthesameplots.Investigatedparametersincludedtemperature,
texture,moisture,totalorganicC&N,andmicrobialbiomass.OurpreliminaryresultsshowastrongsoilCO2
flux decline with drought stress, and an immediate and short‐livedresponseafterrewetting.Wewill
evaluatetheroleofselectedsoilparameters.
Abstracts
18
Poster presentation – MSc #3
The link between soil and plant diversity under different soil tillage intensities
Miriam Hartmann 1,*, Christoph Rosinger 1,2, Gernot Bodner 2, Katharina Keiblinger 1
1 Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Institute for Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU),
Tulln, Austria
Correspondence: miriam.hartmann@students.boku.ac.at
Abstract
Conventionalfarmingsystemsareusuallycharacterizedbyintensiveploughinganda low crop diversity,
whichmayhavenegativeinfluencesonsoilfertilityandsoilbiodiversity.Consequently,diversecropping
systemsandreducetillageintensitycouldhelptoincreasesoilorganiccarbon(SOC)storageandfacilitate
soilhealthtocopewithfutureclimatechange.However,thecombinedeffectofreducedtillageandhigh
cropdiversityonsoilhealthindicatorsandcarbonstoragehasrarelybeenevaluated.
Therefore,theaimofthisstudyistoinvestigatehowtillageintensityandcover/intercropdiversityaffect
soilmicrobialdiversityandfunctioningaswellassoilhealthandSOCstorage.
Weanalysethreedifferentmanagementsystemsatthelong‐termresearchsiteinHollabrunn:(i)aninitial
condition(i.e.,barefallow),(ii)a standard and (iii) a biodiverse farming system. Eachcroppingsystemis
furthermanagedatfourdifferenttillageintensities(conventional,reduced,minimumandno‐tillage),each
threetimesreplicated.Overall,atotalofthirty‐sixsamples(3x3x4)willbeanalysed.
TheanalyseswillcontainDNAsequencingtodeterminebacterialandfungalcommunitiesinsoil,analyses
ofthemicrobialbiomassandofhydrolyticsoilenzymesasasoilhealthandfunctionindicator.Furthermore,
wemeasuredifferentnutrients(totalcarbon,totalnitrogen,organiccarbon,dissolvedorganiccarbon)and
soilaggregatestability.
Firstly, we hypothesize that reduced tillage and increased covercropdiversitywillimproveecosystem
functioningandsoilbiodiversity.Secondly,wehypothesizedifferencesinstableSOCfractions(microbial
derivedorplant‐derivedcarbon)andin total carbon, total nitrogen,andothernutrients in thedifferent
tillageandcovercropsystems.
Abstracts
19
Oral presentation – MSc
Impact of forest management and soil compaction on soil GHG fluxes of a
temperate forest
Armin Hofbauer 1,2*, Barbara Kitzler 2, Sophie Zechmeister-Boltenstern 1
1 Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Federal Research and Training Centre for Forests (BFW), Soil Ecology, Vienna, Austria
*Correspondence: armin.hofbauer@students.boku.ac.at
Abstract
Temperateforestsareaconsiderablesinkformethane(CH4) and carbon dioxide(CO2)andemissionsof
nitrousoxide(N2O)andnitricoxide(NO)aregenerallylow.However,forestmanagementcansignificantly
influencethecarbon (C)and nitrogen(N)cycle and thereforealso thegreenhousegas(GHG) fluxes. To
assesstheeffectoftreespecies,post‐thinning,andsoilcompactiononsoilGHGfluxesweperformeda1‐
yearmeasurementcampaignwithstaticchamberswithinaforestcatchmentsouth‐westtoVienna,Austria
(N48°07’16”,E16°02’52’’,510mMASL,820mmprecipitation,9.7°Cmeanairtemperature).Theselected
treatmentsreflectedtheheterogeneityofthecatchmentincludingmixedbeech‐spruce(MU),undisturbed
purebeech (BU), thinnedpurebeech (BT) stands,and skidtrails (ST)passing throughBT.Sampling was
performed3‐weekly and gasanalysiswasdonebygaschromatography (GC)forCH4andN2O,whileNO
wasmeasuredbyasoilcoreincubationapproachusingachemiluminescencedetectorandCO2fluxeswere
takenin‐situwithaPPsystemsCO2analyser.
Wehypothesized,(i)increasedNfluxesatMU,(ii)athinning‐inducedincreaseinCO2andN2Oemissions,
aswellasincreasedCH4uptakeratesatBT,and(iii)CH4emissionsandanincreaseinN2OemissionsatST
duetosoilcompaction.
ResultsrevealedconsiderablyhigheratmosphericNdepositionatMU,resultinginsignificantlyhighestNO
andsecondhighestN2Ofluxesoftreatments.ThinningdidnotaffectCO2,NO,andN2Ofluxes,buttended
towards a higher CH4 uptake rate compared to BU, likely due to the thinner litter layer. ST showed a
significant reduction in CH4 uptake rates and increased CO2 and N2O emissions. As a consequence,
GWP100atSTwas10.41±0.37tha‐1,whichis30,28and58%higherthanGWP100atMU,BUandBT,
respectively.
Abstracts
20
Oral presentation – MSc
Response of methanotrophic bacteria to soil drying and rewetting in Austrian
forests
Itzel Lopez-Montoya 1, Dylan Goff 1, Barbara Kitzler 2, Markus Gorfer 3, Sophie Zechmeister-
Boltenstern 1, Eugenio Díaz-Pinés 1
1 Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Austrian Federal Office and Research Centre for Forests (BFW), Vienna, Austria
3 Austrian Institute of Technology (AIT)
*Correspondence: itzel.lopezmontoya@students.boku.ac.at
Abstract
Methane(CH4)isagreenhousegaswith28timeshigherglobalwarmingpotentialthanCO2,contributing
23% to global warming. Apart from enteric fermentation, CH4 is mainly produced and consumed by
microbialprocessesin the soiland landfills, makingmicrobial oxidationby methanotrophicbacteriathe
onlybiologicalsinkforatmosphericCH4withforestsoilsbeingthelargestsinkinterrestrialecosystems.So
far,mostresearchhasbeenmadeinthelaboratory,butfieldexperimentsfocusingonthedynamicsand
controllingfactorsformethanotrophicbacteriaandforCH4consumptionarelacking.Themainobjectiveof
thisstudyistoinvestigatethespatial‐temporalresponseofmethanotrophicsoilbacteriatoenvironmental
factorsandmultiplecomponentsofglobalchange,specificallydroughts,extremeprecipitationevents,and
atmosphericNdeposition.Asoildrying&rewettingandNadditionexperimentwasconductedduringone
yearintwoAustrianforests.Thestresstreatmentexcludednaturalprecipitationforeightweeksandwas
followedbyasimulatedintenseprecipitationevent.WeexpectthatsoilCH4uptakewillbehigherduring
droughtdue tohighergasdiffusivitywhenthesoilmoisturecontentis low,andthatafterrewettingCH4
uptakewillbereduced.Itisalsohypothesizedthatmethanotrophicbacteriawillrecoveruntiloptimumsoil
moistureconditionsarereached,andthatCH4uptakewillberelatedtomethanotrophabundance.SoilCH4
uptakewasassessedinthefieldwithautomatedchambers.Methanotrophicbacteriawereanalyzedwith
moleculartechniques(PCR,ddPCR,geneticsequencing).OnlyUSCαtypewasfoundinthesesoils.Thisfar
theresultsshowaCH4uptakeishigherinthestresstreatment,andincreasedNdepositiondoesn’tseem
toinfluenceCH4uptake.Thisstudywillfurtherincreaseourunderstandingofthemechanismsinvolvedin
CH4uptakeandtheimportanceofmicrobialprocessesforthegreenhousegasbudgets.
Abstracts
21
Poster presentation – MSc #4
Cover crops and liming effects to soil organic matter and it's dissolved and mineral
associate carbon forms in bulk and rhizosphere soil
Natasa Maksimovic 1,2, Christoph Rosinger 1,2, Gernot Bodner 3, Axel Mentler 1, Martin Kulhanek
2, Katharina Keiblinger 1
1 University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil
Research, 1190 Vienna
2 Czech University of Life Sciences Prague, Department of Agrienvironmental Chemistry and Plant Nutrition, 165 00
Prague - Suchdol
3 University of Natural Resources and Life Sciences, Department of Crop Sciences, Division of Agronomy, 3430 Tulln
Contact author: natasa.maksimovic@students.boku.ac.at
Abstract
Covercrops are oneof themostimportant agri‐environmental measuresfor soilprotection.They have
been shown to reduce nitrate leaching into groundwater, along with soil organic matter preservation
againsterosion,especiallyinthecontextofclimatechange.Inthefuturethesoilspotentialtoincreasesoil
organicmatterformationandtherebystoringwillbecomeincreasinglyimportant in agri‐ environmental
programs,especiallyinthecontextofclimatechange.Recentresearchsuggeststhatfarmlandvegetation
coverplaysasignificantroleinreproducingandreplenishingsoilorganicmatter,despitethecommonbelief
thatcovercropscontributeonlyanegligibleamounttothisprocess.
Tostudytheeffectsofcovercropsdynamicsonsoilorganicmatterformation,thismasterthesisaimsto:
(i)quantifydifferences in stablecarbon poolsizes (aggregatepool, mineral‐associatedpool) in different
covercropspecies;ii)investigateDOCreleasecurvesfromdifferentcovercropspeciesandcombinations,
frombulkandrhizospheresoilsandiii)finallytodeterminetheeffectoflimingontheabovementioned
parameters.
At A254 nm, the mixed model ANOVA revealed statistically significant differences inaverage maximum
valuesbylimetreatment(f(1)=4.17,p=0.073),soiltype(f(1)=6.22,p=<0.037),andblock(f(2)=10.8,p
=<0.001).MixedmodelANOVAshowedthatthereisalsoasignificantdifferenceinaveragevaluesofDOC
releasecurvesat254nmbylimetreatment(f(1)=0.108,p=0.74)inrhizosphereand(f(1)=0.035,p=0.85)
in bulk soil, whereas  single factor ANOVA showed (f(1)=1,39, p=0.24) showing  there is a relevant
significancebetweenaverageDOCreleasevaluesaffectedbylimetreatment.Accordingto expectations
fromthelastyearstudy,thereisanevidencethatcovercropmixturesandlimetreatmentisimpactingDOC
releasevalues.
Abstracts
22
Oral presentation – PhD
Field-based evidence of soil organic carbon accumulation mechanism under
different tillage intensities
Orracha Sae-Tun 1*, Gernot Bodner 2, Christoph Rosinger 1,2, Sophie Zechmeister-Boltenstern 1,
Axel Mentler 1, Katharina M. Keiblinger 1
1 Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Straße,
1190 Vienna, Austria
2 Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, BOKU, Konrad-Lorenz-Straße 20,
3430 Tulln, Austria
*Correspondence: orrachs@students.boku.ac.at
Abstract
Conservationtillageisoneofthestrategiestoimprovesoilhealth,sustaincropproduction,andpromoting
carbon(C)sequestrationinagriculturalsoils.Althoughit’smechanismsforenhancingsoilorganicC(SOC)
accumulation via soil microbial assimilation are conceptualised and proposed by soil scientists, clear
evidencefromfieldstudiesis still needed.Thus,thisstudyaimstodeterminetheinter‐relationsofSOC
accumulation,selectedsoilmicrobialindicators,andaggregatestabilityafterthirteenyearsofconservation
tillage.
Bulk and rhizosphere topsoil samples were taken under four tillage intensities (conventional, reduced,
minimum,andno‐tillage) from along‐term tillagetrial. SOCfractions(dissolvedandtotalC),soilfungal
indicators,microbialnecromassbiomarkers,andaggregatestabilitywereanalysed.
Comparedtoconventionaltillage,conservationtillagepractices significantlypromotedSOCaccumulation,
fungal biomass, microbial necromass accumulation, and increased aggregate stability with no apparent
differencesbetween bulkandrhizospheresoils.Effectsizevariedbytillageintensity.Soilfungalbiomass
washighestunderreducedandminimumtillage,suggestingapotentialbenefitofreducedsoildisturbance
onfungalabundanceinthelong‐term.Causalrelationshipfromstructuralequationmodellingrevealedthat
enhanced fungal abundance by increased dissolved organic C concentration directly increased soil
aggregate stability under conservation tillage. Subsequently, it indirectly promoted SOC sequestration
throughenhancingmicrobialnecromassaccumulation.Therefore,conservationtillageisavaluabletoolto
increaseSOCsequestrationandmicrobialassimilatedChassignificantcontributiontoSOCbuildingupin
thestudiedsoil.
Abstracts
23
Poster presentation – MSc #5
Evaluation of measures to increase organic carbon contents in agricultural soils
Jonathan Sorger-Domenigg 1* 2, Martin H. Gerzabek 1*
1 Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 European climate solutions (ECS)
*Correspondence: j.sorger@students.boku.ac.at, martin.gerzabek@boku.ac.at
Abstract
Asorganiccarbon,whetherassoilorganicmatterorasagreenhousegas,hasbecomeaglobalissueinthe
environmentaldebate,theamountofliteratureonthesubjecthasskyrocketed.Aswithanytopicreceiving
increasingattentionworldwide,thequalityandpracticalityofpublishedcontentvaries,underscoringthe
needforsummarizedandevaluatedresearchthatassessesthecurrentliteratureonmeasurestoincrease
organiccarboninagriculturalsoils.Sixmeasures,aimingtoincreasesoilorganiccarbon(SOC)stocks,have
been defined and selected to match the European practice. These include agricultural extensification,
cover‐ and intercropping, erosion control, tillage, fertilization, and a comparison of organic and
conventionalagriculturalpractices.Anadditionalassessmentpointisthedetectionmethodsforlong‐term
carbon storage. This work aims to compile relevant scientific papers and case studies and includes an
evaluationandselection processthat ensuresappropriate comparisonandanalysis.After selection,the
measuresareratedonapreviouslydefinedscale,toproduceinformation on both qualitative and
quantitative aspects of their influence on SOC stocks. Given the current trend to monetize soil organic
carbonincreasesthroughcarboncredits,theresultsofthisstudy should indicate whether the above
measures are appropriate for long‐term carbon increase and storage.  Demonstrative examples are
temporarymeadows,whichintheorywouldincreaseSOCcontents,butinreality,donot,astheincreased
needfortillageoffsetsanypositivechangestotheSOCstock.Anotherexampleistheapplicationoforganic
fertilizerssuchasmanureorbiochar,whichincreaseSOCintheshortterm,butwhoselong‐termeffecton
soilorganiccarbonlevelsisunderdebate.
Abstracts
24
Poster presentation – MSc #6
Study of the response of soil microbial community to drying along a geographic
gradient in Greenland
Léopoldine Taïrou 1,2*
1 Institute of Soil research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
*Correspondence: leopoldine.tairou@students.boku.ac.at
Abstract
Climatechangehaslarge effects onsoil microorganismsand theiractivity,whichinturnmayaffectthe
releaseofgreenhousegasesandtheturnoverofnutrientsimportanttoplants.Thus,understandingthese
effectsisofmajorimportance.Thepresentedresearchprojectfocusontheimpactofclimatechangeon
microbialcommunitiesalongaNorth‐SouthprecipitationandtemperaturegradientinGreenland.Climate
changeintheArcticisexpectedtoimpacttemperaturesandprecipitationsalteringtheconditionstheartic
ecosystemsareusedto.Thequestionthisprojectfocusesonishowthesesoilmicrobialcommunitiesreact
todrying.Tensoilsthatwereeithervegetatedornon‐vegetatedweresampledatfivedifferentlocations
along a North‐South in Greenland (Brønlundhus, Qaanaaq, Disko, Nuuk and Narsarsuaq). A drying and
rewettingexperimentatroomtemperatureassociatedwithCO
2 measurements to quantify microbial
respirationiscarriedoutonthosesoils.Soilsdryfornineteensdaysandondaynineteen,theamountof
water lost is added back to the soils. The CO2 production decreases with the drying and the goal is to
comparethespeedandtheextentofthisdecreasebetweenthesoils.Afterthewaterisaddedback,CO2
production increases and form a peak before stabilizing. The sizeofthepeakandtheamountofCO
2
producedafterstabilizationarealsoparametersofinteresttocomparethesoils.SomeRNAanalyseswith
qPCRarealsodonetoquantifypossiblyactivebacteriaandfungi.Tostudytheeffectofthedryingandthe
rewetting,qPCRarecarriedonextractedRNAfromthesoilsbeforethedryingexperiment,attheendof
thedryingandaftertherewettingphase.
Abstracts
25
Poster presentation – MSc #23
Influence of topography and soil erosion on site assessment and field soil
evaluation at selected locations in Southeast Styria
Florian Trummer 1*, Franz Zehetner 1, Herbert Bauer 2
1 Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Federal Ministry of Finance, Vienna, Austria
*Correspondence: florian.trummer@students.boku.ac.at
Abstract
Agricultureinsouth‐easternStyriaischaracterisedbylivestockfarming.Duetothedensityoflivestockand
the resulting amount of feed required, there is competition for arable land in the region. Due to this
problem,therehasbeenasignificantchangeinagriculturallanduseinAustriainrecentdecades,withthe
proportionofmaize areas onpartly steeplandincreasing, while thatof meadowsand pasture landhas
decreased.Particularly after heavyrainfallevents, high soilerosion canbeobserved atthese sites.The
recurringsoilerosionmayhavealongtermeffectonsoilfertility. The aim of this work is to relate
topography and erosion to site assessment and field soil evaluation. For this purpose, together with
employeesoftheFeldbachtaxoffice,atotalof13steepagriculturalsiteswereexaminedforsoilthickness,
soiltexture,structure,consistency,parentmaterialandotherfieldparameters,inordertofirstobtainasoil
fertility‐basedestimate(“Bodenzahl”)and,afteradditionsanddeductions(basedontheworkabilityofthe
terrain,thefrostriskortheclimaticwaterbalance,amongothers),anoverallsitevaluation(“Ackerzahl”).
Severalsamplesweretakenateachoftheindividualsites.Whenselectingthesites,themainfocuswason
steepfieldswithfootslopeandtoeslopeareas.Also,fieldswithconservationandactivehumusbuild‐up
measureswerecomparedtofieldswithyearsofmaizemonoculture.Twomeadowareaswereadditionally
sampledforcomparison.Initialfindingsshowthatthe sitevaluationatthefootslopeandtoeslope areas
tendstobehigherthanatthebackslopeandsummitpositions.However,theintercroppingpracticeshave
onlyverylittleinfluenceonthesitevaluation.
Abstracts
26
Institute of Forest Ecology
KEYNOTE presentation
The drivers and consequences of mast-seeding in temperate forest trees
Mario Pesendorfer 1*, Iris Oberklammer 1, Georg Gratzer 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: mario.pesendorfer@boku.ac.at
Abstract
Mast‐seeding,synchronizedinterannualvariationin seedproductionbyplantpopulations,isapervasive
phenomenonin temperateforesttrees. Theresulting resourcepulses drive trophicchains anchored by
seeds,including insects, rodents,birds,as well astheirpredators. The spatiotemporalvariationin seed
productionalsoeffectstherecruitmentintoexistingstands,aswellasthedynamicsfollowingdisturbances
ortimberharvest.Despitetheroleofmastingastheheartbeat of the forest, however, the underlying
mechanismsand seed fateconsequences forthe treesare stillpoorlyunderstood. Here, weprovide an
overviewofthefieldofmastingresearchacrosstheglobeanddiscussexcitingresearchprojectsaimedto
answerthemostpressingquestions.
Abstracts
27
Poster presentation – BSc #7
Einfluss unterschiedlicher Baumarten auf Bodenkohlenstoffgehalte und CO2
Ausgasung im Nationalpark Hohe Tauern
Klaus Brandner 1*, Boris Rewald 1
1Institut für Waldökologie, Department für Wald und Bodenwissenschaften, Universität für Bodenkultur, Wien,
Österreich
*Korrespondenz: klaus.brandner@students.boku.ac.at
Abstract
Aufgrund des fortschreitenden Klimawandels gewinnen Waldökosysteme als Kohlenstoffsenken immer
mehranBedeutung.MiteinemAnteilvonrund60% an der CO2‐Respiration,beeinflusstderWaldboden
maßgebend den respiratorischen Kohlenstofffluss im gesamten Ökosystem. Standortsspezifisch richtige
BaumartenwahlundBewirtschaftungsformsindforstwirtschaftlicheInstrumente,diezurRegulierungder
Kohlenstoffausgasung des Bodens beitragen können. Hierbei ist anzunehmen, dass wesentliche
Unterschiede in der Speicherung und Dynamik durch die Eigenschaften der Streu bestimmt werden.
Insbesondere könnte im subalpinen Hochgebirgswald der Bodenkohlenstoffanteil durch den
unterschiedlichenNadelabwurfvonGymnospermenbeeinflusstwerden.IndieserBachelorarbeitwirdder
Einfluss von Picea abies und Larix decidua auf das Kohlenstoffbudget an drei verschieden exponierten
Standorten(SO,NO,NW)untersucht.
AlsUntersuchungsgebiet diente einehochsubalpineWaldgesellschaftinderRandzonedesNationalparks
Hohe Tauern, in der Gemeinde Mallnitz. Im Juni 2021 wurden pro Versuchsstandort 20 Bodenproben
genommen und darauffolgend Respirationsmessungen mittels tragbarem CO2‐Gasanalysator EGM‐5
durchgeführt. Zeitgleich zu den Respirationsmessungen, die im A ugust abermals durchgeführt wurden,
wurden die hauptverantwortlichen Parameter für die Bodenrespiration, Bodentemperatur und
Bodenfeuchte,gemessen.ImLabordesInstitutsfürWaldökologiewurdendieProbengesiebt,getrocknet,
gewogen und mittels C/N‐Analyse untersucht. Die daraus errechnet und gemessenen Parameter
Bodenfeuchte, Lagerungsdichte, Kohlenstoff‐, Stickstoffkonzentration und Kohlenstoffstocks wurden für
Auflage‐,Oberboden‐, Mineralbodenhorizont sowiefür diegesamte Probeermittelt. DieCO2‐Ausgasung
konnteanhanddergemessenenRespirationsratenimFeldumgerechnetwerden.
Statistische Auswertungen zeigten Korrelationen zwischen Bodentemperatur, Bodenfeuchte und der
Bodenrespiration.Beidemsüdexponierten Standort wurdensignifikanthöhereKohlenstoffgehalten und
größere Respirationsraten im Vergleich zu den anderen beiden Standorten festgestellt. Der
BodenkohlenstoffanteilsowiederAnteilderCO2‐AusgasungwiesanallenStandortenunterBaumartLärche
höhereWerteaufalsunterderBaumartFichte.DieStudiezeigt,dasseineunterschiedlicheBestockungder
Baumarten, aber auch variierende Standortfaktoren, Auswirkungen auf Kohlenstoffspeicherung und
Kohlenstoffausgasungzeigen.
Abstracts
28
Poster presentation – MSc #8
Agroforestry systems as a farming alternative to adapt to climate change in Santo
Antão, Cape Verde: factors constraining agroforestry adoption
Leonor Canadas 1, Georg Gratzer 1, Herbert Hager 1, Mette Vaarst 2
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
2 Department of Animal Sciences, Aarhus University (AU), Denmark
*Correspondence: leonor.barata-canadas-delgado@students.boku.ac.at
Abstract
Agroforestry(AF)systemshavethepotentialtopositivelycontributetofoodsecurityandclimatechange
adaptation.Yet,theseadvantagesdonotautomaticallyleadtotheadoptionandpersistenceofAFpractices.
Thisthesisinvestigatesfactorsthatmayconstraintheadoptionandcontinuationofagroforestrytechniques
and systems in contexts of fragile arid and semi‐arid agroecosystems, extremely vulnerable to climate
change.ThestudycasetookplaceontheislandofSantoAntão,inCapeVerde,andaimedatidentifying(1)
the farmers’ needs and potential barriers to designing and implementing agroforestry systems; (2) the
practicesthatcancontributeto fulfilling theseneedsandalleviatingproblems connected tolivelihoods.
Potentials for intervention for different stakeholders interested in the long‐term sustainability of these
systemsarecharacterised.
For doing so, the activities of an Agroforestry project in two experimental settings, established in
coordinationwithlocalfarmers’associations,werefollowed.Participatoryresearchmethodswereapplied
withthemembersoftheassociationsandcommunities,toanalyzetheagrarian‐,farming‐,cropping‐,and
livelihoodsystemsofbothfarmer’scommunities.
Resultsshowedthat the costsfor initialinvestments maybe too highand thetransition timeuntilnew
systemare functional toolong,consideringthefinancialandnaturalresourcesaccessiblebyfarmers.AF
requirementsforlabor,skills,andknowledgemayalsoreduceadoptionrates.Inordertopromotethewide
adoptionofAFsystemsinSantoAntão,aneedtoaddressinstitutionaland socio‐economicconstraints,
suchasinsufficientaccesstorelevantknowledge,trainingandextensionservices,pooraccesstomarkets
andcredit,landtenureinsecurity,andthelegalframeworkconditioningadoptionwasidentified.Further
research needs to investigate management practices, species, and AF designs that would maximize
facilitation,improveyields,andenhanceoverallfarmingrevenues.
Abstracts
29
Poster presentation – MSc #9
Soil water availability in relation to vegetation and topological strata along a high-
altitude transect at the Schrankogel mountain, Tyrol
Albert Dirnberger 1*, Laura Wildschut 1,2, Karin Wriessnig 3, Mathias Mayer 4, Boris Rewald 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
2 Wageningen University and Research (WUR), Wageningen, The Netherlands
3 Institut für angewandte Geologie, Department für Bautechnik und Naturgefahren, University of Natural Resources
and Life Sciences (BOKU), Vienna, Austria
4 Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL),
Birmensdorf, Switzerland
*Correspondence: adirnberger@students.boku.ac.at
Abstract
Water availability is a determining factor for plant species composition, not only but also in alpine
environments—which are often characterized by shallow but highly heterogeneous soils, different
topographies,andahighpotentialevaporationduringtheshortvegetationperiod.Plantwateravailability
dependson avariety of factorssuch asphysico‐chemical properties of the soil, skeleton contents, and
rootingdepths.Itsdetaileddeterminationislinkedtointensefield‐andlab‐workandcancauselogistical
difficulties,especiallyindifficulttoaccessandwork‐inalpineenvironments.
Thisthesisispartoftheproject“MicroClim”,whichexaminesthemicroclimaticdynamicsofalpineplant
species/assemblages, aiming to get insights into potential biodiversity losses under progressing climate
change. To facilitate the linkage between plant species assemblages and soil properties at different
topographic positions, this study aims to approximate the maximum water available to alpine species
assemblages during drought spells. Determining easier to measure parameters as proxies will allow to 
determinesoilpropertiesofalargeramountofvegetationplotsintheproject.
Soilsamplesfrom36soilpitsalongagradientfromaround1800to3100metersabovesealevelweretaken
toamaximumdepthof50cminAugust2021atSchrankogelMountain(Tyrol,Austria).Theplotscomprised
ninedifferentspeciesassemblages,replicatedfourtimes.Alargevarietyofsoilandplantparameters(soil
texture,rootandabovegroundbiomass,soilpH,C‐,N‐,nutrient‐content,soilpenetrationdepth,finesoil
content,organiclayerthickness,etc.)weresubsequentlyanalysedinthefieldandinthelab.
Preliminary results show that the effective soil depth, holdingthemajorityofrootbiomass,iswell
represented by penetration depth measurements. Water retention by the organic layer can be well
predictedby organiclayerthickness.Soilwaterholdingcapacityofthemineralsoilcanbeapproximated
usingC‐contentasapredictor.Bymeasuringpenetrationdepth,organiclayerthicknessandtheC‐content
ofthemineraltopsoil,thewaterholdingcapacityataspecifictopographyxspeciesassemblagecanthus
bepredicted reasonably well—allowingto carryout extendedmeasuringcampaigns within theongoing
MicroClimproject.
Ourresultswillfacilitatethecharacterizationoftheheterogeneousmicroclimateofalpineenvironments,
increasing our functional understanding of these vulnerable system in general and the predictability of
climatechangeimpactsinspecific.
Abstracts
30
Poster presentation – PhD #10
Analysis of CO2 emissions at a "higher level"
Enrichetta Fasano 1*, Bradley Matthews 1, Helmut Schume 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: enrichetta.fasano@boku.ac.at
Abstract
The“Carbo Wien” projectaimed toadvancescience inthe fieldofmeasurement‐based GHG emissions
estimates,showcasethelatestmeasurement‐basedmethodstocityadministratorsandlaythefoundations
foranimprovedlocalmonitoringsystemforquantifyingthepotentialoftotalandsector‐specificemissions
reduction.
Thispresentationfocusseson the tall‐tower eddy covariance measurementsofnetcarbondioxide(CO2)
fluxesperformedontheArsenalradiotowerin144m.Theresultsofthreemeasuringyears(2018‐2020)
haverecentlybeenpublishedinAtmosphericEnvironment,andtheyshowthattheoverallCO2fluxdata
availabilityafter thorough qualitycontrol filteringwas comparabletothat observedbyother studiesof
urban and suburban eddy covariance measurements. With respect to the measured flux quantity our
resultswereincloseagreementwiththeannualCO2emissionsestimatederivedfromanofficialemissions
inventory.Forinstance,our2018fluxof10.89ktCO2km2wasopposedto10.19ktCO2km2(excludinglarge
pointsourceemissions)fromtheinventory.
Oneof the major strengths oftheECmethodincomparisontotheupscalingprocedurepracticedinthe
inventoryisthehighspatialandtemporalresolution,whichallowstoassignfluxestosingleemitters.
Thegoalistocomparethecalculatedfootprint,obtainedwiththeECsystem,withthesectorwiseemission
recordspublishedbythecityauthorities.Oneofthemajorchallengesistoassignthemeasuredfluxesto
thesinglesectors,likespaceheating,traffic,industryornaturalprocesses.
Thechoiceofthemostsuitablefootprintwillbemadefromthetowerdata,selectingtheparametersthat
bestsuitthecity'sprofile.Movingforwardthestudywillfocusonestimatesoftrafficandbuildingheat
emissions,andtodistributespatiallyandtemporallythedifferentemissiondata.
Finally,theCO2andCH4emissionscanbecomparedforthedifferentyearsof2019‐2020‐2021,showingthe
impactofthelockdownandthecorrelationwiththereductionofthetraffic.
Abstracts
31
Oral presentation – PhD
Diversity and interrelations among the constitutive BVOC emission blends as
affected by salt and drought stress
Anne Charlott Fitzky 1*, Arianna Peron 2, Lisa Kaser 2, Thomas Karl 2, Martin Graus 2, Danny
Tholen 3, Mario Pesendorfer 1, Maha Mahmoud 1,3, Hans Sandén 1, Boris Rewald 1
1 Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life
Sciences Vienna, Vienna, Austria
2 Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
3 Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
*Correspondence: anne.fitzky@boku.ac.at
Abstract
Biogenicvolatileorganiccompounds(BVOCs)emittedbyplants consistofabroadrangeofgasseswhich
servepurposessuchasprotectingagainstherbivores,communicatingwithinsectsandneighboringplants,
orincreasingthetolerancetoenvironmentalstresses.ThecompositionofBVOCblendsplaysanimportant
roleinfulfillingthesepurposes.Constitutionalemissionsgiveinsightintospecies‐specificstresstolerance
potentialsandareanimportantfirststepinlinkingmetabolismandfunctionofco‐occurringBVOCs.Here,
we investigate the blend composition and interrelations among co‐emitted BVOCs in unstressed and
drought‐ and salt stressed seedlings of four broad‐leaved tree species, Quer cus robur, Fagus sylvatica,
Betulapendula,andCarpinusbetulus.Q.roburandF.sylvaticaemittedmainlyisopreneandmonoterpenes,
respectively.B.pendulahadarelativelyhighsesquiterpeneemission;however,itmadeuponly1.7%ofits
total emissions while the VOC spectrum was dominated by methanol (72%). C. betuluswasemitting
methanolandmonoterpenesinsimilaramountscomparedtootherspecies,castingdoubtonitsprevious
classificationasa“close‐to‐zero”VOCemitter.Underdroughtandsalinity,themajorBVOCsofF.sylvatica
andB.pendulaslightlydecreasedinemissionrates,whereasanincreasewasobservedforQ.roburandC.
betulus.BesidethemajorBVOCs,atotalof22BVOCscouldbeidentified,withemissionratesandblend
compositions varying drastically between species and treatments. New links between pathways and
cataboliteswereindicated, e.g.,correlatedemissionratesofmethanol,sesquiterpenes (MVA pathway),
andgreenleafvolatiles(hexanal,hexenylacetate,andhexenal;LOXpathway)duringunstressedconditions.
DroughtstressledtoadecreaseofnearlyallBVOCemissions(i.e.exceptisopreneemissionsofQ.robur).
SaltstressledtoanincreaseofLOX‐relatedBVOCs,andacetaldehyde,whichsupportsthehypothesisthat
acetaldehydeemissionsarelinkedtotheoxidationofC18fattyacidsofcellmembranes.Ourresultsindicate
that certain BVOC emissions are highly interrelated, pointing toward the importance to improve our
understandingofBVOCblendsratherthantargetingdominantBVOCsonly.
Abstracts
32
Poster presentation – MSc #11
Linking soil microbial community above tree line to vegetation and soil properties
Annesophie Grøndahl 1,2*, Frederik Bak 2, Boris Rewald 1, Ramona Werner 1, Hans Sandén 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
2 Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences (UCPH),
Copenhagen, Denmark
*Correspondence: annesophie.groendahl@students.boku.ac.at
Abstract
In a warming world, understanding the effects of climate change on all scales  is necessary in trying to
mitigatethe potential consequences.Thisthesis is partofthe project MICROCLIM,whichexamines the
microclimaticdynamicsofalpineplantspecies,aimingtogetinsights intopotentialbiodiversitylossesin
the light of climate change. As part hereof, we investigate how soil microbial community composition
correlateswithvegetationandsoilproperties,alonganaltitudinalgradient.
ThecompletevolumeofMICROCLIMsamplingsitesthroughoutMt.SchrankogelinTirolareassignedto9
differenttypesofvegetationcommunities.SoilDNAwasextractedfromsamplesfrom4siteswithineach
vegetation community, along the altitudinal gradient. Subsequently, two PCRs were performed, thus
targetingbothfungalandbacterialspecificregions(ITSrDNAand16SrRNA,respectively).Aftersequencing,
the data will be processed and links with vegetation and soil properties of the plots explored with
multivariatestatisticalanalysis.Itisexpectedthatthesoilmicrobialcommunitywillvaryincomposition
withbothvegetationandsoilproperties,andthus,indirectly,withthealtitudinalgradient.

Abstracts
33
Poster presentation – PhD #12
Semidetail distribution of forest soil moisture limits in the Czech Republic:
approaches and perspectives
Aleš Kučera 1, Pavel Samec 1, Tomáš Vichta, Gabriela Tomášová 1, Ladislav Holík 1, Valerie
Vranová 1
1 Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech
Republic
Abstract
Forestsplayanirreplaceableroleinlinkingthewatercyclewiththefunctionsofsoil.Soilwaternotonly
enhances the forest stability, but its regulated runoff or evaporation affect plant growth in different
ecosystems.Participation ofsoilwater atelementcyclings inforestsis modifiedby soil organicmatter
balance.Moderated runoffpreventsoccurrence offlashfloods andmaintains continuousavailability of
water for plants as well as for human use. Preservation of the forestsoilhydricfunctionsdependson
prioritizationofwaterbalancerestorationineverycatchmentbasinenclosingthelocalelementcycle.In
thisstudy,theforestwaterbalanceprioritizationwasintroducedthroughmappingofsoilmoisturelimits
indicatingpotentialstrenghnecessarytoplantgrowthprocesses.
Abstracts
34
Poster presentation – PhD #13
Climate-smart forests: Mitigating drought stress-induced mortality of tree seedlings
with soil amendments - evaluation of hydrogels and planting techniques
Marie Lambropoulos 1*, Hans Sandén 1, Boris Rewald 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: marie.lambropoulos@boku.ac.at
Abstract
Increasingtheadaptivecapacityofforestsiscrucialforimproving the resilience of forest ecosystems
towardgrowingclimatechangerisks. Artificial regeneration isexpectedtoplayanevenmoreimportant
role in the increasing frequency and severity of large‐scale disturbances, and the implementation of
climate‐smartafforestationtechniquestoadaptfutureforeststotheexpectedfutureclimate.
Thesuitabilityofsoilamendmentsforincreasingtheestablishmentrateoftreeplantingsonmarginallydry
sitesneedsto be determinedtofurtherunderstand the keyparameters ofreducingdroughtstress and
enhancingsuccessfulartificialregeneration,especiallyduringperiodsoflowprecipitation.Herewedescribe
the role of hydrogels and other soil amendments as potential key measures enabling sustainable
reforestation.
Inafieldexperiment,lignin‐andcellulose‐basedhydrogelsalongwithArginineandNPKfertilizersarebeing
applied to seedlings of three species, in different concentrations under real conditions on 30 Austrian
reforestationsites.Areplicaof80seedlingsper species, treatmentandfieldplotis being used tocover
potentialenvironmentalgradientsofthedifferentgrowthareas.
Furthermore, the interaction of hydrogels with two species and two different soil types under induced
droughtstressscenarioswill be investigatedex‐situ. In arhizobox experiment, soiland ecophysiological
methodswillbe usedto investigatethewaterabsorption ofhydrogel‐storedwater by spruceand larch
seedlings.Changesinphysicochemicalsoilpropertiesduetothehydrogelwillbeinvestigatedinasecond
ex‐situexperiment.
Thedifferentapproachesofcollectingdatafromparallel,in‐situexperiments,andanex‐situstudywillallow
solidrecommendationsfortheuseofhydrogelsinforestrypractice,andtobetterunderstandthefunctional
relationshipsbetweenhydrogeladditionsanddroughtstressmitigationoftreeseedlings.
Abstracts
35
Oral presentation – MSc
The influence of forest site preparation on soil functions of an alluvial forest in the
upper Rhine valley, Vorarlberg
Maximilian Behringer 1*, Klaus Katzensteiner 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences, Vienna, Austria
*Correspondence: maximilian.behringer@boku.ac.at
Abstract
Alluvialforestsarechangingdrasticallyintheirhydrologicalregime,vegetationcompositionandstructure,
anddisturbancedynamics.Causesareriverregulations,historiclanduse,recentforestmanagement,and
introducedspeciessuch as Solidago canadensis agg.orthepathogenicfungusHymenoscyphusfraxineus
causingashdieback.Climatechangeincreasesthescaleofthesechanges.Asa result,pre‐maturestands
dominated by Pica abies or Fraxinus excelsiorhavetobeclearcut.Inordertoachieveatreespecies
compositionwhichisadaptedtothealteredsiteconditionsandstilleconomicallydesirable,treeplanting
inalargerscaleisinevitable.Tocontrolcompetingvegetation (e.g., Solidago, Clematis, Rubus…) site
preparation (mulching and tilling of planting strips) was deemed to be necessary but is discussed
controversially. Effects of site preparation on indicators for soil functions were compared for the two
dominatingsoiltypes,Fluvisols and RendzicLeptosols, usinga chronosequenceapproach. The following
keyresultswereobtained:(1)Soiltypehasasignificanteffectuponmostindicators.(2)Areastreated≥5
yearsagohavesignificantlyhigherSOCstocksandahigherbulkdensityinthe20cmtopsoil.(3)Tillingstrips
havesignificantlylower SOC andNtot‐stocks(totalN)comparedtoareas onlymulched.(4)Effectsofsite
preparationonC/N‐ratio(‐),ratioofmicrobialtoorganiccarbon(+)andhydraulicconductivityestimated
from pedotransfer functions (‐) were mainly significant for Rendzic Leptosols. This may reflect the
mobilizationofaccumulatedforestfloor,whichwaspresentinmaturesprucestandsonRendzicLeptosols
butnotonFluvisols.(5)Thevegetationshowsanexpectedresponsetoclearing.Mulchingeffectscouldnot
bedistinctlyseparatedfromclearingeffects.(6)Nitrateconcentrationsinseepagearebelowdrinkingwater
standardsandshownocleartreatmenteffect,thoughhighestvalueswerefoundindecliningsprucestands
onLeptosols.
Abstracts
36
Poster presentation – PhD #14
Tree seeds for climate-fit forests in Austria (FORSEE)
Martina Perzl 1*, Iris Oberklammer 1, Jerneja Harmel 1, Mario Pesendorfer 1, Georg Gratzer 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: martina.perzl@boku.ac.at
Abstract
Successfulstrategiesfortherestorationofclimatechange‐induceddisturbancesinAustrianforestsrequire
afforestationornaturalregeneration.Whileseedproductionin most temperate trees is spatially
synchronous,itvariessignificantlyacrosstime.Therefore,acomprehensiveunderstandingofthe drivers
forbothquantityandqualityofseedproductionisrequired.Forthis,weaimtodeveloprecommendations
andmethodstooptimizeseedharvestingincertifiedseedstandsandseedplantationsinclosecooperation
withpractitioners.Withintheproject,wewillfocusonthefollowingissues.
Conceptsand strategiesforannual seedharvesting and middle‐termreforestation will bederived from
long‐termstudiesofseedproduction.Furthermore,theinfluenceofexternalfactorsonseedproduction,
suchasweatherandnutrientavailabilitywillbeinvestigated.
Additionally,wewillanalyzetheeffectofseedstandsizeanddensityonseedqualityandgeneticdiversity.
This will help us understand the dynamics of genetic diversity within stands  and enable us to develop
guidelinesforfutureseedstandoptimization.
Furthermore,theassessmentofthesocio‐economicpotentialandwillingnessofsmall‐scaleforestowners
toproduceandharvest treeseedscould(1)helpalleviatethenationalseedshortageand(2)contribute
positivelytotheforestowners'livelihoodandawarenessofforestmanagementissues.
Thegoalofthisresearch project isto investigate the driversof seed production,seed quality,and seed
geneticdiversityofAustria`sforesttreespecies,todeterminetheeffectsofclimatechangethereon,and
todevelop technicaland socio‐economicstrategies thatimprovethe reliabilityand qualityofseeds for
afforestationandforestregenerationinthefaceofclimatechange.

Abstracts
37
Poster presentation – MSc #15
Comparing tree growth in monocultures and mixed plantations of Acer platanoides,
Carpinus betulus, Quercus robur and Tilia cordata
Lisa Theresa Gasser 1*, Hans Sandén 1, Iftekhar U. Ahmad, Ramona Werner 1, Douglas L.
Godbold 1, Boris Rewald 1
1Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: lisa.gasser@boku.ac.at
Abstract
Current climate change models predict an increase in drought events in ce ntral Europe. The predicted
climatic conditions represent a serious threat to the productivity and resilience of forest ecosystems ‐
particularmonocultures.Incontrast,evidenceonthebeneficialeffectsoftreediversityonforestecosystem
functionsandserviceshassubstantiatedinthelastdecades.Inspecific,abovegroundbiomassproductivity
hasoftenbeenfoundtobehigherinmixturesthaninmonocultures.ThisMaster'sthesisthereforedealsin
detailwiththequestionofdifferencesinabovegroundbiomassproductivitybetweenmonoculturesand
differentmixturetypes.Forthispurpose,theheightanddiameterofthetreesplantedonanexperimental
fieldofBOKUinTulln(B‐Tree)weremeasuredannually.AcerplatanoidesandTiliacordataareplantedin
monocultureand a2‐speciesmixture,asareQuercusroburandCarpinusbetulus.Inaddition,these four
speciesareplantedina4‐speciesmixture.Allometricequationswerecreatedforeachtreespecies.Asa
furtherparameter concerningtree growth, thecrowns ofselectedtrees inthe differentmixtureswere
measured.Itishypothesizedthatdifferencesinbiomassbetweenthemixturesexistandthatoveryielding
effects will be measurable in complementary 2‐species and 4‐species mixtures compared to the
monocultures.Furthermore,itisexpectedthatoveryieldingoccursbasedonanoverproportionalincreased
biomassofsometreespecieswhileothertreespeciesaccumulatelessbiomassinthemixturescompared
tomonoculturesduetointerspecificcompetition.Itisalsoexpectedthatcrownparametersdifferbetween
monoculturesandmixturesduetoachangefromintraspecifictointerspecificcompetitioninthecanopy.
Resultsofthestudyperiod2017‐2021willbepresented.
Abstracts
38
Poster presentation – BSc #16
Root traits of alpine grasses on Mt. Schrankogel in Tyrol, Austria
Johanna Stuhler 1, Boris Rewald 1
1Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: johanna.stuhler@boku.ac.at
Abstract
Climate change has a strong impact on the alpine pasture and itsalpine plantdiversity. The studiesof
“MicroClim”project,focusonthefunctionaltraitsofalpineplantsinAustriaonMt.Schrankogelandhow
theyadapttotheenvironmentinthecontextofclimatechange.Fortheanalysissoilsamplesandsamples
ofc.50alpineplantspeciesgotcollectedonasealevelofc.1850‐2700mon900differentplots.
Inthis thesiswespecifically discusstheroot traitsofalpine grassesincombination withaCN analysis.
Examplesfortheanalysedroottraitsaretheo.hydraulicconductivity,metabolitetransformationandroot
anatomy.Theprimaryfocusrepresents the analysis of the root anatomy, which should give an
understanding of potential similarities and differences in between and overall the species and the
individuals.TheCNanalysisshouldshow,howthealpinegrassesadapttotheenvironment.Weselected
seventeenspecies of alpinegrasseswith fiveindividuals each.To analyse theanatomyof theroots we
constructedparaffinwaxblocksofeachspecieswithitsfiveindividualsandcutthemintofivemicrometre
slices with a rotary microtome, made permanent preparations and photographed the root cuts. The
permanentpreparationsgotdyedwithsafranin‐redcolorationtovisualizethelignifiedcellfragmentsand
astra‐bluecolorationfornon‐lignifiedcellfragments.
Thestudyprovidesfurtherinsightofhowstrongtheimpactoftheclimatechangeisforalpinegrassesand
ifthereisaconnectionbetweenanatomicaltraitsandthesusceptibilitytoclimatechangeeffects.
Abstracts
39
Poster presentation – MSc #17
The influence of planting methods on the establishment and survival rate of tree
seedlings
Hanna Teuchert 1*, Marie Lambropoulos 1, Boris Rewald 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: hanna.teuchert@students.boku.ac.at
Abstract
The thesis is conducted within the interdisciplinary project WaldFIT with the research title Climate‐Fit
Forests:Selectionof originandplantingmethods.Differentparametersareinvestigatedtomakeforests
fitterwith regardto future stressors,especially at marginalsites. Thiscan beachieved by usingstress‐
tolerantplantingmaterialoradjustingplantingmethodologiessuchassoilamanedmentsandthetimingof
reforestation. In any case, successful establishment of seedlings must be supported on marginal sites,
becauseinsufficientlystockedareascausereplacementafforestationwithhighcosts.Theaimofthework
isthustoevaluatecost‐effcientalternativesfosteringseedlingestablishment.
Withinthis work, theplantingmethodology will beinvestigatedinaddition tohydrogels.Hydrogels are
chemicallycross‐linkedcrystallinegels,thatcanabsorblargeramountsofwateranddissolvedmoleculesin
aswollen state.Thus,they can increasewater availability. Plasticfreehydrogelshaverecentlybecome
availabletoforestrypractice,buttheirsuitabilityhasnotyetbeenfurtherinvestigated.Sofar,inCentral
Europe, studies have only been conducted in agriculture with plastic‐based hydrogels. This study
investigatestheplastic‐freealternatives(agrobiogel,polyter)andacost‐benefitcalculationwillbecarried
outregardingthechancesofsuccessinconjunctionwiththeimplementation.Forthis,fiveareasprovided
bytheÖBfAG,areexaminedwherebymanualandmechanicalplantingmethodsarecompared.Intheareas,
plotsinrowswithdimensionsof25x25m,areestablished.They have randomly distributed hydrogel 
samplesandcontrolsampleswithouthydrogelandaredistributedsquarelyoverthesurface.
Allplantingmethodswillbeanalysedthroughliteratureresearch.Thepracticedplantingmethodswillbe
analysedwith theregardto thehydrogelinput. Thiswillbe documentedwithaGoProtomeasurethe
additional time required per seedling planted—allowing to conductacostbenefitanalysestakingthe
additionaleffortandtheachievedsurvivalratesintoaccount.
Abstracts
40
Oral presentation – MSc
Analysing recent mast dynamics of fir (Abies alba) trees in Austria
Johann Zollitsch 1*, Georg Gratzer 1, Mario Pesendorfer 1
1 Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: johann.zollitsch@students.boku.ac.at
Abstract
The term "mast‐seeding" describes the intermittent production of synchronized bumper crops in plant
populations. This seed production strategy is common in perennial, woody plants whose seeds are
dispersedbywind.BecauseofalackofdataonmastinginAustrianfir(Abiesalba)populations,weexplored
thepossibilityof reconstructing historicalseed productionpatterns bysampling thecrowns offir trees.
Specifically, we tested if it is possible investigate masting by examining male blossoms and cones on
branches from logged or fallen trees. Using the resulting time series, we then asked whether seed
productionthroughoutthedistributionoffirinAustriaissynchronous.Arethereanypositiveornegative
correlationsbetweenshootlengthandseedproduction?
IexaminedfirbranchesinforeststandslocatedinUpperAustria,Salzburg,andTyrol.The examinations
tookplaceinforeststandsthatbelongtotheAustrianFederalForestsandwhichwererecentlylogged.In
eachstandIexaminedatleast10branchesfrom10trees.OneachbranchItookasampleof5shootsand
countedtheyearsbackwardsfromthefirstshoot,tolookwhethertheshoothadblossomedornot.This
methodmakes itpossible to recreatethetime seriesof blossomedshoots.Other recorded parameters
were shoot length, branch length, branch diameter, crown length and crown diameter. We found that
remnantsoffemal eflowersprovidedus efulestimateso fhistoric alsee dproducti on,whiler emnantsof male
flowersdidnot.Ourresultsshowthatfemalefloweringfirwashighlysynchronousoverthelast5years
(meancross‐correlation=0.68),butthattheextentoffloweringvariessystematicallybetweensampling
locations.Samplingofhistoricalreproductionbyinvestigatingfloweringthereforeprovidesausefultoolto
investigatemastinginfir.
Abstracts
41
Institute of Silviculture
Oral presentation – MSc
Comparative assessment of natural regeneration across natural forest reserves in
Austria
Darius-George Hardalau 1*, Harald Vacik 1, Georg Frank 2
1 Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences
(BOKU), Vienna, Austria
2 Institute for Forest Biodiversity and Nature Conservation, Department of Natural Forest Reserves, Federal Research
Centre for Forests (BFW), Vienna, Austria
*Correspondence: hardalaudarius@boku.ac.at
Abstract
Variousforest variables, suchasspecies composition, deadwood,canopycover, anddiameter,have an
impactonthedynamicsofnaturalforestregeneration.Findingouthowthesechangesoccurandaffectthe
forest ecosystem may be used as a foundation for designing new alternative for forest management
approachesthatareclosertonatureandsustainablefortheecosystem.Naturalforestreserves,sincethey
are not exposed to human management, present a great and uncommon opportunity to study forest
dynamicsduetothelackofhumaninterventions.Inthisregard,200permanentplotsinsixnaturalforest
reserves were resampled in 2021 to compare the regeneration dynamics over the past 13 years. The
reservesarelocatedinmountainousareaswithelevationsexceeding1000metersandcoveratotalareaof
1001.39 ha, with Norway Spruce being the predominant tree species. Data collection consisted in
investigating the seedlings and saplings characteristics found inside the 300 square meter plot. A
comparativeassessmentofthereserveswillbecarriedoutinordertoobservethechangesinregeneration
distribution density, age, and height classes. The establishment of the yearly seedlings and the growth
parametersofthelargersaplingswillbeanalysedinordertoevaluatethequalityandquantityofthefuture
forest.Themostcrucialparameterswhichaffectthedynamicsarerepresentedbythelightavailabilityand
thequantityofadvanceddecomposedwoodydebris.
Abstracts
42
Oral presentation – MSc
Überführungspotenziale von Niederwäldern in der Urbarialgemeinde Oggau
Jeanine Jägersberger 1*, Eduard Hochbichler 1
1 Institut für Waldbau, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien, Österreich
*Korrespondenz: jeanine.jaegersberger@students.boku.ac.at
Abstract
Das Untersuchungsgebiet für diese Arbeit war der Wald der Urbarialgemeinde Oggau. Dieser liegt im
NordburgenlandaufderSüdseitedesLeithagebirgesinderKatastragemeindePurbachamNeusiedlersee.
Bis2018wurdendieFlächenhauptsächlichalsNiederwald,danachalsNiederwaldmitÜberhälternim40‐
jährigen Umtrieb bewirtschaftet. Die Urbarialgemeinde überlegt die Wälder weiter in Mittelwälder
überzuführen,umdasstandörtlicheLeistungspotentialbesserauszuschöpfen.
ZielderArbeitwaresdaher,Bestandesstruktur,‐dynamikund‐ökologiederBeständezuuntersuchenund
ausdenumfangreichenDatendasPotentialfüreineÜberführungineinenMittelwaldzuanalysierenund
eine Empfehlung unter Berücksichtigung von standörtlichen, ertragskundlichen, waldbaulichen und
betriebswirtschaftlichenGegebenheitenzuformulieren.DaeinGroßteilderStöckeimUrbarialwaldOggau
überaltert sind, war neben dem Überführungspotential, die Untersuchung des Stockalters und der
ZusammenhangzwischendemStockalterundderErtragsleistungeineweiterewichtigeAufgabe.
Für die Aufnahmen wurden 10 Bestände mit einer standörtlichen Vergleichbarkeit und regelmäßigen
AbständendesBestandesaltersgewähltundsomiteineunechteWuchsreihegeschaffen.Injedemdieser
BeständewurdenvierfixeProbekreiseangelegt,aufdenenwichtigeStandorts‐undBestandesparameter,
sowiedasTotholzunddieVerjüngungssituationerfasstwurden.
DieErgebnissederVerjüngungssituationundderstandörtlichenErtragsleistungsprechenfüreineEignung
derBeständefürdie MittelwaldbewirtschaftungundauchausbetriebswirtschaftlicherSichtscheinteine
Mittelwaldbewirtschaftungsinnvoll.DadurchdiegleichzeitigeProduktionvonBrennholzundNutzholzdas
Leistungspotential gesteigert wird und Mittelwälder durch ihre Strukturvielfalt das Risiko für
Schadereignisse und Kalamitäten mindern. Unabhängig davon, ob die Waldflächen in Zukunft als
Niederwald mit Überhältern oder als Mittelwald bewirtschaftet werden, muss für die Verjüngung der
Stöckegesorgtwarden,umeineAbnahmederErtragsleistungzuvermeiden.

Abstracts
43
Poster presentation – BSc #18
Waldbauliche Bestandesanalyse von Eichen- und Tannenwälder im Waldviertel und
der Süd-Oststeiermark
Sebastian Schmid 1, Anton Singer ², Rudolf Stotter ³, Eduard Hochbichler 1,3
1 Institut für Waldbau, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien, Österreich
*Korrespondenz: Email_schmid.sebastian@students.boku.ac.at
Abstract
Für diese Bachelorarbeit wurden Eichen und Tannen Altholzbestände im Waldviertel im Bereich des
Manhartsberges, sowie in der Südoststeirischen Thermenregion ausgewählt. Eine Probefläche wurde
ausgewählt,wenneinBestandvonEichenoderTannenAltholzdominiertwirdundeinehoheAnzahlder
BäumestarkeDimensionenmitgutenQualitätenerreichthat.Dieneun Probeflächensindin Formvon
Quadraten(60x60bzw. 80x80) vermessenund vermarktworden, umdieselben Flächenmöglicherweise
nacheinigenJahrenwiederanalysierenzukönnen.DieGrößederProbeflächenvariiertvon3000bis6400
Quadratmetern, da versucht wurde Bestände mit gleichbleibender Struktur aufzunehmen. Bei der
AufnahmewurdendieTannenundEichenimZugeeinerVollaufnahmekluppiert,sowiedieHöheaberauch
derKronenansatzgemessen.BeidenEichenwurdedasErdblochanhandseinerQualitätangesprochen.Der
Nebenbestand, sowie die Naturverjüngung wurde mittels Probekreise verschiedener Größen
aufgenommen. Für die Aufnahme des Volumens des liegenden Totholzes und der Stöcke, wurde das
Linienintersektverfahren angewendet. Nach dem Abschluss der Messungen wurden die Daten in
verschiedene Excel Sheets eingegeben und strukturiert. Die Auswertung erfolgt hauptsächlich  mit dem
Statistikprogramm RStudio. Es werden alle klassischen Kennzahlen der Forstwirtschaft wie, Sta mmzahl,
Vorrat,Grundfläche,Kronenansatz,Kronenprozent,etc.aufderFlächeundamHektarausgewertet.Inden
nächsten Wochen wird die Auswertung der Daten fertiggestellt werden. Danach werden die Daten
analysiertundmittelsFachliteraturmöglicheGründefürdieErgebnisseinterpretiert.ZieldieserArbeitist
esdamit zuzeigen, dass beipassenden Bedingungendie Wuchsleistungund die Qualitätdieser beiden
Baumartenbesserist,alsallgemeinoftangenommenwird.
Abstracts
44
Poster presentation – MSc #19
Analyzing an Austrian forest business unit with the DPSIR framework and finding
participatory solutions with a PPGIS application
Teresa Aschenbrenner 1, Harald Vacik 1
1 Institut für Waldbau, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien, Österreich
*Correspondence: harald.vacik@boku.ac.at
Abstract
Forestrynowadaysfacesnewchallengesasglobalizationandindustrializationhave reached the forestry
sectoreverywhereintheworld,naturetourismisontherise,andtheclimatecrisischangesenvironments
drastically.Being prepared for negative impacts of these global driversbecomesespeciallyurgentinthe
Arctic,whereclimatechangewillhitevenmoredrastically–whichiswhytheEU‐project“Arctichubs”was
founded,tohelplocalcommunitiescopewithglobalissues.Thisrequiresaholisticapproach,considering
alllivelihoodsat regional (“hub”)levelandall stakeholders thatmighthaveinterest in alocalland use,
instead of focusing on just one industry–thatswhytheArctic hubs project emphasizes finding
participatorysolutionsbyallstakeholderstogether,supportedwithscientificknowledgeasabase.
TheDriver‐Pressure‐State‐Impact‐Response(DPSIR)frameworkoffersaholisticapproachtodepict,analyze
andcommunicatehowtheseglobaldriversaffectalocalsystem,whichneedsforchangearisefromthis,
andwhichresponsesthesocietiescansettomeettheseneedsforchange.Theframeworkachievesthisby
interlinkingindicatorsthatdescribethewholesystemwithcausalchains,thussimplifyingthecausesand
effectsoftheissuesasystemisfacing.ThismethodologyisusedintheArctichubsprojecttoassessthe
contextandenvironmentofthehubsandstructuretheindicatorsdepictingthehubs,butitcanalsohelp
tofacilitatecommunicationanddiscussionbetweendifferentactors.
Thisthesis willusetheDPSIRframeworktoanalyzeoneof the learninghubsfortheArctichubsproject,
namelytheforestryhubForstSchenkerinMariensee,andtoexplainhowthemanagementofthisforestry
hubhasrespondedto the issuesandchangescausedby global drivers.TheDPSIRmodeliscreatedina
participatory manner with the forest owner, using questionnaires and semi‐structured interviews, and
furtheranalyzedwith thehelpof Decision Explorersoftware. Tofacilitate participatoryproblemsolving
betweendifferentinterestgroups, like forestryandtourism,thethesiswillplaceanotherfocuson using
PPGIS. The PPGIS application will be used to support the communication with local Mountainbiking
communitiestoidentifytrialsthatallowrespectingtheinterestsofforestyandbikers.
Abstracts
45
Institute of Forest Growth
Poster presentation – BSc #20
Erkennung und Vermessung von Holzernteschäden anhand terrestrischer
Laserscans
Matthias Bernardini 1*, Christoph Wieser 1*, Christoph Gollob 1, Tim Ritter 1, Arne Nothdurft 1
1 Institut für Waldwachstum (WAFO), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur,
Wien, Österreich
*Korrespondenz: matthias.bernardini@students.boku.ac.at, christoph.wieser@students.boku.ac.at
Abstract
Holzernteschäden kommen bei annähernd jeder Holznutzung vor. Abhängig von Faktoren wie der
Jahreszeit,derErntetechnikunddemErnteverfahrenkönnenSchädeneineunterschiedlicheAusprägung
undIntensitätaufweisen.DieErfassungundQuantifizierungvonHolzernteschädenistschwierigundwird
meistgutachterlichdurchgeführt.
ZieldieserArbeitistes,dieEignung von terrestrischem Laserscanning (TLS) zur automatischen und
effizientenErfassungderAnzahlundGrößevonErnteschädenzuevaluieren.AlsDatengrundlagedienteein
Bestand,in demeineSeilkrannutzungdurchgeführtwurde.MithilfeeinesterrestrischenLaserscans(TLS)
wurden55 Bäumemit ein odermehreren Schädenvon dreiSeiten gescannt. Eswurde bewusst darauf
geachtet,dassdieNutzungnochnichtlangeherist,damitdieSchädennochfrischsind.Weiters wurden
dieBreite,Länge,HöheunddieAnzahlderSchädenauch händischaufgenommen.Dienungewonnenen
3D Daten wurden mithilfe von FARO Scene ko‐registriert und die einzelnen Bäume sowie die Schäden
wurdenhändischinderPunktwolkesegmentiert.DiePunktwolkendersegmentiertenBäumeundSchäden
wurdeninder statistischen ProgrammierumgebungRanalysiert.Nach derErstellungvon Trainings‐ und
Evaluierungsdaten, wurde mithilfe einer Vielzahl an Inputvariablen ein automatischer
Klassifizierungsalgorithmus (SVM: Support Vector Maschine) angepasst. Dadurch konnten die
vorhergesagtenSchädenmitdenReferenzschädenverglichenwerden.
BisaufwenigeAusnahmenwurdendie Ernteschäden gut klassifiziert,jedoch wurden die Flächengrößen
(VergleichzwischenhändischdeliniertenReferenzschädenundautomatischklassifiziertenSchäden)meist
deutlichüberschätzt.GrundfürdieseÜberschätzungwarderhäufigauftretendeLicht‐/Schattenwechsel,
Falschklassifikationen im Bereich der Bodenstreu beziehungsweise von oberflächlichen Schäden und zu
kleinenSchäden,dievomAlgorithmusnocherkanntwurden,abervonunsnichthändischdeliniertworden
sind.

Abstracts
46
Poster presentation – MSc #21
Modellierung und Berechnung der Baumbiomasse von Picea abies anhand mobiler
Laserscandaten
Stefan Ebner 1*, Christoph Gollob 1, Tim Ritter 1, Thomas Ledermann 2, Arne Nothdurft 1
1 Institut für Waldwachstum, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur Wien
(BOKU), Wien
2 Abteilung Waldwachstum, Fachinstitut Waldwachstum, Waldbau und Genetik, Bundesforschungszentrum für Wald
(BFW), Wien
*Korrespondenz: stefan.ebner@students.boku.ac.at
Abstract
DieWaldinventurstelltInformationenundDatenalsEntscheidungsgrundlagefürdieforstlichePlanungzur
Verfügung. Neben den traditionellen Aufnahmemethoden haben in letzter Zeit Waldinventuren mit
mobilenLaserscannernimmermehranBedeutunggewonnen.DieBaumfindung,Durchmesseranpassung
undVorratsermittlungaufBaum‐undBestandesebeneanhandvon3D‐Punktwolkenfunktionierenbereits
durchaus zufriedenstellend, wenn auch weiterhin Forschungen bezüglich der Weiterentwicklung der
Technologien in diesen Feldern notwendig sind. Neben Informationen über klassische Zuwachs‐ und
VorratsparametervonBeständengewinntauchdieAbschätzungdergesamtenoberirdischenBiomassevon
WäldernzunehmendanBedeutung.
ZieldieserMasterarbeitistes,dieoberirdischeBiomassevonFichtenwäldern(Picea abies)aufderBasis
von mobilen personengetragenen Laserscannerdaten (PLS‐Daten) zu berechnen. Dazu werden
Referenzbäume unterschiedlichen Alters bzw. Wuchsstadiums gescannt und ausgehend von einer 3D‐
Punktwolke die Biomasse und in weiterer Folge den Kohlenstoffgehalt auf Baum‐ und Bestandesebene
bestimmt.DerAlgorithmuswirdmitgemessenenReferenzwertenkalibriert.MitdenDatenderunechten
Zeitreihewird,zusätzlichzudemAlgorithmus,eineallometrischeBiomassefunktionerstellt.DieseFunktion
wird bei fünf Ein‐Klonversuchsflächen im Wald‐ und Mühlviertel, welche vom BFW betreut werden,
angewendet,umdieBiomasseakkumulationunterschiedlicherPflanzverbändezuvergleichen.Eszeigtesich
inAuswertungen derVergangenheit, dassdieGesamtwuchsleistung anSchaftderbholzvolumen aufden
Versuchsfeldern,dieineinemweiten Pflanzverband begründetwurden, deutlich hinterder Leistung auf
jenenFeldern liegt,die in einemengenVerband begründetwurden. Es gibtaberAnzeichen dafür, dass
diese Unterschiede zwischen den Pflanzverbänden nicht mehr bestehen oder zumindest geringer sind,
wenndieGesamtwuchsleistungandergesamtenBiomassebetrachtetwird,dadieweitständigenFichten
stärkereÄsteundmehrNadelbiomassebesitzen.Essollnäheruntersuchtwerden,obsichdieseVermutung
bewahrheitet.
Die 3D‐Punktwolken der Referenzbäume sowie der BFW‐Versuchsflächen wurden mit dem
personengetragenen Laserscanner (PLS) GeoSLAM ZEB Discovery aufgenommen. Die Referenzdaten
wurdenvonverschiedenenBeständeninKapfenberg(Steiermark)erhoben.Dabeiwurden36ausgewählte
Bäume gefällt und vollständig entastet. Der Stamm wurde sektionsweise kluppiert und z usätzlich BHD,
Stockhöhe, Baumhöhe und Höhe des Kronenansatzes gemessen. Die Äste wurden mit einem mobilen
Hackergehackt,dasHackgutgewogenundeineMischprobevon5lproBaumentnommen.DieseProben
wurdengetrocknetundnachAst‐undNadelpartikelsortiert.ÜberdenWassergehaltderProbekannauf
dasATRO‐GewichtdergesamtenAst‐undNadelbiomasserückgerechnetwerden.DieDatengrundlagefür
die Biomassefunktion besteht aus den modellierten Biomassewerten aus der 3D‐Punktwolke und den
händischerhobenenReferenzdaten. 
Abstracts
47
Poster presentation – BSc #22
Vergleich eines Leica BLK2GO und eines GeoSLAM ZEB Horizon
personengetragenen Laserscanners (PLS) zur Baumentdeckung, Durchmesser-,
Höhen- und Kronendimensionsschätzung auf Waldinventurstichprobenpunkten
Raphael Andreas Katzenschlager 1*, Josef Alois Oberlindober 1*, Felix Thaler 1*, Christoph Gollob
1, Andreas Tockner 1, Tim Ritter 1, Arne Nothdurft 1
1 Institut für Waldwachstum (WAFO), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur
(BOKU), Wien, Österreich
*Korrespondenz: raphael.katzenschlager@students.boku.ac.at, josef.oberlindober@students.boku.ac.at,
felix.thaler@students.boku.ac.at
Abstract
Als Entscheidungsgrundlage für die forstliche Planung dienen meist Informationen und Daten der
Waldinventur. Die traditionellen Inventurmethoden wurden in den letzten Jahren zunehmend von
modernen Sensoren wie Laserscannern revolutioniert. Die Gründe für den vermehrten Einsatz sind die
einfache Handhabung, die zeitliche Effizienz und der umfangreichere Datenbestand mit zahlreichen
Auswertemöglichkeiten.
ZieldieserArbeitwareszweiPLS‐GerätehinsichtlichderenVerwendungundTauglichkeitfürdenEinsatz
inWaldinventurenzuvergleichen.HierzuwurdederamInstitutfürWaldwachstumvorhandeneGeoSLAM
ZEBHorizonunddervonderFirmaLeicazurVerfügunggestellteLeicaBLK2GOverwendet.Dabeistellte
sichdieFrage,obsichdiebeidenSystemehinsichtlichBaumentdeckung, Durchmesser‐, Höhen‐ und
Kronendimensionsschätzung von traditionell erhobenen Referenzdaten unterscheiden. Die
DatengrundlagefürdenVergleichderzweiLaserscannerbildeten9StichprobenpunkteimLehrforstRosalia
derBOKU.
Für den Vergleich der Laserscannerdaten wurden die entstandenen 3D‐Punktwolken der beiden
Laserscanner mit dem Programm CloudCompareko‐registriert. Der vom Institut für Waldwachstum
entwickelte Algorithmus diente als Grundlage für die Baumfindung, Durchmesser‐, Höhen‐ und
Kronendimensionsschätzung. Zeitgleich wurden je Scannertyp (GeoSLAM, Leica) 36 Bäume händisch
segmentiert,umzusätzlicheReferenzdatenfürBaumhöhenmessungundeineKronendimensionsschätzung
zugenerieren.
DieEntdeckungsratevonBäumenmiteinemBHDüber5cmbeträgtbeimGeoSLAMbei76,3%undbeim
Leicabei85,0%.BeieinerKluppschwelleüber10cmbeträgtbeimGeoSLAMbei91,9%undbeimLeicabei
95,6%.DerAnteilanfalschgefundenBäumenbewegtsichbeibeidenScannernzwischen2‐4%.Derbias
derDurchmesserschätzungbeträgt‐0,92cmbeim GeoSLAM und 0.03cmbeimLeica.DerRMSEbeträgt
2,86cmbeimGeoSLAMund3,15cmbeimLeica.DieautomatischeHöhenschätzungergabbeimGeoSLAM
einenbiasvon1,41mundeinenRMSEvon4,64m.DerLeicaweistimVergleicheinenbiasvon4,93mund
einenRMSEvon7,40mauf.DieseErgebnisselassensichdurchdiegeringeReichweitedesLeicaBLK2GO
vonmax.20merklären.
Abstracts
48
Oral presentation – BSc
Wachstum von Fichte, Lärche und Zirbe in Hochlagenaufforstungen
Johanna Kiene*, Sonja Vospernik 1, Christian Scheidl 2
1 Institut für Waldwachstum, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien
2 Institut für Alpine Naturgefahren, Department für Bautechnik und Naturgefahren, Universität für Bodenkultur, Wien
*Korrespondenz: johanna.kiene@students.boku.ac.at
Abstract
Mittedes20. Jahrhunderts wurdenzahlreiche Aufforstungenin denHochlagender Alpen durchgeführt.
AufgrundderextremenWitterungsbedingungenistjedochnichtjedeBaumartfürdieHochlagengeeignet.
GutzurechtmitFrosttrocknis,langerSchneedeckendauerundkurzenVegetationsperiodenkommenFichte,
rcheundZirbe.BesondersdieZirbe,welcheschonbei2‐CWachstumzeigt,istgutandieHochlagen
angepasst.Allgemein wirdeineTemperatur von5°Cals Voraussetzungfürein Wachstumbei Koniferen
angegeben.
WiegutsichdieAufforstungeninden letzten JahrzehntenetablierthabenundwelcheUnterschiededas
jeweiligeWachstumderbetrachtetenBaumartenaufweist,wirdindieserArbeitanhandvon89Bohrkernen
(ca.30proBaumart)ausTiroler‐Hochlagenaufforstungenuntersucht.
Die Bohrkerne wurden in den Aufforstungen der Schwager Gonde und Istalanzbach an zufällig
ausgewähltenBäumenentnommen.Nach derAufnahmeimGeländewurdendieBohrkernemithilfevon
WinDendro gescannt und synchronisiert. Die anschließende erfolgte mittels gemischten, generalisierter
additive Modelle in R Studio. Zusätzlich zu den bohrkernbezogenenDaten(Baumalter,Jahrringbreite)
werden die standortsbezogenen Klimadaten in die Modellierung miteingerechnet. Somit können die
ZusammenhängezwischenWachstum,BaumartunddenWitterungsbedingungendargestelltwerden.
DieModellierungzeigt,dassdasWachstumindenHochlagenvomAlterundderTemperaturimFrühjahr
undvondemNiederschlagimSommerabhängt.DiewüchsigsteBaumartistFichte,gefolgtvonZirbeund
Lärche.AusderLiteraturistzuentnehmen,dassZirbeamschlechtestenwächst.DasschlechtereWachstum
derLärchedürfteaufdenStandortzurückzuführensein.
Abstracts
49
Poster presentation – MSc #23
Entwicklung der Waldbiodiversität im Biosphärenpark Wienerwald anhand
messbarer Teilaspekte der Waldstruktur
Christina Kirchner 1*, Sonja Vospernik, 2, Sophie Ette 3
1 Masterstudium Umwelt- und Bioressourcenmanagement, Universität für Bodenkultur, Wien
2 Institut für Waldwachstum, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien
3 Bundesforschungszentrum für Wald, Wien
*Korrespondenz: christina.kirchner@boku.ac.at
Abstract
ImSinneeinernachhaltigenWaldbewirtschaftungwurdenseitderHelsinki‐Deklarationin1993Monitorings
zur Auswirkung von waldbaulichen Tätigkeiten auf die Waldbiodiversität etabliert. Eine Auswahl an
unterschiedlichen Indizes, die mehrere Teilaspekte der Waldstruktur abdecken, gelten als geeignet die
ZusammenhängezwischenEingriffenunddenökosystemarenLeistungendarzustellen.
DieAußernutzunggestelltenWälderindenKernzonendesBiosphärenparksWienerwaldsollenhinsichtlich
einerAuswahlanStrukturdiversitätsindizesanalysiertwerden.GrundlagedafüristdieErkenntnis,dassje
mehr Struktur der Wald anbietet desto mehr Nischenhabitate werden ermöglicht und damit auch die
Biodiversität erhöht. Die 37 Kernzonen sind über den Biosphärenpark verteilt. Sie machen eine
Gesamtflächevon5.400Hektaraus.DieKernzonenliegenzueinemGroßteilimFlyschwienerwaldundsind
laubbaumdominiert.VorherrschendsindBaumgesellschaftenmitEicheundBuche.
Eswerden1649InventurpunktederErhebungenin2008und2020imZugevonMonitoringderKernzonen
verwendet. Die Probepunkte wurden mittels Winkelzählprobe angesprochen. ZurVerfügung stehendie
Stichprobeninventurdaten der Grundeigentümer. Diese bieten die Datengrundalge mit der die
Strukturindizes mit R berechnet und die Veränderungen der Indikatoren modelliert werden.
Dementsprechend können die wesentlichen Zusammenhänge für die Entwicklung der Indizes ausfindig
gemachtwerden.
DieAuswahlder Indizes erfolgteso, dass jeweilsmindestens einStrukturaspekt(horizontaleVerteilung,
Bestandesdichte, Differenzierung, Artendiversität und Durchmischung) abgedeckt ist. Die Ergebnisse
werdenmittelsFachliteraturdiskutiert.EskönnendamitEmpfehlungenanWaldeigentümerzuErhaltung
undFörderungderWaldbiodiversitätgemachtwerden.
Abstracts
50
Poster presentation – MSc #24
Vermessung von Holzpoltern mittels terrestrischer Laserscans
Lukas Moik 1, Christoph Gollob 1, Tim Ritter 1, Karl Stampfer ², Arne Nothdurft 1
1 Institut für Waldwachstum (WAFO), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur
Wien (BOKU)
2 Institut für Forsttechnik (FT), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur Wien
(BOKU)
* Korrespondenz: lukas.moik@students.boku.ac.at
Abstract
Die Vermessung von Rundholzsortimenten ist für Forstbetriebe, Frächter, Holzhändler und
holzverarbeitendeIndustrievonessenziellerwirtschaftlicherBedeutung.GeradeForstbetriebemüssensich
aber bei der Quantifizierung ihres Sägerundholzes primär auf die Werksvermessung der Sägewerke
verlassen, weil das händische Nachmessen von geschlägertem Holz zeitintensiv und damit teuer ist.
EntsprechendinteressantistdieschnelleundpziseVermessungvon Holzpolternoder Rundholz‐LKW‐
Ladungen.
Inzwischen gibt es schon Programme und mobile Applikationen, die anhand von Fotos präzise
Einzelstämme in Holzpoltern erkennen und die zugehörigen Stammdurchmesser ermitteln können.
Allerdings ist die Volumsermittlung nach diesen Methoden teilweise unzuverlässig, da häufig nur eine
StirnseitedesPolterserfasst,unddenlagerndenSortimenteneine einheitliche Länge unterstellt wird.
Darüberhinaus wirddieGenauigkeit derVolumsschätzungbei diesenVerfahren generell starkvon den
EigenschaftendesHolzpolters (wiegut geschlichtet,Verschmutzungder Stirnflächen,Lichtbedingungen)
beeinflusst.
DasZieldieserArbeitistes,basierendaufLaserscanningdaten,automatischBaumstämmeinHolzpoltern
zu finden und deren Volumen zu ermitteln. Dies soll durch die richtige Zuordnung und
Durchmesserermittlung der beiden Stammquerschnitte an Stirn‐ und Rückseite des Polters erfolgen,
wodurch die Läge und das Volumen des Einzelstammes geschätzt wird. Durch die Ermittlung der
EinzelstammvoluminakanninweitererFolgeaufdasGesamtvolumendesPoltersgeschlossenwerden.
AusgangsbasisdafürbildetdiePunktwolkeeinesHolzpolters,dermittelsterrestrischemLaserscanner(TLS)
aufgenommen wurde. Das Volumen des Polters (461,27 fm) wurde durch das Abmaß eines Sägewerks
bestimmt. Die Einzelstammvolumina markierter Sortimente sind ebenfalls bekannt. Diese gelten als
ReferenzwertefürdieausderPunktwolkeermitteltenVolumina.
Der momentan implementierte Ansatz zielt darauf ab, mit dem Hough‐Algorithmus die kreisförmigen
Stammquerschnitte zu finden und Durchmesser zu erkennen. Es werden aber auch andere
Herangehensweisen,wiedieFlächenfindunginPunktwolkenverfolgt.DerletztendlicherfolgreichsteAnsatz
sollinweitererFolgeanPunktwolkenandererHolzpolterüberprüftwerden.

Abstracts
51
Poster presentation – MSc #25
Digitale Waldinventur – Stichprobeninventur mit Personengetragenem
Laserscanning (PLS) und flächenscharfe Vorratsschätzung über räumlich
statistische Modelle
Valentin Sarkleti 1*, Christoph Gollob 1, Tim Ritter 1, Arne Nothdurft 1
1 Institut für Waldwachstum (WAFO), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur,
Wien, Österreich
*Correspondence: valentin.sarkleti@boku.ac.at
Abstract
Traditionell erfolgt die Waldinventur mittels händischer Messung von Einzelbaum‐ und
BestandesparameternimGelände,wasjenachGrößedesForstbetriebsdurchdieanfallendeErhebungszeit
enorme Kosten verursachen kann. Moderne, lasergestützte Sensoren in Verbindung mit räumlich‐
statistischen Modellen können als wertvolle Unterstützung und sogar als Ablöse der traditionellen
Waldinventurdienen.
Die heurige Waldinventur des Forstbetriebes Franz Mayr‐Melnhof‐Saurauumfasstca.1600
Stichprobenpunkte.ImRahmendieserMasterarbeitsolleineUnterstichprobevon500Punktenmiteinem
personengetragenenLaserscanner(PLS)GeoSLAMZEBHorizonaufgenommenwerden.DieAuswertungder
Unterstichprobe wird mittels der am Institut für Waldwachstum entwickelten Routinen automatisiert
erfolgen.DurchdieKombinationderPLS‐Datenmitaktuellen,vomForstbetriebzurVerfügunggestellten
Airborne‐Laserscanning (ALS) Daten, können die Vorräte räumlich interpo liert werden. Das Endprodukt
bildet eine flächenscharfe Vorratskarte mit Angabe des 95‐prozentigen Konfidenzintervalls für die
Einzelflächen.
ZusätzlichzudenPunktenderStichprobeninventurwerden15ausgewählte Probebestände (ca. 15 ha)
aufgenommen.DaInformationendieserBeständebereitsimZugevonanderenProjektenaufgenommen
wurden, sind traditionelle Einzelbaum‐ und Bestandesdaten bekannt, welche für die Evaluierung der
digitalenAufnahme‐ undAuswerteverfahrenherangezogen werden.Die Daten derBestände dienen als
Referenz für die interpolierten Flächenvorräte, welche aus den erhobenen  Stichprobepunkten und den
DatenausdemALSerrechnetwurden.Somitkannüberprüftwerden,obdie95%‐Konfidenzintervalleder
modellierten Vorräte tatsächlich die wahren Vorräte einschließen. Darüber hinaus können auch die
händischenAufnahmenausdertraditionellen WaldinventurimRauminterpoliertwerden und somit die
Aufnahmen der Winkelzählproben auf den einzelnen Probeflächen ebenfalls in die Fläche interpoliert
werden.
Die Ergebnisse dieser Arbeit, sowie gesammelte Rohdaten, dienen als Grundlage, um durch
Wiederholungsaufnahmen an denselben Punkten zu späteren Zeitpunkten exakte Aussagen über den
Zuwachs treffen zu können. Weiters können durch die Weiterführung dieses Erhebungsmodells
gegebenenfalls Auswirkungen von verschiedenen Standortsverhältnissen, sowie unterschiedlichen
Stammzahlhaltungenevaluiertwerden.

Abstracts
52
Oral presentation – MSc
Entwicklung und Evaluierung von automatischen Auswerteroutinen zur
dynamischen Vermessung von Hackguthaufen mithilfe von Laserscanning-
Systemen
Markus Tonner *, Christoph Gollob 1, Tim Ritter 1, Karl Stampfer 2, Arne Nothdurft 1
1 Institut für Waldwachstum (WAFO), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur,
Wien, Österreich
2 Institut für Forsttechnik (FT), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien,
Österreich
*Correspondence: markus.tonner@students.boku.ac.at
Abstract
SupplyChainManagementistderSchlüsselfüreineeffizienteOrganisationderVersorgungmitforstlichen
Rohstoffen. Im Rohstoffmanagement ist eine genaue Bestandsaufnahme der Ressourcen entlang der
gesamtenLieferkettezwingend erforderlich. Nachtraditionellen Methodenerfolgt dieVolumsschätzung
vonHackguthaufenmeistnurgutachterlichundistdemnachäußerstunpräzise.ZieldieserStudiewareszu
testen,obmitLaserscannerneine automatische Detektion, Volumenschätzung und ein
VeränderungsmonitoringderHackguthaufenmöglichist.
Die Aufnahmen wurden mit drei verschiedenen Geräten durchgeführt,einemFaroFocus3DX330 (TLS–
terrestrischerLaserscanner),einemGeoSLAMZEBHorizon(PLS–personengetragenerLaserscanner)und
einemIPadPro4thGen.WobeibeimIPaddieApps3DScannerApp,PolycamundSiteScapezurAnwendung
gekommensind.
Die Datengrundlage bildeten jeweils drei Haufen (beginnend mit 13 m³), die nach jeder Schüttung
(zusätzliche 13 m³ pro Haufen) gescannt wurden. Als Referenzvolumen wurde das Wassermaß der
Radladerschaufel mit 13 m3herangezogen.AmEndejedesVersuchstagswurdendiedreiHaufen
zusammengeschoben und das Gesamtvolumen nochmals gescannt. So konnten insgesamt 14937 m³
Hackgutaufgeteiltauf192individuelleHaufengescanntwerden.ZurAuswertungwurdeinderstatistischen
Programmiersprache R ein neuer Algorithmus entwickelt. Dabei wird die Punktwolke zuerst durch eine
Folge von dichtebasiertem Clustering und geometrischen Analysen nach potenziellen Hackguthaufen
durchsucht.DasvollautomatischeEntdeckenderHaufenfunktioniertmiteinerEntdeckungsratevon100%.
DieVolumsberechnungderHaufenerfolgteübernumerischeIntegration(i)derrasterisiertenOberfläche
und(ii)einesgeneralisiertenadditiven Modells(GAM) der Oberfläche,wobeisichAnsatz(ii) als präziser
erwies.
Für jede Technologie (TLS, PLS, iPad) wurden der BIAS und der RMSE des Volumens jeweils in Proze nt
berechnet:TLS(‐4,10 %/10,26 %),PLS (‐3,71%/10,53 %),3D ScannerApp (0,32%/15,41 %),Polycam (‐
2,01%/10,09%),Sitescape(‐4,37%/13,21%).

Abstracts
53
Poster presentation – BSc #26
Automatic recognition of marked trees by using point-clouds from Personal Laser
Scanning (PLS)
Sarah Wagner 1*, Christoph Gollob 1, Tim Ritter 1, Arne Nothdurft 1
1 Institute of Forest Growth (WAFO), Department of Forest- and Soil Sciences, University of Natural Resources and
Life Sciences, Vienna, Austria
*Correspondence: sarah.wagner@students.boku.ac.at
Abstract
Forestersusecolourfulspraypaintfordifferentreasons,suchaschoosingtreesforcutting,selectingtrees
thatshould be promotedinthe future ormarkingskid/cable roads.PersonalLaserScanners(PLS)have
alreadybeentestedsuccessfullyconcerningtheirapplicationforforestinventoryaswellasmonitoringand
allowfor the gathering oftreeparametersincludingposition,height,anddiametersindifferentheights.
WhencomplementingthePLS(GeoSLAMZEBHorizon)witha360‐degree‐camera(NCTechiSTARPulsar)to
GeoSLAMZEBDiscoverySystemitispossibletomergethecolourinformationfromthe camerawiththe
laserpoint cloud foranalysingcolours.Theaimofthisthesisistoautomatizetherecognitionofmarked
treesandtoclassifynumberssprayedontreescorrectly.Inthefuturethiswillenableapreciseregistration
ofthetimberstockforcuttingorrecordingthecourseofskidroads.
Ininitialtesting,atemporarydatasetwitheighttrees(fourbeechesandfouroaks)wasused.Oneverytree
threedotsweresprayedinfourdifferentcolours(red,blue,green,andyellow),totallingtwelvedotsper
tree.Fourdifferenttypesofspraypaintwereexaminedbymarkingoneindividualtreeperspecieswitha
specifictypeofpaint,onebyMartensandthreetypes(fluo,strongandstandard)bySoppec.Severalcolour
dotsweredefinedastrainingareasfortheautomaticcolourrecognitioninstatisticalcomputinglanguage
R.Sincethefirsttestswi thdifferentcoloursrevealed,thattheredmarkingswererecognizedthebest,while
the type of spray and producer only had marginal influence on the recognition, the further test was
conductedusingredpaintonly.
150randomlyselectedtreesinastand,amongthemmostlyoaksandbeeches,weremarkedwithstrokes
(50trees),dots (50trees)or random numbers(50 trees).The accuracyofmarkingrecognition withthe
alreadydevelopedworkflowinRshallbeassessedinthenextstep.

Abstracts
54
Poster presentation – MSc #27
Development and evaluation of algorithms for the automatic marker-free
registration of forest point clouds obtained from Personal Laser Scanning
Sarah Witzmann 1*, Christoph Gollob 1, Tim Ritter 1, Karl Stampfer 2, Arne Nothdurft 1
1 Department of Forest and Soil Sciences, Institute of Forest Growth, University of Natural Resources and Life Sciences,
Vienna (BOKU), 1190 Vienna, Austria
2 Department of Forest and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life
Sciences, Vienna (BOKU), 1190 Vienna, Austria
*Correspondence: sarah.witzmann@students.boku.ac.at
Abstract
The usage of data obtained from Personal Laser Scanning (PLS) for forest inventory purposes has
increasinglygainedrecognitioninthepastfewyears.Theadvantagesandthusthereasonsforthegrowing
popularityofPLSinforestryarenotfartoseek:Laserscanningtechnologyallowsforanacquisitionofhighly
preciseindividualtreeandstandinformationinarelativelyshortamountoftime.
Nevertheless,thehighlaborcostefficiencyofPersonalLaserScanninginforestinventoryandmonitoring
hasonelimitationwhichisnottobeunderestimatedwhen“wall‐to‐wall”dataisdesired:largerareas(>1‐
3ha)cannotbescannedatonego,duetothescanningtimelimitationassociatedwithsoftwareanddata
processing restrictions. Therefore, multiple scans must be conducted and co‐registered to obtain one
continuouspointcloud.Onewayofdoingthisistouseeasilyrecognizableartificialreferencemarkers,like
whitespheresplacedontripods.Thesemarkerscanafterwardsbedetectedbysemi‐automaticsoftware
andused for referencingspatiallyadjacentscans. However,thetransportation and deploymentof such
markers constitute great logistic and occupational efforts. Taking the additional time needed for the
preprocessingandstackingofthepointcloudsintoconsideration,thissemi‐automaticregistrationcanbe
consideredabottleneckfortheotherwisehighefficiencyofPLS‐basedforestinventoryandmonitoringon
largerareas.
Thegoalofthismasterthesisistodevelopandevaluateanalgorithmfortheautomaticandmarker‐free
registrationofpointcloudstoeliminatethisbottleneckandtopavethewayforamorepracticalandtime‐
efficientusageofPLSonlargerareasinthefuture.29scansobtainedfromaforestedareaof35haserve
asdatabasisforthiswork.ThepointcloudswereobtainedwithaGeoSLAMZEBHorizon(GeoSLAMLtd.,
Nottingham,UK),featuringa high data acquisitionrate (300.000 pointsper second) andscanning range
(100m). Possible approaches for the registration algorithm, which will be tested in the thesis, include
feature‐basedmethods,likearough3Dtransformationusingthetreepositionsanddiametersasmatching
features,aswellasindividual3D‐point‐basedmethods,directlymatchingpointcloudsbasedontheLiDAR
dataitself.Thelattermight be implementedusingtheIterativeClosestPoint(ICP)method,which could
serveasfinetuningaftertheroughregistrationofthepointclouds.Insummary,theaimofthisworkisto
developaneasy‐to‐usealgorithmfortheautomated,marker‐freeregistrationofforestpointcloudsandto
evaluatetheresultingpointcloudsintermsoftheiraccuracy.
Abstracts
55
Institute of Forest Engineering
KEYNOTE presentation
Human-centered AI for smart farm and forest operations
Andreas Holzinger 1*
1 Human-Centered AI Lab, Institute of Forest Engineering, Department of Forest and Soil Sciences, University of
Natural Resources and Life Sciences (BOKU), Vienna, Austria
*Correspondence: andreas.holzinger@boku.ac.at
Abstract
Thankstotheenormousprogressinstatisticalmachinelearning,artificialintelligenceisverypopularagain
todayespeciallyinconnection with cyber‐physical systems,sensors and actors(robotics).However,two
propertiesneedtobefurtherimprovedinthefuture:a)robustnessandb)explainability,i.e.,theabilityto
answerahumanexpert'squestionas to why a certain result was obtained. This is directly related to
robustness,becauseperturbationsintheinputdatacanhavedramaticeffectsontheoutputandleadto
completelydifferent results.Thisis relevant inall criticalareaswhere we workwith realdata fromour
environment, i.e. where we do not have i.i.d. laboratory data. Therefore, the use of AI in real‐world
domains,e.g.,agricultureandforestry,hasledtoanincreaseddemandfortrustworthyAI.Oneapproach
tomakingAI morerobust isto combinestatistical learning withknowledgerepresentations. And thisis
whereinteractivemachinelearningcomesintoplayagain.Forcertaintasks,itcanbebeneficialtoinclude
a human in the loop. A human expert (such as a forester) can often bring experience and conceptual
understandingtotheAIpipeline.Consequently,bothexplainabilityandrobustnesscanpromotereliability
and trust and ensure that humans remain in control, thus complementing ‐ not replacing ‐ human
intelligencewithartificialintelligence.
Abstracts
56
Poster presentation – MSc #29
Einsatz eines terrestrischen Laserscanners (TLS) zur automatischen Detektion und
Vermessung von Fahrbahnveränderungen auf Forststraßen
Josef Hofer *, Christoph Gollob 1, Arne Nothdurft 1, Karl Stampfer 2
1 Institut für Waldwachstum (WAFO), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur,
Wien, Österreich
2 Institut für Forsttechnik (FT), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien,
Österreich
* Korrespondenz: hofer_josef@students.boku.ac.at
Abstract
BeiderBefahrungvonForststraßenmitzumTransportvonRundholzbenötigtenLastkraftwägentreten,vor
allem unter ungünstigen Bedingungen und in der frostfreien Zeit, häufig Schäden an der
Deckschicht/Tragschicht/kombiniertenDeck‐,Tragschichtauf.BeschädigungenanStraßenkörpernkönnen
RückschlüsseaufdieQualitätderBauausführungbzw.denInstandhaltungsbedarfderForststraßegeben.
Forststraßen sind, speziell zur Zeit der Holzernte bzw. Holzabfuhr, Belastungen von bis zu 440 kN
GesamtgewichtproLastkraftwagenausgesetzt.DabeisindauftretendeBremskräftenoch vernachlässigt.
Durchdie fallweisehohe Frequenzder Belastungen inKombination mitSchlechtwetterereignissen, sind
SchädenanStraßenkörpernunausweichlich.NebendemfinanziellenAufwandfürdieInstandhaltungund
Instandsetzung, kann z.B. im schlimmsten Fall ein konzentrierter Wasserabfluss auf der Forststraße zu
Rutschungenführen.
Eine permanente Inventur der Straßenverhältnisse / Zustände der Straßen soll die Planung von
Instandhaltungs‐ und Instandsetzungsmaßnahmen erleichtern. Traditionell wird die Zustandserhebung
einer Forststraße gutachterlich oder zeitaufwändig mit mechanischen oder optischen Messgeräten
durchgeführt.DerEinsatzvonLaserscanning‐SystemenhatdasPotentialeinenneuenQualitätsstandardim
Forststraßenmonitoring zu schaffen. Ziel der Studie ist es, einen automatischen Algorithmus für die
Identifikation,VermessungundVisualisierungvonFahrbahnveränderungen(insbesondereVerdrückungen)
zuentwickeln.Untersuchungsobjekt für dieArbeit stellte eine1.350 m langebefestigte Forststraße dar,
welchemiteinemterrestrischenLaserscanner(TLS)vorundnachBefahrunggescanntwurde.ZwischenMai
2021(ersterScandurchgang)und Oktober 2021(zweiter Scandurchgang) fanden75 beladene Rundholz‐
LKW‐Überfahrten bei dieser Forststraße statt. Vor Beginn der Überfahrten wurden zusätzlich
Lastplattenversucheentlang derForststraße durchgeführt,umdie Tragfähigkeit derStraße festzustellen
undpotentiellauftretendeVerdrückungenbessererklärenzukönnen.
Abstracts
57
Oral presentation – MSc
Analysis of the carbon neutrality potential of polyethylene terephthalate (PET) in
Germany
Anna-Sofia Kraus 1*, Magnus Fröhling 1, Martin Kühmaier 2
1 Chair of Circular Economy, Technical University of Munich, Munich, Germany
2 Institute of Forest Engineering, Department of Forest and Soil Sciences, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
*Correspondence: anna-sofia.kraus@tum.de
Abstract
Theconsumptionofplasticscontinuestoincreaseandisexpectedtoreach460milliontonsin2030,which
isa77%growthin14years.Sincemostvirginplasticisderivedfromfossilresources,thisdevelopmentwill
alsoleadtoanenhanceddemandforoil.Itisexpectedthatin2050,plasticswillaccountfor20%ofglobal
oilconsumption,which is at oddswith aneconomy that needsto becomeindependent of limited fossil
resources.This developmentwill enhance wastegeneration, marineandterrestrialpollutionaswellas
climate change. To conserve our resources and reduce the environmental impacts, plastics need to be
integratedincirculareconomy,whichisespeciallyrelevantforpackagingwithitsshortlifecycle.
This thesis shall model a circular flow of PET as packaging material, integrating all available options to
reducethegreenhousegasemissions.Therefore,acomparativelife‐cycleanalysisfocusingonthe global
warmingpotentialshall be performed by integrating fossil‐ and bio‐basedPET,mechanicalandchemical
recyclingas well asresin derivedfrom carboncapture anduse (CCU).For theend‐of‐life treatmentthe
differentoptionsbeingconsideredarelandfilling,incineration,mechanicalandchemicalrecycling.
As the thesis will be literature‐based, the current state of research is evaluated through a systematic
literature review using renowned databases such as Scopus, Web of Science, JSTOR and Wiley Online
Library.BasedonthefindingsaLifeCycleAssessmentwillbecarriedout.First,thedifferentoptionsneed
tobeevaluatedseparatelybeforecombiningthemtotheiroptimum.Asinallprocessesenergyintheform
ofheatandelectricityisneeded,theresultsmightchangedependingonthelocalelectricitymix.Therefore,
an energy scenario analysis is conducted to investigate which recycling or sourcing approaches are
benefitingagainstothersandhowthisinfluencestheoptimum.

Abstracts
58
Oral presentation – MSc
Digitale Seillinienplanung mittels personengetragenem Laserscanner
Pierre Simon 1*, Christoph Gollob 2, Christian Kanzian 1, Arne Nothdurft 2, Karl Stampfer 1
1 Institut für Forsttechnik, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur, Wien,
Österreich
2 Institut für Waldwachstum (WAFO), Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur,
Wien, Österreich
*Correspondence: pierre.simon@boku.ac.at
Abstract
Indenletzten20JahrenwurdedieDigitalisierungvonWaldbeständenmitHilfevonLaserscannernintensiv
weiterentwickelt. Ein personengetragener Laserscanner (PLS) ermöglicht durch die umfassende und
hochpräzise3D‐Daten‐ErhebungeinendigitalenWaldzwillinginklusiveGeländezuerstellen,woraufneue
digitaleAnsätzefürdieSeillinienplanungaufsetzenkönnen.
Ziel dieser Arbeit ist neben der Ableitung wichtiger Besandesinformationen aus den PLS‐Daten das
automatisierteFindenundDimensionierenvonBauteilen, wie Endmast, Anker‐undStützenbäume.Eine
entsprechendeVisualisierunginQGISsolldemEndanwenderdiedigitalePlanungerleichtern.
ImRahmendieserArbeitwurdendreiBeständeinderSteiermark:Gössgraben(0,77ha),Mautern(1,61ha)
undTrofaiach (5,61 ha)vomForstbetrieb Mayr‐Melnhofgescannt.DabeiwurdederPLSGeoSLAMZEB
Horizontverwendet.DieDatenverarbeitungerfolgtemitderSoftwareGeoSLAMHub5.3.0zu3D
Punktwolken. Die Extraktion von Einzelbaum‐ und Bestandesinformationen (Baumposition, BHD,
Baumhöheetc.) erfolgtmitam Institutfür Waldwachstumentwickelten automatischenRoutinenin der
statistischenProgrammierumgebungR.Hochaufgelöste Orthophotos dientenderGeoreferenzierung der
im lokalen Koordinatensystem vorliegenden Einzelbaumdaten. Die geplanten Seillinien und deren
SeillinienkalkulationsindmitdemQGIS‐PluginSeilaplan(V3.3)durchgeführtworden.
Die Festlegung der Position des Mastseilgerätes und Endmastes erfolgte manuell in Seilaplan. Die
StützenbaumpositionwirdvonSeilaplanaufBasisderermittelten Einzelbaumpositionen festgelegt. Die
anhand der Schaftkurve automatisierte Knicklastberechnung der Stützenbäume erlaubt erstmals eine
iterativeAbstimmungausMontagehöheundNutzlast.AufBasisvonLiteraturdatenkonnteeineFunktion
fürdieSchätzungdesdurchschnittlichenFuhrvolumensinAbhängigkeitvommittlerenBaumdurchmesser
desBestandesabgeleitetwerden.ÜberdieFuhrlast,dasEigengewichtdesLaufwagensunddieAuflastder
Seile,lässtsichdannüberprüfen,obdieStützedieauftretendenLastenimlaufendenBetriebaufnehmen
kannunddienötigeSicherheitgewährleistetist.DiesistinDurchforstungsbeständenmiteinemgeringeren
Baumdurchmesserinteressant, weilsomit die Nutzlastunddie GrundspannungdemBestand angepasst
werdenkönnte.FürdieAnkerbäumewurdedieHaltekräfteausgerechnet.
Abstracts
59
Institute of Forest Entomology, Forest Pathology and Forest Protection
KEYNOTE presentation
Eschen(trieb)sterben: Wissensstand und Initiativen zur Erhaltung der Esche
Thomas Kirisits 1*, Andreas Fera 1, Raphael T. Klumpp 2, Katharina Schwanda 3, Thomas
Geburek 4, Gregor M. Unger 4, Heino Konrad 4
1 Institut für Forstentomologie, Forstpathologie und Forstschutz (IFFF), Department für Wald- und
Bodenwissenschaften, Universität für Bodenkultur Wien (BOKU), Wien, Österreich
2 Institut für Waldbau, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur Wien (BOKU),
Wien, Österreich
3 Institut für Waldschutz, Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW),
Wien, Österreich
4 Institut für Waldbiodiversität und Naturschutz, Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren
und Landschaft (BFW), Wien, Österreich
*Korrespondenz: thomas.kirisits@boku.ac.at
Abstract
DieEsche (Fraxinus excelsior)ist gegenwärtig europaweitdurch dasEschen(trieb)sterben, dasvon dem
invasiven, aus Ostasien eingeschleppten Schlauchpilz Hymenoscyphus fraxineus hervorgerufen wird,
gefährdet. Der Erreger verursacht zahlreiche Krankheitserscheinungen an allen Teilen der Esche. Viele
Bäume sterben nach wiederholtem massivem Befall ab, jüngere innerhalb weniger Jahre, ältere nach
längerem Krankheitsverlauf und häufig unter Beteiligung von sekundären Krankheitserregern wie
Hallimasch‐Arten(Armillariaspp.).LetzterezersetzendieWurzelnunddenWurzelstock,undverursachen
dadurch ein wichtiges Verkehrssicherheitsproblem. LängerfristigistmiteinemRückgangderEschezu
rechnen.DieKrankheitsintensitätistabervonUmweltfaktorenund von derDichteder Escheabhängig;
beispielsweiseistsieumsogrößerjefeuchterderBoden,jeherdieNiederschläge,jegrößerdieDichte
derEscheundjeausgeprägterderWaldcharaktersind.FraxinusexcelsiorundFraxinusangustifolia(Quirl
Esche) gehören zu den für Hymenoscyphus fraxineus anfälligsten Arten, darüber hinaus kann der Pilz
zahlreicheandereEschenarteninunterschiedlichemAusmaßschädigen.
Überall in Europa wird beobachtet, dass einzelne Eschen (geschätzte 1% bis 5%) trotz hohen
Infektionsdrucksnur gering durchdas Eschen(trieb)sterbengeschädigtwerden.Diese Individuen weisen
einehohegenetischbedingte Resistenz bzw. Toleranzgegenüber Hymenosycphusfraxineusauf,dievon
Elternbäumen auf ihre Nachkommen vererbt wird. Über natürliche Selektion könntees ausgehend von
diesen Bäumen zu einer Toleranzsteigerung und damit Anpassung der Eschenpopulationen an den
Krankheitserreger kommen. Dieser Anpassungsprozess kann von der Praxis durch die Erhaltung sowie
Verjüngung und Vermehrung von außergewöhnlich gering geschädigten Eschen unterstützt werden. In
vielen Ländern wurden darüber hinaus Resistenzzüchtungsprogramme initiiert, welche die Perspektive
eröffnen,dassesin15 bis 20 Jahreneine Reihe vonSamenplantagen mit toleranten Eschen‐Genotypen
geben wird, in denen Saatgut zur Anzucht von genetisch vielfältigen, lokal angepassten Pflanzen mit
befriedigendhoherKrankheitstoleranzerzeugtwerdenkann.
Dieser Vortrag wird den Wissenstand zum Eschen(trieb)sterben und das Programm „Esche in
Not“(http://www.esche‐in‐not.at)zurErhaltungderEscheinÖsterreich,überblickshaftvorstellen.
Abstracts
60
Poster presentation – MSc #30
Evaluation of bark beetle development and drought stress by use of PHENIPS-TDEF
for two Lower Austrian Norway spruce stands
Magdalena Ebner 1*, Sigrid Netherer 1
1 Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences,
University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
*Correspondence: magdalena.ebner@students.boku.ac.at
Abstract
MassiveinfestationofIpstypographus(Coleoptera:Curculionidae)inNorwaysprucestandshavebecome
common in Central European forests since the early 1990s. It is considered a problem particularly in
managedforests.
Duetoclimatechangeeffects,precipitationislowatthestudyareainnorth‐eastAustria.Picea abies,as
themainaffectedtreespeciesoftheEurasiansprucebarkbeetle, becomes stressed by drought and
thereforepredisposed forinfestation. Moreover warm,dryand long‐lastingsummerweather offers Ips
typographusperfectconditionsforsurviving,reproductionandformationofmultiplegenerationsandsister
broods.TranspirationdeficitcauseslowerresistanceofPiceaabies,sameasmonocultureandunsuitable
locationsforthistreespecies.
Forest engineers are trying to handle the damages dealt by Ips typographusforyearsnowandhave
developedcertaintoolstomonitorthem.OneofthemisPHENIPS,whichhasbeendevelopedbyscientists
fromtheInstituteofForestEntomology,ForestPathologyandForestProtection at University of Natural
ResourcesandLifeSciences,Vienna.
ThetoolPHENIPSwasdevelopedtohelp forestmanagers topredictphenology ofIps ty pographusand
enables quick response. PHENIPS is combined with TDEF, a forestwaterbalancemodule.Themodel
combinationusesweatherandtopographicalinformationtosimulatebarkbeetleattack,populationtrend
aswellastranspirationdeficitandallowsriskassessmentonstandlevel.
Thisstudywillevaluatemodeloutcomewithfielddatafromsoilmoisturesensors,traptreesandhemiview
picturesforassessingleafareaindex(LAI).Moreover,Iwill researchthehistoryofthestudyarea,which
belongstotheforestoperationWaldviertel‐VoralpenofÖsterreichischeBundesforsteAG(Öbf).Thearea
hasbeenaffectedbydifferentcalamitiesduringthelasttenyears.Besidesbarkbeetleinfestations,wind
wasthe mainactor inthose predisposed unstablestands. From 2012to 2020 werecordan amountof
88.799m³oftimberharvestedcausedbybarkbeetleinfestationandonlyintheyear2019/20adamaged
areaof18,3ha.

Abstracts
61
Oral presentation – MSc
Anfälligkeit heimischer und nicht heimischer Eschenarten für den Erreger des
Eschentriebsterbens, Hymenoscyphus fraxineus
Andreas Fera 1*, Susanne Krumböck 1, Raphael T. Klumpp 2, Gregor M. Unger 3, Heino Konrad 3,
Thomas Kirisits 1
1 Institut für Forstentomologie, Forstpathologie und Forstschutz (IFFF), Department für Wald- und
Bodenwissenschaften, Universität für Bodenkultur Wien (BOKU), Wien, Österreich
2 Institut für Waldbau, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur Wien (BOKU),
Wien, Österreich
3 Institut für Waldbiodiversität und Naturschutz, Bundesforschungs- und Ausbildungszentrum für
Wald, Naturgefahren und Landschaft (BFW), Wien, Österreich
*Korrespondenz: andreas.fera@boku.ac.at
Abstract
Das Eschentriebsterben, hervorgerufen durch den aus Ost‐Asien eingeschleppten Schlauchpilz
Hymenoscyphusfraxineusistseit1992inEuropa bekannt. Im Jahr2005wurdedieKrankheiterstmalsin
Österreich beobachtet und im Jahr 2007 der Erreger erstmals nachgewiesen; er ist mittlerweile
flächendeckendverbreitetundstellteineBedrohungfürvielederweltweitvorhandenenEschenartendar.
DieseMasterarbeitverfolgtedasZiel,dasWissenüberdieAnfälligkeit verschiedener Eschenarten
gegenüberH.fraxineuszuerweitern.ZudiesemZweckwurdenzweiunterschiedlicheVersuchebearbeitet,
einerseitseinInokulationsversuch,beidemgetopfteVersuchspflanzenmiteinemIsolatvonH.fraxineus
künstlichinfiziertwurden,undandererseitseinFreilandversuch,beidemEschennatürlichenInfektionen
durchdenPilzausgesetztwurden.BeibeidenVersuchenwurdenheimischeundnichtheimischeFraxinus
Arten untersucht. Die Versuchspflanzen wurden auf Krankheitssymptome kontrolliert und von
symptomatischenZweigenwurdeversucht,H.fraxineusnachzuweisen.DerErregernachweiserfolgtezum
einen mittels Re‐Isolierung auf künstlichen Nährmedien und zum anderen durch molekulargenetische
Methoden.
AbgesehenvonFraxinuscf.rhynchophylla,einerasiatischenArt,wurdenEschentriebsterben‐Symptomean
allenuntersuchtenEschenartenfestgestellt,undH. fraxineuswurde anihnennachgewiesen. Bei diesen
Arten handelte es sich um Fraxinus excelsior, F. angustifolia und F. ornus aus Europa, F. america na, F.
pennsylvanicaundF.cf.latifoliaausNordamerikasowieF.mandshuricaundF.cf.mandshuricaausAsien.
DieNachweiseanderMandschurischenEschelegennahe,dassH.fraxineuseininOst‐Asienübersehener
Krankheitserreger ist. In der Krankheitsintensität nach natürlicher Infektion und k ünstlicher Inokulation
stimmtendieuntersuchtenEschenartenweitgehendüberein.Fraxinusexcelsior,F.angustifoliaundF.cf.
latifoliawarenamstärkstengeschädigt,gefolgtvonF.pennsylvanicaundF.americana,währendF.ornus,
F. mandshurica und F.cf.mandshurica nur vereinzelt Symptome nach natürlicher  Infektion und relativ
kleineRindennekrosenundHolzverfärbungennachkünstlicherInfektionaufwiesen.
DieseMasterarbeithatgezeigt,dassH.fraxineusanvielenEschenartenSymptomehervorrufenkannund
fürzahlreicheArteneineGefährdungdarstellt.
Abstracts
62
Poster presentation – MSc #31
Honeydew producing aphids on spruce (Picea abies) and Douglas fir (Pseudotsuga
menziesii) and their importance for honey production in Austria
Anna-Lena Ferstl 1*, Christa Schafellner 1, Josef Mayr 2
1 Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest- and Soil Sciences,
University of Natural Resources and Life Sciences, Vienna (BOKU)
2 Department of Apiology and Bee Protection, Austrian Agency for Health and Food Safety (AGES)
*Korrespondenz: anna.ferstl@students.boku.ac.at
Abstract
Climate extremes and tree‐killing bark beetle outbreaks are key factors driving large‐scale changes in
structure,function,andcompositionofconiferousforests inAustria,especiallyspruceforestsinlowland
areas. In recent years, the non‐native Douglas fir (Pseudotsuga menziesii)isseenasanalternativeto
Norwayspruce(Piceaabies)thatprovidesvaluabletimberandismoretoleranttodrought.Aneconomically
importantnon‐woodforestproductishoneydewhoney.
ThedisappearanceofspruceforestsinsomeregionsofAustria,suchasinpartsoftheWaldviertel,willhave
anegativeimpactonbeekeeping,asspruceforestsareofparticularimportanceforforesthoneyproduction.
Foresthoney is producedbyaphids, whichsuck the phloemsapof theirhost plantsandproduce large
quantitiesof honeydew; onspruceitis mainlythe genusCinara.Itis stillunclearwhether and towhat
extenthoneydewproducersalsooccuronDouglasfir.
InthemasterthesisIwillrecordtheabundanceandthepopulationdynamicsofaphidsonselectedtrees
inaNorwayspruceandaDouglasfirplantationnearKrems,LowerAustria,atweeklyintervalsfromspring
tolatesummer.Thedatawillshowwhichaphidspeciescolonizethetwotreespeciesonthetestplotsand
whattheirseasonaldynamicslookslike.Honeydewproductionisinfluencedbynumerousbioticandabiotic
factors,includingtemperature,season,etc.Therefore,dataonforesthoneyproduction(quantities)over
the last decades are collected from online surveys (questionnaires,qualitativeinterviews)among
beekeepersthroughoutAustria.
Theresultswillprovideafirstscientificdatabaseonfluctuationsinforesthoneyharvestandtheextentto
whichtheyareeventuallyinfluencedbyclimatechange.
Abstracts
63
Poster presentation – MSc #32
Gefahrenpotential durch den Ips cembrae in Lärchenbeständen im Vinschgau
Viviane Kaserer 1*, Sigrid Netherer 1
1 Institut für Forstentomologie, Forstpathologie und Forstschutz, Department für Wald- und Bodenwissenschaften,
Universität für Bodenkultur, Wien, Österreich
*Korrespondenz: viviane.kaserer@students.boku.ac.at
Abstract
DerohnehinschonniederschlagsarmeVinschgau,einesderinneralpinenTrockengebieteverzeichnetinden
letzten Jahren sehr starke Dürreperioden. Seine Trockenheit, die längeren Dürreperioden und weitere
FaktorenbegünstigendasAuftretendesIpscembraeinLärchenbeständen,vorallemimoberenVinschgau.
Die,durchIps cembraeverursachte Schadholzmengenahm daherin einigenBeständenderForststation
Mals im Vinschgau in den vergangenen Jahren deutlich zu. Für di e Lärchenbestände im Vinschgau, die
häufigeinebedeutendeSchutzfunktionaufweisen,stelltdieserSachverhalteinebeträchtlicheBedrohung
dar.
Zielder angestrebten Arbeit istes,jeneFaktorenherauszufinden,diesowohlauf Standorts‐alsauchauf
Bestandsbasis das Auftreten von Ips cembrae begünstigen. Dafür werden anhand einer fundierten
LiteraturrechercheprädestinierteFaktorenfürdasVorkommendesIpscembraeherausgefiltert.Siewerden
anschließend in Indikatoren gegliedert(z.B. Altersklassen für den Faktor Bestandesalter). Außerdem
werden sie nach Einfluss auf die Prädisposition, nach Sicherheit der Literaturaussagen, etc. gewichtet.
DarausergebensichzweiPrädispositionsschlüssel(predispositionassesmentsystem=PAS):einerfürden
StandortundderanderefürdenBestand.
Die PAS werden durch den Vergleich des berechneten Gefährdungsgrades mit den tatsächlichen
Befallsdaten (Fangdaten durch Pheromonfallen, Schadholzstatistik) der vier befallenen Bestände der
ForststationMalsimVinschgauverifiziert.
Zuerwartenist,dassdiedurchKlimawandelverursachtenTrockenperioden,vorallemLärchenbestände,in
undaußerhalb ihresnatürlichenVerbreitungsgebietes, schwächen.DortnimmtdieAbwehrreaktionder
einzelnenBäumeabundeskommthäufigerzuMassenvermehrungendesIpscembrae.Außerdemwirken
Faktoren,wiedasVorhandenseinvonBrutmaterialdurchSturm‐undSchneebruchoderDurchforstungen,
prädisponierendfürdasAuftretendesIpscembrae.
Die Anwendung der Prädispositionsschlüssel soll als Entscheidungshilfe für weitere waldbauliche
Maßnahmen dienen. Die Maßnahmen zielen auf eine Reduktion der Anfälligkeit der Bestände für
MassenvermehrungendesIpscembraeab,umdenkommendenGenerationeneinenstabilenWaldbestand
mitintakterSchutzfunktionzusichern.

Abstracts
64
Oral presentation – MSc
Genetische Diversität und Populationsstruktur der Auerhuhn-Vorkommen (Tetrao
urogallus) in Vorarlberg
Laura-Marie Ketzmerick * 1, Florian Kunz 2, Christian Stauffer 1, Ursula Nopp-Mayr 2
1 Institut für Wildbiologie und Jagdwirtschaft, Department für Integrative Biologie und Biodiversitätsforschung,
Universität für Bodenkultur (BOKU), Wien, Österreich
2 Institut für Forstentomologie, Forstpathologie und Forstschutz, Department für Wald- und Bodenwissenschaften,
Universität für Bodenkultur (BOKU), Wien, Österreich
*Korrespondenz: laura-marie.ketzmerick@students.boku.ac.at
Abstract
DieösterreichischenAuerhuhnvorkommen (Tetraourogallus)gehörenzu dengrößtenin Zentraleuropa.
Die Art ist aufgrund ihrer Gefährdung eine Zielart der EU‐Vogelschutzrichtlinie und spielt durch ihre
EigenschaftenalsIndikator‐undSchirmarteinewichtigeRolleinderNaturschutzplanung.ZieldieserArbeit
ist es, die genetische Diversität und die Populationsstruktur d er Auerhuhnvorkommen in Vorarlberg zu
erheben.DiesgeschiehtimRahmeneineslandesweitenProjektszurSicherungdesAuerwildsinVorarlberg
inZusammenarbeitdesLandesVorarlberg,derVorarlbergerJägerschaft,Stiftung„Gamsfreiheit“,BirdLife
Vorarlberg, dem Natura2000‐Regeionsmanagement und einem Team von Wildökolog*innen. Das
nichtinvasives Probenmaterial (Losung, Federn) wurde von den betreffenden Revierinhabern und
GrundeigentümerngesammeltundfürgenetischeAnalyseherangezogen.
Im Rahmen dieser Masterarbeit werden folgende Fragestellungen bearbeitet: (1) Wie hoch ist die
genetische Diversität der Auerhuhn Population in Vorarlberg? (2) Zeigen die verschiedenen Gebiete
UnterschiedeinihrergenetischenDiversitätundisteineAbgrenzungderGebieteaufgrunddessenmöglich?
(3)LassensichdieeinzelnengeographischabgrenzbareGebieteingenetischeClustereinteilen?(4)Können
HybridzonenfestgestelltwerdenwelchewichtigenKorridorederMigrationdarstellen?(5)Zeigeneinzelne
TeilpopulationenimVergleichzudenanderenhöhereInzuchtwerte?
DiegenetischeAnalyse erfolgtdurchdie Amplifizierungvonzwölf Mikrosatelliten, mittelsvier multiplex
PCRsmitjedreiPrimerpaaren.DieGeschlechtunterscheidungerfolgtübereinegesondertePCR.Diehierfür
genutzten Primer amplifizieren ein Intron im CHD‐1‐Gen, welchessichinseinerGrößeaufZundW
Chromosomunterscheidet.EinGenotypwirdnurerfasst,wennmindestens drei unabhängige
WiederholungendiegleicheAllelkombinationaufweisen,damitnichtinvasivemProbematerialgearbeitet
wurde.Individuen,beidenendreiodermehrLocifehlen,werdenvonweiterenAnalysenausgeschlossen.
DieAnalysedergenetischenDiversitäterfolgtmitHilfevonmultivariatenAnalysen,diePopulationsstruktur
wirdmittelsdesSoftwarepaketsSTRUCTUREuntersucht.
Mit Hilfe dieser Daten wird eine wichtige Grundlage für das zukünftige Auerhuhn Management in
Vorarlberggeschaffen.

Abstracts
65
Poster presentation – MSc #33
The spectrum of parasitoids in oak stands with varying abundance of winter moths
(Operophtera brumata, Erannis defoliaria) and oak leaf roller (Tortrix viridana)
Martin Mayrhofer 1*, Christa Schafellner 1, Axel Schopf 1
1 Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences,
University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
*Correspondence: martin.mayrhofer@students.boku.ac.at
Abstract
InCentralEuropeanforestecosystems,drought‐tolerantdeciduoustreespeciessuchasoaksarebecoming
increasinglyimportanttomitigatethenegativeimpactsofclimatechange.However,defoliationofoaksby
insectpestsmayactasanadditionalstressorintheseforests.Inyearswithhighpopulationdensities,early
spring‐feedinglarvaeofwintermothsandleafrollerscancausesignificantlossesofleafmass.Theratesof
parasitismandpredationareimportantfactorsthatdrivechangesinthepestpopulationsovertime.
ThemasterthesisispartofthebilateralcooperationbetweenAustriaandGermanyonoakforestresilience
thatinvestigatesthepotentialofnaturalenemies(especiallyparasitoids)leadingtosuccessfulcontrolof
wintermoths (Operophterabrumata, Erannisdefoliaria)and the oakleaf roller,Tortrix viridana.Intwo
consecutiveyears,theoccurrenceandabundanceofparasiticwaspsandparasiticfliesfromfouroakstands
inMünsterland(NorthRhine‐Westphalia)withdifferenthistoriesofinsectoutbreaksareinvestigated.For
thespectrumoflarvalparasitoids,caterpillarsofthepestinsectsarecollectedfromoakcrownsinearly
springandrearedinthelaboratoryuntilpupationorparasitoidemergence.Parasitoidsthatattackthehost
larvae,butemergefrompupaeareobtainedfromfully‐grownwintermothlarvaethatdroptotheground
andpupateinsideearthencocoons.Pupalparasitoidsaresampledfrompupaeinthesoil(wintermoths)or
pupaeinleafrollsinthecrown(oakleafroller).Speciesdeterminationiscarriedoutwithidentificatio nkeys,
unknownspeciesareidentifiedwiththehelpofexperts.Parasitization rates of larvae and pupae are
calculatedfromestimatedmothdensities,separatedaccordingtothesitesandyears.
Theobtaineddatashowsimilaritiesanddifferencesinthespectrumofparasitoidsandpercentparasitism
andallowconclusionsabouttheroleofindividualparasitoidspeciesinthepopulationdynamicsoftheoak
moths.

Abstracts
66
Oral presentation – MSc
Phylogeography of the Mediterranean pine bark beetle Orthotomicus erosus
running into pitfalls
Eva Papek 1*, Dimitris Avtzis 2, Christian Stauffer 1, Martin Schebeck 1
1 Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences,
University of Natural Resources and Life Sciences, Vienna, Austria
2 Forest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika-Thessaloniki Greece
*Correspondence: eva.papek@students.boku.ac.at
Abstract
TheMediterraneanpinebarkbeetleOrthotomicus erosusisnativetoSouthernEurope,CentralAsia,and
Northern Africa. It is an invasive species, e.g. in Southern Africa, Northern America, or Uruguay.
Orthotomicuserosusbreedsinpinetrees,isassociatedwithblue‐stainfungi,andefficientlycolonizestrees
utilizingaggregation pheromones.Dependingon environmental conditions,this polygynousspecies can
establishbetweentwoandsevengenerationsperyear.
DuringthePleistocenemajorpartsofEuropewerecoveredbyathicklayerofice.Lifewasonlypossiblein
refugial areas, e.g. Iberia, Apennines, Balkan. The successive retraction to refugial areas and later
recolonizationactedasevolutionarydriversinmanyspecies.Duetoitsstronghostdependency,itislikely
thatO.erosusco‐evolvedwithpinetrees.
Toresolvethegeneticstructureandunveiltheevolutionaryhistoryofthespecies,221individualsfrom14
populationswereanalysed.TheseindividualswerecollectedfrompheromonetrapsinstalledinPortugal,
Spain, France, Italy, Hungary, Greece, Cyprus, and Uruguay. DNAwasextractedandafragmentofthe
mitochondrialCOIgenewasPCR‐amplified.PCR‐productswereSanger‐sequencedandthesequenceswere
phylogeneticallyanalysedandcomparedtodatadepositedinNCBI‐GenBank.
Despitetheapplicationoftwodifferentextractionprotocolsandthreedifferentprimerpairsnomeaningful
resultswereobtained.ProblemseitheroccurredinPCR,sequencing,ordataanalysis.Likely,asourceof
problemswasrelatedtosampling,asDNAqualitywasnotgoodenough to amplify larger amplicons.
Probablydeadindividualsfromtrapswereprovidedforanalyses.Furthermore,species misidentification
wasaproblemasseveralindividualsrevealedaDNAbarcodeofadifferentbarkbeetlespecies.
Infuturestudiesthesepitfallshavetobecircumvented,especiallysamplingofinsectswithhighDNAquality
hastobeensuredtofacilitatetheuseofmolecularmarkerstoanswerphylogeographicquestions.
Abstracts
67