ArticlePDF Available

Source rock potential of the Miocene sedimentary rocks in the Carpathian Foredeep of the Czech Republic

Authors:

Abstract and Figures

We determine the organic matter content, its thermal maturity, genetic type, and source rock potential of the Miocene sedimentary rocks in the Czech Carpathian Foredeep. In the Czech Republic the Carpathian Foredeep represents a peripheral foreland basin formed due to the tectonic emplacement and loading of the Alpine-Carpathian Thrust Wedge onto the passive margin of the Bohemian Massif. Random vitrinite/huminite reflectance measurements and maceral analyses were performed on 25 samples from the Carpathian Foredeep succession. Additionally, results of 135 TOC content measurements, 141 Rock-Eval pyrolysis analyses and 27 vitrinite reflectance measurements were used to evaluate the regional distribution and depth trends for the entire Carpathian Foredeep. The thermal maturity of organic matter is between the immature part and peak of the oil window (Tmax = 413–448°C). Beneath the West ern Carpathian Thrust Belt, the thermal maturity reaches higher values (Rr = 0.43–0.58%, Tmax = 429–448°C). The hydrocarbon generation potential is poor or fair, even if the total organic carbon values indicate good or even very good source rock potential. This is mainly due to the prevailing gas-prone Type III kerogen.
Content may be subject to copyright.
Geo log i cal Quar terly, 2022, 66: 1
DOI: http://dx.doi.org/10.7306/gq.1634
Source rock po ten tial of the Mio cene sed i men tary rocks
in the Carpathian Foredeep of the Czech Re pub lic
Eva GERŠLOVÁ1, *, Lujza MEDVECKÁ1, Petr JIRMAN1, 2,
Slavomír NEHYBA1 and Vladimír OPLETAL3
1De part ment of Geo log i cal Sci ences, Fac ulty of Sci ence, Masaryk Uni ver sity, Kotláøská 2, 611 37, Brno, Czech Re pub lic
2Czech Geo log i cal Sur vey, branch Brno, Leitnerova 22, 602 00 Brno, Czech Re pub lic
3MND a.s., Úprkova 807/6, 695 01 Hodonín, Czech Re pub lic
Geršlová, E., Medvecká, L., Jirman, P., Nehyba, S., Opletal, V., 2022. Source rock po ten tial of the Mio cene sed i men tary
rocks in the Carpathian Foredeep of the Czech Re pub lic. Geo log i cal Quar terly, 2022, 66: 1, doi: 10.7306/gq.1634
As so ci ate Ed i tor: Dariusz Wiêc³aw
We de ter mine the or ganic mat ter con tent, its ther mal ma tu rity, ge netic type, and source rock po ten tial of the Mio cene sed i -
men tary rocks in the Czech Carpathian Foredeep. In the Czech Re pub lic the Carpathian Foredeep rep re sents a pe riph eral
fore land ba sin formed due to the tec tonic em place ment and load ing of the Al pine-Carpathian Thrust Wedge onto the pas sive
mar gin of the Bo he mian Mas sif. Ran dom vitrinite/huminite reflectance mea sure ments and maceral anal y ses were per -
formed on 25 sam ples from the Carpathian Foredeep suc ces sion. Ad di tion ally, re sults of 135 TOC con tent mea sure ments,
141 Rock-Eval py rol y sis anal y ses and 27 vitrinite reflectance mea sure ments were used to eval u ate the re gional dis tri bu tion
and depth trends for the en tire Carpathian Foredeep. The ther mal ma tu rity of or ganic mat ter is be tween the im ma ture part
and peak of the oil win dow (Tmax = 413–448°C). Be neath the West ern Carpathian Thrust Belt, the ther mal ma tu rity reaches
higher val ues (Rr = 0.43–0.58%, Tmax = 429–448°C). The hy dro car bon gen er a tion po ten tial is poor or fair, even if the to tal or -
ganic car bon val ues in di cate good or even very good source rock po ten tial. This is mainly due to the pre vail ing gas-prone
Type III kerogen. The best source rocks were ob served in the Mio cene strata of the south ern and cen tral seg ments of the
area dis cussed.
Key words: Carpathian Foredeep, Mio cene, or ganic pe trog ra phy, ther mal ma tu rity, kerogen type, source rock po ten tial
INTRODUCTION
The or i gin of or ganic mat ter-rich sed i ments de pends on
spe cific sed i men tary con di tions, such as high bi o log i cal pro -
duc tion, a low-en ergy sed i men tary en vi ron ment, a slow sed i -
men ta tion rate and an ab sence of de com po si tion/ox i da tion pro -
cesses (Pedersen and Calvert, 1990; Killops and Killops, 2005;
Jovanèiæeviæ and Schwarzbauer, 2015). A suf fi cient amount of
or ganic mat ter, ex pressed as to tal or ganic car bon con tent
(TOC), is one of the three pa ram e ters that in di cate whether a
rock will be a good source rock. Other pa ram e ters re quired to
eval u ate the source rock po ten tial are the qual ity/type of or -
ganic mat ter and ther mal ma tu rity (Tissot and Welte, 1984). At
least 0.5 wt.% of to tal or ganic car bon con tent is nec es sary for a
rock unit to be con sid ered as a source rock. Source rocks con -
tain ing TOC in the range 0.5–2.0 wt.% are clas si fied as sat is -
fac tory (fair, good), those with TOC >2 wt.% are con sid ered as
very good, and TOC val ues >4 wt.% char ac ter ize ex cel lent
source rocks (Pe ters and Cassa, 1994).
The ge netic type of or ganic mat ter can be de ter mined by
the el e men tal anal y sis of kerogen (con cen tra tions of C, H, O, N
and S; Tissot and Welte, 1984). As this an a lyt i cal ap proach re -
quires time-con sum ing sep a ra tion of kerogen, a rou tinely ap -
plied method for kerogen type iden ti fi ca tion uses hy dro gen in -
dex (HI) and ox y gen in dex (OI) from Rock-Eval py rol y sis (e.g.,
Espitalié et al., 1985a; Lafargue et al., 1998; Behar et al., 2001;
Dahl et al., 2004).
Or ganic pe trol ogy anal y sis is con sid ered as a com ple men -
tary method to Rock-Eval anal y sis, es pe cially if a mixed type of
kerogen was iden ti fied (e.g., type II–III). Or ganic mat ter in sed i -
men tary rocks is de scribed as macerals that rep re sent orig i nal
bi o log i cal ma te rial. Macerals are di vided into three groups –
huminite/vitrinite, liptinite, and inertinite. The dif fer ence be -
tween huminites and vitrinites is in how they trans form humic
con stit u ents with in creas ing de grees of coalification (Tay lor et
al., 1998; Suárez-Ruiz et al., 2006). The H/C and O/C atomic
ra tios as well as HI and OI in di ces de crease with in creas ing
rank within the huminite/vitrinite group (Espitalié et al., 1985a;
Sýkorová et al., 2005). The liptinite group is high in hy dro gen
and its macerals are de rived from plant spores, cu ti cles, res ins,
and al gal bod ies not nec es sar ily re lated to the ma rine en vi ron -
ment (Pickel et al., 2017). The inertinite group is typ i fied by low
hy dro gen and high ox y gen and car bon con tents and rep re sents
kerogen type IV, which is ox i dized or ganic mat ter, char coal, or
re cy cled or ganic mat ter (ICCP, 2001).
The in creas ing burial tem per a ture re sults in changes in the
op ti cal and chem i cal prop er ties of or ganic mat ter, which are
mea sur able in rock sam ples (Allen and Allen, 2013). Pro gres -
sive changes are re lated to ki netic pro cesses, in ad di tion to
tem per a ture, and also de pend on the time of ex po sure of or -
ganic mat ter to a given tem per a ture (e.g., Littke et al., 2008;
Hantschel and Kauerauf, 2009). Ther mal ma tu rity data sourced
from deep bore holes are ef fec tive tools for palaeogeothermal
gra di ent eval u a tion. The ba sin ther mal his tory has an im por tant
con trol ling ef fect on the gen er a tion and dis tri bu tion of hy dro car -
bons. Ther mal ma tu rity in di cates diagenetic changes of or ganic
mat ter dis persed in the source rocks that gen er ate hy dro car -
bons – from the im ma ture stage through the main phase of oil
and gas pro duc tion to the post-ma tu rity stage.
A com pre hen sive over view of hy dro car bon sys tems for the
Carpathian belt and its fore land along the south east ern mar gin
of the Bo he mian Mas sif, which in cludes the gen er a tion, mi gra -
tion, ac cu mu la tion, and pres er va tion of hy dro car bons, was pro -
vided by Picha et al. (2006). The po ten tial source rocks in ves ti -
gated to date are pri mar ily the Up per Ju ras sic and Lower
Oligocene, and to a lesser de gree also the Mid dle De vo nian
and Up per Car bon if er ous, suc ces sions (Krejèí et al., 1994,
1996; Geršlová et al., 2015; Jirman et al., 2019; Opletal et al.,
2019). Mio cene strata have not been con sid ered as po ten tial
source rocks in these stud ies. How ever, ex ten sive re search
into or ganic mat ter and its po ten tial in the Pol ish and Ukrai nian
parts of the Carpathian Foredeep have dem on strated that the
Mio cene sed i men tary rocks con tain mostly gas-prone Type III
kerogen and can also gen er ate biogenic gas (Kotarba and
Koltun, 2006; Kotarba et al., 2011a, b; Kosakowski et al., 2020).
More over, burial mod el ling and gas geo chem i cal anal y ses of
the Carpathian Foredeep source rocks in Po land (Kotarba and
Koltun, 2011; Kosakowski et al., 2020) and the Czech Re pub lic
(Goldbach et al., 2017) in di cated lo cal po ten tial for gen er a tion
of thermogenic gas. How ever, no sys tem atic study of the ther -
mal mat u ra tion has been con ducted on the Mio cene sed i men -
tary rocks of the Carpathian Foredeep in the ter ri tory of the
Czech Re pub lic. This pa per fills this gap and com pre hen sively
de scribes the ther mal ma tu rity of these Mio cene rocks, and de -
fines the source rock prop er ties and their re la tions to the cur rent
tec tonic po si tion of the Mio cene strata in this area.
GEOLOGICAL SETTING
The Mio cene de pos its stud ied be long to the Moravian part
of the West ern Carpathian Foredeep – a pe riph eral fore land ba -
sin formed through the tec tonic em place ment and crustal load -
ing of the West ern Carpathian Thrust Front onto the pas sive
mar gin of the Bo he mian Mas sif (Nehyba and Šikula, 2007; Fig.
1). The West ern Carpathian Foredeep con tin ues into the Pol ish
Carpathian Foredeep Ba sin north-eastwards (Oszczy pko et al.,
2006) and to the North Al pine-Fore land Ba sin (Aus trian
Molasse Ba sin/Al pine Molasse Zone) to the south-west. To the
east/south-east, the foredeep suc ces sion is over rid den by the
West ern Carpathian Thrust Belt tec tonic units. Over thrusting of
at least 30 km was dem on strated by deep bore holes (Stráník et
al., 1993; Eliáš and Pálenský, 1998; Oszczy pko et al., 2006).
Lo cal and re gional un con formi ties within the Mio cene suc -
ces sion are de vel oped due to the vary ing in ten sity and ori en ta -
tion of flex ural load ing and dif fer ent in her ited geo log i cal and tec -
tonic base ment struc ture, as well as due to the polyphase na -
ture of the ac tive ba sin mar gin and a grad ual change in its po si -
tion (Brzobohatý and Cicha, 1993; Eliáš and Pálenský, 1998;
Nehyba and Petrová, 2000; Krzywiec, 2001; Kováè et al., 2003,
2004; Oszczypko et al., 2006; Nehyba and Šikula, 2007;
Francírek and Nehyba, 2016).
Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1 2
Fig. 1. Sche matic geo log i cal map (mod i fied af ter Pícha et al., 2006) with lo ca tion of the bore holes stud ied
For bore hole num ber ing see Ap pen di ces 1 and 2
Seis mic and bore hole data show that the bed rock in the
area stud ied con sists of Pro tero zoic crys tal line rocks of Bruno -
vistulicum, De vo nian to Lower Car bon if er ous car bon ates, and
Car bon if er ous siliciclastic de pos its – “Culm fa cies” of the
Moravian-Silesian Pa leo zoic (Jirman et al., 2018). Ero sional
rel ics of Ju ras sic and autochthonous Paleogene strata are also
pres ent, es pe cially in the south ern seg ment of the area ana -
lysed (Fig. 1) where the Mio cene depositional sys tem over lies
the Nesvaèilka and Vranovice palaeovalleys (Kalvoda et al.,
2003, 2008; Zágoršek et al., 2012; Hladilová et al., 2014). The
base ment gen er ally dips south-eastwards; how ever, the re lief
is very ir reg u lar. In the S and SE part of the ba sin the base ment
is mostly over lain by Lower Mio cene de pos its, whereas the
Mid dle Mio cene cover is more com pletely de vel oped to wards
the N and NW.
The Karpatian Stage sed i men tary strata con sti tute the ma -
jor part of the ba sin infill. This is par tic u larly true for the cen tral
seg ment of the ba sin, where Francírek and Nehyba (2016)
iden ti fied three suc ces sive depositional units:
I – la goon-es tu ary and barred coast line de pos its,
II – coast line to shal low ma rine de pos its,
III – off shore de pos its.
The suc ces sion of depositional units re flects both a
stepwise mi gra tion of the foredeep ba sin axis and a shift in time
of the ba sin depocentre cratonwards. This, to gether with the
forebulge re treat, at tests to a shift of the ba sin axis to the
north-west due to con tin ued thrust ing of the Outer Carpathian
Flysch Wedge (Brzobohatý and Cicha, 1993).
The Karpatian de pos its are lithostratigraphically sub di vided
into the Laa For ma tion (Mušov and Nový Pøerov mem bers) and
the over ly ing Kromìøíž For ma tion (Fig. 2). The Mušov Mem ber
is rep re sented by grey ma rine mudstones rich in micro fauna
(“Schlier”). The Nový Pøerov Mem ber is formed of siltstones
and mudstones with thin interbeds of fine- to me dium-grained
sand stone (“Sandy Schlier For ma tion”) (Brzobohatý and Cicha,
1993; Adámek et al., 2003). Highly vari able and even cha otic
de pos its of the Kromìøíž For ma tion rep re sent the fi nal pulse of
the Karpatian Stage depositional cy cle (Benada and Koko -
lusová, 1986; Adámek et al., 2003).
Con tin u a tion of thrust ing of the Outer Carpathian Flysch
wedge by the end of the Karpatian led to the over rid ing of a sig -
nif i cant part of the Carpathian Foredeep by flysch nappes, and
par tial in cor po ra tion of the ba sin de pos its into the nappe struc -
tures. In the Pol ish Carpathian Foredeep, the part lo cated be -
neath the Carpathian nappes has been de fined as the in ner
foredeep (Waœkowska et al., 2014).
METHODOLOGY AND DATA
The Moravian part of the Carpathian Foredeep is sub di vided
in this study into three seg ments (south ern, cen tral, and north -
ern). Each seg ment re veals partly dif fer ent lithological con tent,
strati graphic range, depositional his tory, and ba sin ar chi tec ture.
The re sults pre sented are based on eval u a tion of data newly ac -
quired from the cen tral seg ment and ar chi val data from the
south ern and north ern seg ments. In to tal, 25 core sam ples from
13 bore holes were se lected for maceral anal y ses and huminite
reflectance. An a lyt i cal data ob tained in the past, but never pub -
lished, are also used in this work. These are the re sults of 135
anal y ses of TOC, 141 Rock-Eval py rol y sis anal y ses from 39
bore holes (Fig. 1 and Ap pen dix 1), and 27 vitrinite reflectance
anal y ses from 18 bore holes (Fig. 1 and Ap pen dix 2).
3Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1
Fig. 2. Stra tig ra phy of the Neo gene Foredeep in Moravia
(mod i fied af ter Adámek, 2003; Nehyba et al., 2019a, b)
The huminite/vitrinite reflectance and maceral eval u a tion
was car ried out by Olym pus BX51 mi cro scope with a Zeiss
Photomultiplier MK3 sys tem, an im mer sion lens with 40x mag -
ni fi ca tion, and Pelcon point coun ter. OLYMPUS Im mer sion Oil
Type-F was used. Ran dom reflectance was de ter mined on pol -
ished sec tions by SpectraVision soft ware cal i brated with spinel
(R = 0.422%), sap phire (R = 0.596%), and yt trium alu minium
gar net (R = 0.894%). Be tween 50 and 100 points were eval u -
ated on each sam ple.
To tal or ganic car bon (TOC, wt.%) was mea sured us ing pul -
ver ised sam ples af ter decarbonatization with con cen trated
phos pho ric acid. The quan tity of the car bon di ox ide re leased
dur ing burn ing of the sam ple at 900°C was sub se quently mea -
sured with an IR de tec tor. The Rock-Eval data were re ceived
us ing a Rock-Eval II ap pa ra tus ap ply ing cy cle 1 (Espitalié et al.,
1985b). They are: the free hy dro car bons con tent S1 (mg HC/g
rock) evap o rated from the sam ple at 300°C, re sid ual hy dro car -
bons (or re sid ual hy dro car bon po ten tial) S2 (mg HC/g rock) re -
leased in the tem per a ture range from 300 to 600°C, and tem -
per a ture Tmax (°C) at the S2 peak max i mum. The ge netic po ten -
tial (GP) rep re sents the sum of both the S1 and S2 peaks (mg
HC/g rock) and the pro duc tion in dex was cal cu lated us ing the
for mula PI = S1/(S1+S2) (Espitalié et al., 1985b). The hy dro gen
in dex (HI) was cal cu lated us ing the pre vi ously de ter mined
TOCas HI = 100 * S2/TOC (mg HC/g TOC).
RESULTS
TOC CONTENT AND ROCK-EVAL DATA
The de tailed re sults of the Rock-Eval anal y ses are given in
Ap pen dix 1. Whereas the av er age TOC is sim i lar in both the
cen tral and south ern seg ments (1.35 and 1.36 wt.% re spec -
tively), it is mark edly lower in the north ern seg ment (0.99 wt.%,
Ta ble 1). The high est av er age GP of 3.4 mg HC/g rock cal cu -
lated on the sam ples from the south ern seg ment de creases to
2.8 mg HC/g rock in the cen tral seg ment. In the north ern seg -
ment sam ples, a GP of only 0.55 mg HC/g rock was cal cu lated.
The av er age HI reaches 182 mg HC/g TOC in the south ern
seg ment, 174 mg HC/g TOC in the cen tral seg ment and only
54 mg HC/g TOC in the north ern seg ment (Ta ble 1). The av er -
age Tmax is sim i lar in the cen tral and north ern seg ment sam ples
(432 and 431°C, Fig. 3) and slightly lower in the sam ples from
the south ern seg ment (426°C).
RANDOM HUMINITE/VITRINITE
REFLECTANCE
In the south ern seg ment, the huminite reflectance ranges
from 0.27 to 0.43% Rr with a stan dard de vi a tion of 0.03–0.08%
(Fig. 4, Ta ble 2 and Ap pen dix 2). These val ues rep re sent a
500 m thick in ter val from 801 to 1296 m depth and de void of any
vis i ble ver ti cal trend. The rock ma tu rity cor re sponds to the im -
ma ture zone and/or lig nite to sub-bi tu mi nous coal. In the cen tral
seg ment, the ran dom huminite/vitrinite reflectance var ies in a
wider range from 0.22 to 0.58% Rr with a stan dard de vi a tion of
0.03–0.10 (Fig. 4, Ta ble 2 and Ap pen dix 2). The or ganic mat ter
reaches up to the bound ary be tween the im ma ture and ma ture
stage that is equal to lig nite up to the up per mar gin of sub-bi tu -
mi nous coal. The sam ples ana lysed cover a wide depth in ter val
from 765 to 4729 m.
The ran dom reflectance val ues show con sid er able vari a -
tions but no in creas ing trend within the depth range 0–2 km de -
spite a grad ual in crease in ther mal ma tu rity with depth (Fig. 4).
Huminite/vitrinite reflectance ranges from 0.34 to 0.58% Rr
in the north ern seg ment (Fig. 4 and Ap pen dix 2). In bore hole
NP-779 (ID 16 in Fig. 1), sit u ated ahead of the West Carpathian
orogenic front, ma tu rity reaches 0.36% Rr at a depth of 179 m.
How ever, the strata in ter sected be neath the Carpathian nappes
at a depth of 887 m in bore hole Lhotka-5 (ID 13 in Fig. 1) show a
com pa ra ble re flec tivity (0.34% Rr). This sim i lar ity sug gests that
the ob served ma tu rity level was reached be fore the Carpathian
nappes over rode the Mio cene suc ces sion of the Foredeep.
ORGANIC PETROGRAPHY
The re sults of qual i ta tive and quan ti ta tive anal y ses of the
maceral com po si tion in the Mio cene sam ples of the cen tral seg -
ment are listed in Ta ble 2. A huminite maceral group com posed
pre dom i nantly of ulminite and attrinite is pres ent mostly in sam -
ples from Tlumaèov-1, Lukov-1, Koryèany-9, and 13,
Mouchnice-1 and 2, Snovídky-1, Žarošice-2, Ždánice-135, 147
and 175 bore holes (Ta ble 2).
A higher range of vitrinite reflectance, from 0.44 to 0.58% Rr ,
was mea sured in the Gottwaldov-1 and 2 bore holes where the
Mio cene rocks are deeply bur ied be neath the West Carpathians.
The vitrinite maceral group, com posed pre dom i nantly of
collotelinite and vitrodetrinite, is pres ent in sam ples from the
Gottwaldov-1 and 2 bore holes (Ta ble 2). The liptinite maceral
group is com posed mainly of alginite that is ob served as thin-
Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1 4
Ta ble 1
TOC and Rock-Eval prox ies of Mio cene sed i men tary rocks in in di vid ual seg ments of the Carpathian Foredeep in Moravia
(based on data from Ap pen dix 1)
Pa ram e ter/
seg ment
TOC
[wt.%]
S1S2GP HI
[mg HC/g TOC] Tmax
[°C] PI
[mg HC/g rock]
North ern 0.24–1.89
0.99
0.00–0.46
0.03
0.32–0.76
0.50
0.33–1.08
0.55
19–200
54
422–433
431
0.00–0.68
0.06
Cen tral 0.12–9.17
1.36
0.01–4.15
0.39
0.04–17.7
2.45
0.06–21.1
2.84
3–506
174
413–448
432
0.01–0.96
0.15
South ern 0.53–2.90
1.35
0.01–0.76
0.25
0.23–8.55
3.20
0.24–8.65
3.44
44–434
182
419–431
426
0.01–0.14
0.06
TOC – to tal or ganic car bon, S1 – free hy dro car bons con tent, S2 – re sid ual hy dro car bon po ten tial, GP – ge netic po ten tial (GP = S1 +
S2), HI – hy dro gen in dex, Tmax – tem per a ture of max i mum of S2 peak, PI – pro duc tion in dex; range of se lected pa ram e ters is given as
nu mer a tor, av er age val ues in de nom i na tor
walled al gae, ei ther with or with out py rite infills. Liptodetrinite oc -
curs as fine de tri tus dis sem i nated in the rock. Other macerals
such as sporinite, resinite, bituminite and cutinite are rare, or al -
most ab sent, and may not be found in all sam ples. The least rep -
re sented group of macerals is inertinite (Ta ble 2) com posed of
fuzinite. Alginite, ulminite, and collo telinite are com monly as so ci -
ated with py rite, which oc curs in all sam ples as framboidal crys tal
ag gre gates or sin gle crys tals.
Sam ples from the Ždánice-135, 147 and 175 bore holes
(Fig. 5 and Ta ble 2) are rich in or ganic mat ter that oc curs in
fine- grained silty mudstones with an oc ca sional ad mix ture of
quartz sand grains. The most prom i nent com po nents are
ulminite and textinite of the huminite group, the par ti cle size of
which ex ceeds 100 mm. Or ganic par ti cles ap pear to be ho mo -
ge neous but also gran u lar, po rous and ox i dized, and with a
min eral ad mix ture. Oc ca sion ally macerals are bro ken and/or
stretched (Fig. 5A, A’). Liptinite oc curs in the form of huminite
infills, e.g., resinite (Fig. 5B, B’) or sep a rately dis persed in the
min eral phase, e.g., alginite, sporinite and liptodetrinite.
Inertinite oc curs spo rad i cally with the high est amount found in
sam ple Ždánice-175 (Fig. 5D, D’).
Sam ples from Koryèany-9 and 13, Mouchnice-1 and 2,
Snovídky-1, and Žarošice-2 bore holes are fine-grained (silty
mudstones) with oc ca sional ad mix ture of quartz sand grains.
The most prom i nent maceral group is huminite, but its par ti cles
are pre dom i nantly small. The or ganic par ti cles are mostly non-
ho mo ge neous, al tered, gran u lar, po rous, and weath ered.
Liptinite oc curs sep a rately or as huminite infills. Rock sam ples
col lected from the Lukov-1 and Tlumaèov-1 bore holes are
fine-grained, poor in or ganic mat ter dom i nated by huminite
macerals (Ta ble 2), and rich in py rite.
DISCUSSION
THERMAL MATURITY
Based on the av er age Tmax and PI of Rock-Eval py rol y sis
(432°C and 0.15, re spec tively), the strata of the cen tral seg -
ment are en ter ing the oil win dow (Figs. 3 and 6). The Tmax and
PI within both the north ern seg ment (431°C and 0.06, re spec -
tively) and the south ern seg ment (426°C and 0.06, re spec -
tively) in di cate that de pos its are ther mally im ma ture or at the ini -
tial stage of gen er a tion of the hy dro car bons, which is also sup -
ported by low reflectance val ues in the range 0.27–0.58% Rr. A
higher range of vitrinite reflectance, from 0.44 to 0.58% Rr, was
mea sured in the cen tral seg ment in the Gottwaldov-1 and 2
bore holes where the Mio cene rocks are deeply bur ied be neath
the West Carpathians.
Vari a tions in the ther mal ma tu rity of the sed i men tary rocks
within the south ern seg ment are in flu enced by both burial depth
Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1 5
Fig. 3. The cross-plot of hy dro gen in dex ver sus Rock-Eval tem -
per a ture Tmax clas si fied the kerogen type and ther mal ma tu rity
in the south ern, cen tral and north ern seg ments of the
Carpathian Foredeep
Fig. 4. Ran dom vitrinite reflectance depth trends
in the south ern, cen tral and north ern seg ments
of the Carpathian Foredeep
and po si tion within the ba sin. Sam ples closer to the east ern mar -
gin (i.e. orogenward) show rel a tively higher ther mal ma tu rity
com pared to the sam ples from the op po site side (i.e. cratonward
mar gin). This sit u a tion is well il lus trated by bore hole Mikulov-4,
lo cated just in front of the thrust belt. Namely, the sam ples from
the up per part of the sed i men tary suc ces sion in ter sected (the
Karpatian Stage) re veal Tmax val ues sim i lar to those of the sam -
ples from the deeper part (Eggenburgian to Karpatian). The in -
ter preted 2D seis mic line 289/83 (Fig. 7) dem on strates that the
lower part of the sed i men tary suc ces sion pen e trated by the
Mikulov-4 bore hole (Mik-4) is de formed by com pres sion ex erted
by the ad vanc ing West ern Carpathian nappes. The rel a tively
higher ma tu rity of or ganic mat ter in the up per part of the Mio cene
strata can be ex plained by the fact that they were af fected by in -
creased tec tonic stress near the thrust front.
All sam ples from the north ern seg ment were ex posed to
tec tonic stress. This can be seen in Fig ure 6 where thin slices of
im ma ture or low ma tu rity strata are stacked and Tmax does not
grad u ally in crease with depth. This re la tion is clearly il lus trated
by bore hole NP-895 in which no ver ti cal in crease of Tmax with
depth (Fig. 6) is ob served, or by a con sid er able vari a tion of val -
ues over a short depth in ter val in NP-549 (Fig. 4). Such a ma tu -
rity pro file with depth in di cates tec tonic con trol re lated to the late
phases of the Carpathian orog eny.
The same Tmax range was ob served among the re sults from
the Pol ish and Ukrai nian parts of the Carpathian Foredeep. The
low ther mal ma tu rity ex pressed as Tmax vary ing be tween
427–430°C was mea sured in the Lower Badenian–Lower
Sarmatian rocks in the Ukrai nian Carpathian Foredeep Ba sin
(Kotarba et al., 2011b) and Tmax in the range 419–438°C was re -
corded in the Up per Badenian–Lower Sarmatian sed i men tary
rocks in Po land (Czepiec and Kotarba, 1998).
Pub lished re search (Kosakowski et al., 2020) in di cates
that in the outer part of the Carpathian Foredeep in Po land, the
min i mum burial depth re quired to reach Rr = 0.5% is 3000 m.
Such burial depths oc cur in Po land only there where the Mid -
dle Mio cene strata are bur ied be neath the Carpathian over -
thrust. In the Czech Re pub lic, the Mid dle Mio cene de pos its
are bur ied be neath the Carpathian nappes to depths of ~4000
m within the cen tral seg ment and show in creased ther mal ma -
tu rity with a slight shift to wards thermogenic hy dro car bon gen -
er a tion.
A com pre hen sive as sess ment of hy dro car bons over a wider
area dem on strates the key role of the Carpathian over thrust re -
gard less of the age of the po ten tial source rock. The in ves ti ga tion
of the Mio cene strata in Po land and Ukraine re veals that
thermogenic HC gen er a tion be gins be low the depth of 2500 m
(Kotarba et al., 2011a; Kosakowski and Wróbel, 2012; Pupp et
al., 2018). De tailed stud ies sug gest that the hy dro car bons were
not ex pelled from all po ten tial source rocks (Pícha et al., 2006;
Buzek et al., 2019), and the best con di tions for hy dro car bon gen -
er a tion oc curred in ar eas deeply bur ied un der the Outer West ern
Carpathian units and thus these can still be ac tive.
6Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1
Ta ble 2
The huminite/vitrinite ran dom reflectance (Rr %) and petrographic com po si tion of Mio cene strata
from the cen tral seg ment of the Carpathian Foredeep
Bore hole ID Bore hole Depth [m] Rr [%] s [%] V [%] H [%] L [%] I [%] M [%]
1Koryèany-13 1879 0.28 0.07 0.9 0.0 0.0 99.1
2Koryèany-9 1946 0.26 0.06 2.3 1.9 0.6 95.2
3Mouchnice-1 1101 0.29 0.04 5.2 0.4 0.6 93.8
4Mouchnice-2 1253 0.27 0.05 3.1 4.1 0.0 92.8
5Snovídky-1 893 0.25 0.08 4.5 1.0 0.0 94.5
6Žarošice-2 1152 0.23 0.06 4.3 0.2 0.0 95.5
7Ždánice-135 787 0.26 0.07 6.6 2.7 0.0 90.7
8Ždánice-147 866 0.22 0.05 9.4 5,7 0.0 84.9
9Ždánice-175 765 0.30 0.03 22.2 3.1 1.0 73.7
22 Gottwaldov-1 3529 0.46 0.08 1.6 0.8 0.0 97.6
22 Gottwaldov-1 3625 0.44 0.07 0.4 1.0 0.2 98.5
22 Gottwaldov-1 3709 0.64 0.10 1.7 1.0 0.5 96.7
22 Gottwaldov-1 3768 0.45 0.09 1.6 1.6 0.2 96.5
23 Gottwaldov-2 4242 0.48 0.06 0.4 0.8 0.0 98.8
23 Gottwaldov-2 4300 0.49 0.07 2.0 4.2 0.0 93.8
23 Gottwaldov-2 4416 0.49 0.07 0.8 2.3 0.2 96.7
23 Gottwaldov-2 4682 0.57 0.12 1.4 1.2 0.2 97.2
23 Gottwaldov-2 4729 0.43 0.13 2.9 3.9 0.0 93.2
24 Tlumaèov-1 1708 0.36 0.05 3.4 3.5 0.0 93.1
24 Tlumaèov-1 1819 0.36 0.05 2.3 1.0 0.0 96.7
24 Tlumaèov-1 1895 0.40 0.08 1.3 0.2 0.0 98.5
24 Tlumaèov-1 2056 0.42 0.08 1.3 1.1 0.2 97.4
24 Tlumaèov-1 2145 0.41 0.04 2.2 0.6 0.8 96.3
25 Lukov-1 2121 0.46 0.08 1.1 0.4 0.0 98.5
25 Lukov-1 2179 0.41 0.07 1.6 1.0 0.0 97.4
Rr – ran dom reflectance of huminite/vitrinite, s – stan dard de vi a tion, V – vitrinite maceral group con tent, H – huminite maceral
group con tent, L – liptinite maceral group con tent, I – inertinite maceral group con tent, M – min eral mat ter con tent
Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1 7
AA’
B’
B
C’
C
D’
D
Fig. 5. Pho to micrographs of dis persed or ganic mat ter in the Mio cene strata
A, A’ – rounded, par tially weath ered resinite (R) with yel low ish-brown ish flu o res cence (A’) and
frag ments of ulminite (U) and corpohuminite (CH) in the coarse-grained min eral frac tion – bore -
hole Ždánice-135 (787 m); B, B’ulminite (U) with the tran si tion to textinite filled with resinite
(R); bore hole Ždánice-147 (866 m); C, C’ulminite (U); bore hole Ždánice-175 (765 m); D, D’
fusinite (FS) with con served cel lu lar struc ture; bore hole Ždánice-175 (765 m)
The high range of val ues in a rel a tively small depth in ter val
dem on strates that the re ar range ment of the Mio cene suc ces -
sion caused by the overthrusting of the West Carpathian nappe
sys tem de formed the strati graphic se quence so much that it is
not pos si ble to re con struct a re li able geo ther mal gra di ent based
on avail able data.
KEROGEN TYPE
The kerogen type is com monly inicated by the di a gram of HI
ver sus tem per a ture Tmax. This cross-plot in di cates pre vail ing
kerogen types II and III within both the south ern (HI up to 434 mg
HC/g TOC) and cen tral seg ments (HI up to 506 mg HC/g TOC;
Fig. 3). Sig nif i cantly, lower HI val ues, of 54 mg HC/g TOC on av -
er age, which are typ i cal of kerogen type III, were ob served within
the north ern seg ment sam ples (Ap pen dix 1). How ever, the
kerogen type in ter pre ta tions based on the Rock-Eval data may
be in flu enced by low TOC (<0.5–1.0 wt.%) in the sam ples caus -
ing the un der es ti ma tion of true HI (Pe ters and Cassa, 1994; Dahl
et al., 2004) and the min eral-ma trix ef fect (Wiêc³aw, 2016).
Within the south ern seg ment, the pre dom i nant macerals
are rep re sented mostly by huminite point ing to their ter res trial
or i gin. This cor re sponds well to the low HI and clas si fies the or -
ganic mat ter as type III kerogen.
How ever, liptinite macerals com posed mainly of spores and
pol len were ob served in larger amounts within the Mio cene strata
in the Gottwaldov-1 and -2 bore holes (cen tral seg ment, Ta ble 2).
This ob ser va tion is in agree ment with the higher HI val ues (Fig.
3). The in crease in HI is caused by a rel a tively higher con tent of
liptinite macerals, which is in ter preted as re flect ing the pres ence
of dis tal ma rine fa cies within the Carpathian Foredeep. Sig nif i -
cant vari a tions in depositional en vi ron ments are doc u mented in
the suc ces sions from which sam ples rep re sent ing the cen tral
8Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1
Fig. 7. Geo log i cal in ter pre ta tion of the 2D seis mic line 289/83 across the south ern seg ment
of the Carpathian Foredeep in the Czech Re pub lic
Fig. 6. The Rock-Eval Tmax depth trends in the south ern,
cen tral and north ern seg ments of the Carpathian Foredeep
seg ment are de rived. The fol low ing depositional set tings were in -
ter preted here by Francírek and Nehyba (2016): al lu vial and flu -
vial, brack ish la goon-es tu ary, clastic coast (fore shore, shore -
-face), nearshore (shore-face/tran si tional zone to in ner shelf),
shal low ma rine (in ner and outer shelf). Thus, de pos its of very di -
verse en vi ron ments oc cur in a re stricted area, and such a
palaeogeographic sce nario does not pro mote the for ma tion of
prom is ing source rocks.
SOURCE ROCK POTENTIAL
The source rock po ten tial of sam ples from the north ern,
cen tral, and south ern seg ments (Fig. 8) was eval u ated based
on the cross-plot of GP (Rock-Eval S1 + S2) ver sus TOC ac -
cord ing to Pe ters and Cassa (1994). The best source rock po -
ten tial was ob served in the Mio cene sam ples from the south ern
and cen tral seg ments. How ever, based on the GP, even here
sam ples with “poor to fair” po ten tial pre vail over the ones with
“good” po ten tial, even if the TOC in di cates “good” to “very
good” po ten tial (Fig. 8). This dis crep ancy may be ex plained by
the pres ence of the less pro lific gas-prone Type III kerogen
gen er at ing small amounts of hy dro car bons. The stud ies of
Baskin (1997) pro vided ev i dence that only ~10% of the ini tial
TOC con tent may be con verted into hy dro car bons dur ing full
mat u ra tion of the Type III kerogen. The data from the north ern
seg ment in di cate “poor” source rock qual ity based on the GP,
even if the TOC in di cates “fair to good“ po ten tial.
CONCLUSIONS
Based on the Rock-Eval tem per a ture Tmax (413–448°C)
and vitrinite/huminite reflectance (0.2–0.6% Rr), the ther mal
ma tu rity of or ganic mat ter in the Carpathian Foredeep in the
Czech Re pub lic ranges be tween the im ma ture and ini tial
stage of hy dro car bon gen er a tion. Ther mal ma tu rity in di ca tors,
vitrinite reflectance and py rol y sis Tmax reach higher val ues be -
low the West ern Carpathian Thrust Belt in the Gottwaldov-1
and -2 bore holes in the cen tral seg ment. A higher ma tu rity in
the north ern seg ment is ob served in the tec toni cally mod i fied
sec tion where no in crease of Tmax or Rr with depth was doc u -
mented. The source rock po ten tial is poor to fair based on the
ge netic po ten tial (Rock-Eval S1 + S2), even where the TOC
con cen tra tion may be eval u ated as show ing good to very good
po ten tial. The best source rock po ten tial was ob served in the
Mio cene sam ples from the south ern and cen tral seg ments
where the or ganic mat ter is Type III, gas-prone kerogen.
Ac knowl edge ments. This work was car ried out thanks to
the in sti tu tional sup port of Masaryk Uni ver sity in Brno. It could
not have been com pleted with out sam ples, ar chi val data and
seis mic pro files kindly pro vided by MND a.s., Úprkova 807/6,
695 01 Hodonín, Czech Re pub lic. We also thank an anon y -
mous re viewer and Y. Koltun for their re marks and com ments,
which sig nif i cantly im proved the qual ity of the manu script.
Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1 9
Fig. 8. Source rock po ten tial of the Mio cene sam ples
Cri te ria ac cord ing to Pe ters and Cassa (1994); av er age val ues for in di vid ual seg ments marked by col oured dashed line
REFERENCES
Adámek, J., 2003. The Mio cene of the Carpathian Foredeep in
south ern Moravia, geo log i cal de vel op ment and lithostrati gra -
phic clas si fi ca tion (in Czech with Eng lish sum mary). Geo -
science Re search Re ports: 9–11.
Adámek, J., Brzobohatý, R., Pálenský, P., Šikula, J., 2003. The
Karpatian in the Carpathian foredeep (Moravia). In: The
Karpatian, a lower Mio cene stage of the cen tral Paratethys (eds.
R. Brzobohatý, I. Cicha, M. Kováè and F. Rögl): 75–88. Masaryk
Uni ver sity, Brno.
Allen, P.A., Allen, J.R., 2013. Ba sin Anal y sis: Prin ci ples and Ap pli -
ca tions. Blackwell Pub lish ing.
Behar, F.V., Beau mont, B. de, Penteado H.L., 2001. Rock-Eval 6
tech nol ogy: per for mances and de vel op ments: Oil and Gas Sci -
ence and Tech nol ogy – Re vue du l’Institute Français du Petrole,
56: 111–134.
Baskin, D.K., 1997. Atomic H/C ra tio of kerogen as an es ti mate of
ther mal ma tu rity and or ganic mat ter con ver sion. AAPG Bul le tin,
81: 1437–1450.
Benada, S., Kokolusová, A., 1986. New find ings on the geo log i cal
po si tion of clasts in the cen tral part of the Carpathian foredeep
in Moravia (in Czech with Eng lish sum mary). Zemní Plyn a
Nafta, 32: 1–15.
Brzobohatý, R., Cicha, I., 1993. Carpathian foredeep (in Czech
with Eng lish sum mary). In: Geologie Moravy a Slezska (eds. A.
Pøichystal, V. Obstová and M. Suk): 123–128. Moravské
Zemské Muzeum a Sekce Geologických vìd Pøirodovìdecké
Fakulty Masarykovy Uni ver sity, Brno.
Buzek, F., Geršlová, E., Geršl, M., Èejková, B., Jacková, I.,
Lnenièková, Z., 2019. Eval u a tion of the gas con tent in ar chived
shale sam ples: a car bon iso tope study. Geosciences, 2019, 9:
481.
Czepiec, I., Kotarba, M., 1998. Paleoecology and or ganic mat ter in
the Late Badenian and Early Sarmatian ma rine ba sin of the Pol -
ish part of the Carpathian Foredeep. Przegl¹d Geologiczny, 46:
732–736.
Dahl, B., Bojesen-Koefoed, J., Holm, A., Justwan, H., Ras mus -
sen, E., Thom sen, E., 2004. A new ap proach to in ter pret ing
Rock-Eval S2 and TOC data for kerogen qual ity as sess ment.
Or ganic Geo chem is try, 35: 1461–1477.
Eliáš, M., Pálenský, P., 1998. Model of the for ma tion of Mio cene
foredeep in the Ostrava re gion (in Czech with Eng lish sum -
mary). Geoscience Re search Re ports: 65–66.
Espitalié, J., Deroo, G., Mar quis, F., 1985a. La pyrolyse Rock-Eval
et ses ap pli ca tions. Deuxieme partie. Re vue du l’Institute
Français du Pétrole, 40: 755–784.
Espitalié, J., Deroo, G., Mar quis, F., 1985b. La pyrolyse Rock-Eval
et ses ap pli ca tions. Pre miere partie. Re vue du l’Institute
Français du Pétrole, 40: 563–579.
Francírek, M., Nehyba, S., 2016. Evo lu tion of the pas sive mar gin of
the pe riph eral fore land ba sin: An ex am ple from the Lower Mio -
cene Carpathian Foredeep (Czech Re pub lic). Geologica
Carpathica, 67: 41–68.
Geršlová, E., Opletal, V., Sýkorová, I., Sedláková, I., Geršl, M.,
2015. A geo chem i cal and pet ro graph i cal char ac ter iza tion of or -
ganic mat ter in the Ju ras sic Mikulov Marls from the Czech Re -
pub lic. In ter na tional Jour nal of Coal Ge ol ogy, 141–142: 42–50.
Goldbach, M., Geršlová, E., Misz-Kennan, M., Nehyba, S., 2017.
Ther mal ma tu rity of Mio cene or ganic mat ter from the
Carpathian Foredeep in the Czech Re pub lic: 1D and 3D mod -
els. Ma rine and Pe tro leum Ge ol ogy, 88: 18–29.
Hantschel, T., Kauerauf, A., 2009. Fun da men tals of Ba sin and Pe -
tro leum Sys tems Mod el ing. Springer, Berlin Hei del berg.
Hladilová, Š., Nehyba, S., Zágoršek, K., Tomanová Petrová, P.,
Bitner, M.A., Demeny, A., 2014. Early Badenian trans gres sion
on the outer flank of West ern Carpathian Foredeep, Hluchov
area, Czech Re pub lic. Annales Societatis Geologorum
Poloniae, 84: 259–279.
In ter na tional Com mit tee for Coal and Or ganic Pe trol ogy,
(ICCP), 2001. The new inertinite clas si fi ca tion (ICCP Sys tem
1994). Fuel, 80: 459–471.
Jirman, P., Geršlová, E., Kalvoda, J., Melichar, R., 2018. 2D ba sin
mod el ling in the east ern Variscan fold belt (Czech Re pub lic): in -
flu ence of thrust ing on pat terns of ther mal mat u ra tion. Jour nal of
Pe tro leum Ge ol ogy, 41: 175–188.
Jirman, P., Geršlová, E., Bubík, M., Sachsenhofer, R.F., Bechtel,
A., Wiêc³aw, D., 2019. Depositional en vi ron ment and hy dro car -
bon po ten tial of the Oligocene Menilite For ma tion in the West ern
Carpathians: a case study from the Louèka sec tion (Czech Re -
pub lic). Ma rine and Pe tro leum Ge ol ogy, 107: 334–350.
Jovanèiæeviæ B., Schwarzbauer, J., 2015. Fos sil Mat ter in the
Geosphere. Springer In ter na tional Pub lish ing Swit zer land.
Kalvoda, J., Leichmann, J., Bábek, O., Melichar, R., 2003. Bruno -
vistulian Terrane (Cen tral Eu rope) and Is tan bul Zone (NW Tur -
key): Late Pro tero zoic and Pa leo zoic tectonostratigraphic de vel -
op ment and paleogeography. Geologica Carpathica, 54:
139–152.
Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R.,
Špaèek, P., 2008. Brunovistulian terrane (Bo he mian Mas sif,
Cen tral Eu rope): from late Pro tero zoic to late Pa leo zoic: a re -
view. In ter na tional Jour nal of Earth Sci ences, 97: 497–518.
Killops, S., Killops, V., 2005. In tro duc tion to Or ganic Geo chem is -
try. Blackwell, Ox ford.
Kosakowski, P., Wróbel, M., 2012. Burial his tory, ther mal his tory
and hy dro car bon gen er a tion mod el ling of the Ju ras sic source
rocks in the base ment of the Pol ish Carpathian Foredeep and
Outer Carpathians (SE Po land). Geologica Carpathica, 63:
335–342.
Kosakowski, P., Machowski, G., Kowalski, A., Koltun, Y.V.,
Zakrzewski, A., Sowi¿d¿a³, A., Stadtmuller, M., 2020. Or ganic
geo chem is try of mid dle Mio cene (Badenian-Sarmatian) source
rocks and mat u ra tion mod el ling in the Pol ish and Ukrai nian sec -
tors of the ex ter nal Carpathian Foredeep. Jour nal of Pe tro leum
Ge ol ogy, 43: 277–300.
Kotarba, M.J., Koltun, Y.V., 2006. Or i gin and hab i tat of hy dro car -
bons of the Pol ish and Ukrai nian parts of the Carpathian Prov -
ince. AAPG Mem oir, 84: 395–443.
Kotarba, M.J., Koltun, Y.V., 2011. Or i gin of nat u ral gases in the
autochthonous Mio cene strata of the Ukrai nian Carpathian
Fore deep and its Me so zoic base ment. Annales Societatis
Geologorum Poloniae, 81: 425–441.
Kotarba, M.J., Peryt, T.M., Koltun, Y.V., 2011a. Mi cro bial gas sys -
tem and prospectives of hy dro car bon ex plo ra tion in Mio cene
strata of the Pol ish and Ukrai nian Carpathian Foredeep.
Annales Societatis Geologorum Poloniae, 81: 523–548.
Kotarba, M.J., Wiêc³aw, D., Kosakowski, P., Koltun, Y.P.,
Kowalski, A., 2011b. Eval u a tion of hy dro car bon po ten tial of the
autochthonous Mio cene strata in the NW part of the Ukrai nian
Carpathian Foredeep. Annales Societatis Geologorum Polo -
niae, 81: 395–407.
Kováè, M., Andreyeva-Grigorovich, A.S., Brzobohatý, R., Fodor,
L., Harzhauser, M., Oszczypko N., Paveliæ, D., Rögl, F.,
Saftiæ, B., Sliva, S., Stráník, Z., 2003. Karpatian paleogeo -
graphy, tec ton ics and eustatic changes. In: Karpatian – a Lower
Mio cene stage of the Cen tral Paratethys (eds. R. Brzobohatý, I.
Cicha, M. Kováè and F. Rögl): 49–72. Masaryk Uni ver sity, Brno.
Kováè, M., Baráth, I., Harzhauser, M., Hlavatý, I., Hudáèková, N.,
2004. Mio cene depositional sys tems and se quence stra tig ra phy
of the Vi enna ba sin. Cou rier Forschungsinstitut Senckenberg,
246: 187–212.
Krejèí, O., Francù, J., Müller, P., Pereszlenyi, M., Straník, Z.,
1994. Geo logic struc ture and hy dro car bon gen er a tion in the
Carpathian flysch belt of south ern Moravia. Bul le tin of the Czech
Geo log i cal Sur vey, 69: 13–26.
Krejèí, O., Francù, J., Poelchau, H.S., Müller, P., Stráník, Z.,
1996. Tec tonic evo lu tion and oil and gas gen er a tion model in the
10 Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1
con tact area of the North Eu ro pean Plat form with the West
Carpathians. EAGE Spe cial Pub li ca tion, 5: 177–186.
Krzywiec, P., 2001. Con trast ing tec tonic and sed i men tary his tory of
the cen tral and east ern parts of the Pol ish Carpathian foredeep
ba sin – re sults of seis mic data in ter pre ta tion. Ma rine and Pe tro -
leum Ge ol ogy, 18: 13–38.
Lafargue, E., Mar quis, F., Pillot, D., 1998. Rock-Eval 6 ap pli ca -
tions in hy dro car bon ex plo ra tion, pro duc tion, and soil con tam i -
na tion stud ies. Re vue de l’Institut Français du Pétrole, 53:
421–437.
Littke, R., Bayer, U., Gajewski, D., Nelskap, S., 2008. Dy nam ics of
Com plex Intracontinental Bas ins. Springer, Berlin Hei del berg.
Nehyba, S., Petrová, P., 2000. Karpatian sandy de pos its in the
south ern part of the Carpathian Foredeep in Moravia. Bul le tin of
Czech Geo log i cal Sur vey, 75: 53–66.
Nehyba, S., Šikula, J., 2007. Depositional ar chi tec ture, se quence
stra tig ra phy and geodynamic de vel op ment of the Carpathian
Foredeep (Czech Re pub lic). Geologica Carpathica, 58: 53–69.
Nehyba, S., Gilíková, H., Tomanová Petrová, P., Otava, J.,
Skácelová, Z., 2019a. Evo lu tion of a sed i men tary infill of a
palaeovalley at a dis tal mar gin of the pe riph eral fore land ba sin.
Geo log i cal Quar terly, 63 (2): 319–344.
Nehyba, S., Otava, J., Tomanová Petrová, P., Gazdová, A.,
2019b. The fore land state at the on set of the flexurally in duced
trans gres sion: data from prov e nance anal y sis at the pe riph eral
Carpathian Foredeep (Czech Re pub lic). Geologica Carpathica,
70: 241–260.
Opletal, V., Geršlová, E., Nehyba, S., Sýkorová, I., Rez, J., 2019.
Ge ol ogy and ther mal ma tu rity of Namurian de pos its in the
Nìmèièky Sub-ba sin as the south-east ern con tin u a tion of the
Up per Silesian Coal Ba sin (Czech Re pub lic). In ter na tional Jour -
nal of Coal Ge ol ogy, 216: 303–323.
Oszczypko, N., Uchman, A., Malata, E., 2006. Palaeotectonic
Evo lu tion of the Outer Carpathian and Pieniny Klippen Belt Bas -
ins (in Pol ish with Eng lish sum mary): 111–126. Instytut Nauk
Geolo gicznych Uniwersytetu Jagielloñskiego, Kraków.
Pedersen, T.F., Calvert, S.E., 1990. An oxia vs. pro duc tiv ity: what
con trols the for ma tion of or ganic-car bon-rich sed i ments and
sed i men tary rocks? AAPG Bul le tin, 74: 454–466.
Pe ters, K.E., Cassa, M.R., 1994. Ap plied source rock geo chem is -
try. AAPG Mem oir, 60: 93–102.
Pe ters, K.E., Walters, C.C., Moldowan, J.M., 2005. The biomarker
Guide; I, Biomarkers and Iso topes in the En vi ron ment and Hu -
man His tory. II, Biomarkers and Iso topes in Pe tro leum Sys tems
and Earth His tory. 2ed. Cam bridge Uni ver sity Press, Cam bridge.
Pícha, F.J., Stráník, Z., Krejèí, O., 2006. Ge ol ogy and hy dro car bon
re sources of the Outer West ern Carpathians and their fore land.
AAPG Mem oir, 84: 49–175.
Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K.,
Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel,
A., Hamor-Vido, M., Crosdale, P., Wag ner, N., 2017. Clas si fi -
ca tion of liptiniteICCP Sys tem 1994. In ter na tional Jour nal of
Coal Ge ol ogy, 169: 40–61.
Pupp, M., Bechtel, A., Gratzer, R., Hein rich, M., Kozak, S.,
Lipiarski, P., Sachsenhofer, R.F., 2018. Depositional en vi ron -
ment and pe tro leum po ten tial of Oligocene rocks in the
Waschberg Zone (Aus tria). Geologica Carpathica, 69: 410–436.
Stráník, Z., Dvoøák, J., Krejèí, O., Müller, P., Pøichystal, A., Suk,
M., Tomek, È., 1993. The con tact of the North Eu ro pean Epiva -
ri scan plat form with the West Carpathians. Jour nal of the Czech
Geo log i cal So ci ety, 38: 21–29.
Suaréz-Ruiz, I., Flores, D., Marques, M.M., Martínez-Tarazona,
M.R., Pis, J., Rubiera, F., 2006. Geo chem is try, min er al ogy and
tech no log i cal prop er ties of coals from Rio Maior (Por tu gal) and
Penarroya (Spain) bas ins. In ter na tional Jour nal of Coal Ge ol -
ogy, 67: 171–190.
Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Tay lor, G.H.,
Flores, D., 2005. Clas si fi ca tion of huminiteICCP Sys tem
1994. In ter na tional Jour nal of Coal Ge ol ogy, 62: 85–106.
Tissot, B.P., Welte, D.H., 1984. Pe tro leum for ma tion and oc cur -
rence. Springer, Berlin, Hei del berg, New York.
Tay lor, G.H., Teichmüller, M., Da vis, A., Diessel, C.F.K., Littke,
R., Rob ert, P., 1998. Or ganic Pe trol ogy. Gebrüder Borntraeger,
Berlin.
Waœkowska, A., Cieszkowski, M., Golonka, J., Kowal-Kasprzyk,
J., 2014. Paleocene sed i men tary re cord of ridge geodynamics
in Outer Carpathian bas ins (Subsilesian Unit). Geologica
Carpathica, 65: 35–54.
Wiêc³aw, D., 2016. Hab i tat and hy dro car bon po ten tial of the
Kimmeridgian strata in the cen tral part of the Pol ish Low lands.
Geo log i cal Quar terly, 60 (1): 192–210.
Zágoršek, K., Nehyba, S., Tomanová Petrová, P., Hladilová, Š.,
Bitner, M.A., Doláková, N., Hrabovský, J., Jašková, V., 2012.
Lo cal ca tas tro phe caused by tephra in put near Pøemyslovice
(Moravia, Czech Re pub lic) dur ing the Mid dle Mio cene. Geo log i -
cal Quar terly, 56 (2): 269–284.
Eva Geršlová et al. / Geological Quarterly, 2022, 66: 1 11
APPENDIX 1
Results of the TOC content and Rock-Eval analyses of Miocene samples from
the Carpathian Foredeep in the Czech Republic
Well ID
Borehole
Segment
Depth
[m]
TOC
[wt.%]
S1 S2 Tmax
[°C]
HI
[mgHC/gTOC]
PI
[-]
[mg HC/g rock]
32 NP-203 Northern 275 1.12 0.01 0.46 433 41 0.02
33 NP-465 Northern 347 0.69 0.02 0.38 428 55 0.05
34 NP-707 Northern 499 1.03 0.03 0.60 429 58 0.05
34 NP-707 Northern 599 0.89 0.01 0.32 430 36 0.03
34 NP-707 Northern 652 0.91 0.02 0.56 432 62 0.03
35 NP-730 Northern 717 1.67 0.46 0.62 nd 37 0.43
36 NP-895 Northern 53 1.10 0.03 0.52 430 47 0.05
36 NP-895 Northern 60 0.87 0.01 0.38 432 44 0.03
36 NP-895 Northern 63 0.96 0.02 0.38 428 40 0.05
36 NP-895 Northern 95 1.03 0.02 0.50 432 19 0.04
36 NP-895 Northern 97 1.11 0.01 0.48 433 43 0.02
36 NP-895 Northern 104 1.05 0.01 0.46 430 44 0.02
36 NP-895 Northern 106 1.05 0.02 0.44 429 42 0.04
36 NP-895 Northern 139 1.89 0.03 0.76 nd 40 0.04
36 NP-895 Northern 151 0.99 0.01 0.52 430 53 0.02
36 NP-895 Northern 156 1.00 0.02 0.50 432 50 0.04
36 NP-895 Northern 204 0.84 0.01 0.50 429 60 0.02
36 NP-895 Northern 205 0.89 0.02 0.60 432 67 0.03
36 NP-895 Northern 251 0.68 0.02 0.38 431 56 0.05
36 NP-895 Northern 252 0.83 0.01 0.52 432 63 0.02
36 NP-895 Northern 255 1.60 0.01 0.44 432 28 0.02
36 NP-895 Northern 299 0.78 0.02 0.50 432 64 0.04
36 NP-895 Northern 303 0.74 0.02 0.48 432 65 0.04
36 NP-895 Northern 353 0.97 0.01 0.44 432 45 0.02
36 NP-895 Northern 354 1.00 0.00 0.42 432 42 0.00
36 NP-895 Northern 354 0.92 0.01 0.42 433 46 0.02
36 NP-895 Northern 357 0.97 0.02 0.56 429 58 0.03
36 NP-895 Northern 401 1.03 0.02 0.66 432 64 0.03
36 NP-895 Northern 404 1.07 0.01 0.44 432 41 0.02
36 NP-895 Northern 455 1.09 0.01 0.52 432 48 0.02
36 NP-895 Northern 499 1.02 0.01 0.48 432 48 0.02
36 NP-895 Northern 500 1.04 0.01 0.44 432 42 0.02
36 NP-895 Northern 701 0.86 0.01 0.54 427 63 0.02
36 NP-895 Northern 705 0.82 1.00 0.48 429 59 0.68
37 NP-910 Northern 727 0.98 0.03 0.58 432 59 0.05
37 NP-910 Northern 792 1.14 0.02 0.44 429 39 0.04
37 NP-910 Northern 821 0.88 0.04 0.68 429 77 0.06
38 SV-1 Northern 794 0.24 0.14 0.48 422 200 0.23
22 Gottwaldov-1 Central 3525 2.29 0.22 3.04 432 132 0.07
22 Gottwaldov-1 Central 3625 2.30 0.31 4.48 429 194 0.06
22 Gottwaldov-1 Central 3769 0.12 0.06 0.42 437 350 0.13
23 Gottwaldov-2 Central 4240 0.31 0.11 1.14 439 367 0.09
23 Gottwaldov-2 Central 4241 0.74 0.15 1.06 438 143 0.12
23 Gottwaldov-2 Central 4242 0.61 0.19 1.24 437 203 0.13
23 Gottwaldov-2 Central 4242 0.75 0.18 0.70 434 93 0.20
23 Gottwaldov-2 Central 4243 1.04 0.19 0.70 439 67 0.21
23 Gottwaldov-2 Central 4245 0.80 0.15 1.42 437 178 0.10
23 Gottwaldov-2 Central 4296 0.46 0.15 1.76 439 382 0.08
23 Gottwaldov-2 Central 4297 0.49 0.14 0.90 438 183 0.13
23 Gottwaldov-2 Central 4298 0.83 0.21 1.04 437 125 0.17
23 Gottwaldov-2 Central 4299 0.64 0.14 1.74 440 208 0.07
23 Gottwaldov-2 Central 4300 1.33 0.19 0.98 438 73 0.16
23 Gottwaldov-2 Central 4350 0.54 0.18 0.42 437 77 0.30
23 Gottwaldov-2 Central 4350 0.48 0.15 1.24 441 258 0.11
23 Gottwaldov-2 Central 4351 1.17 0.16 0.64 440 54 0.20
23 Gottwaldov-2 Central 4353 0.82 0.28 1.35 445 163 0.17
23 Gottwaldov-2 Central 4415 0.18 0.11 0.32 438 177 0.26
23 Gottwaldov-2 Central 4416 1.25 0.12 0.88 443 175 0.12
23 Gottwaldov-2 Central 4418 0.78 0.30 1.90 440 243 0.14
23 Gottwaldov-2 Central 4484 0.45 0.16 1.06 439 235 0.13
23 Gottwaldov-2 Central 4485 0.96 0.23 1.00 441 104 0.19
23 Gottwaldov-2 Central 4486 0.28 0.02 0.04 445 14 0.33
23 Gottwaldov-2 Central 4487 0.90 0.22 0.98 446 133 0.18
23 Gottwaldov-2 Central 4680 0.67 0.16 0.56 444 83 0.22
23 Gottwaldov-2 Central 4681 1.27 0.26 0.52 441 40 0.33
23 Gottwaldov-2 Central 4682 0.90 0.53 0.80 445 148 0.40
23 Gottwaldov-2 Central 4727 1.27 0.42 3.04 448 239 0.12
23 Gottwaldov-2 Central 4727 2.92 0.96 7.54 442 258 0.11
23 Gottwaldov-2 Central 4730 2.79 1.21 5.72 443 205 0.17
23 Gottwaldov-2 Central 4730 1.18 2.10 8.48 441 341 0.20
39 Gottwaldov-3 Central 3302 0.65 0.09 0.88 433 135 0.09
39 Gottwaldov-3 Central 3402 1.19 0.08 1.70 435 143 0.04
39 Gottwaldov-3 Central 3404 0.31 0.01 0.08 434 26 0.11
39 Gottwaldov-3 Central 3572 1.36 0.05 0.70 435 51 0.07
40 Lubná-11 Central 1577 1.10 0.02 2.10 418 191 0.01
41 Lubná-12 Central 1548 1.20 0.02 1.96 430 163 0.01
25 Lukov-1 Central 2121 1.72 1.25 0.05 na 3 0.96
25 Lukov-1 Central 2176 1.83 1.19 0.08 na 4 0.94
42 Morkovice-2 Central 597 0.70 0.05 1.26 429 180 0.04
42 Morkovice-2 Central 600 0.23 0.02 0.52 430 226 0.04
42 Morkovice-2 Central 786 0.30 0.05 0.84 428 280 0.06
42 Morkovice-2 Central 799 0.72 0.04 0.84 431 116 0.05
42 Morkovice-2 Central 995 0.35 0.03 0.84 432 240 0.03
42 Morkovice-2 Central 1102 1.80 0.08 4.36 426 242 0.02
43 Rousínov-1 Central 683 1.75 0.03 1.94 428 111 0.02
44 Slušovice-1 Central 3094 0.80 0.03 3.15 434 394 0.01
44 Slušovice-1 Central 3095 0.90 0.30 2.03 436 225 0.13
44 Slušovice-1 Central 3201 0.90 0.17 2.27 433 252 0.07
44 Slušovice-1 Central 3202 0.90 0.86 3.65 438 405 0.19
44 Slušovice-1 Central 3318 0.70 0.04 1.37 432 196 0.03
44 Slušovice-1 Central 3318 0.20 0.04 0.22 435 112 0.14
44 Slušovice-1 Central 3318 0.90 0.07 2.19 435 243 0.03
44 Slušovice-1 Central 3319 1.20 4.15 4.15 437 346 0.50
44 Slušovice-1 Central 3457 1.10 0.38 2.33 437 212 0.14
44 Slušovice-1 Central 3457 0.80 0.04 2.06 434 257 0.02
44 Slušovice-1 Central 3550 3.50 3.37 17.71 432 506 0.16
44 Slušovice-1 Central 3573 0.20 0.06 0.51 429 253 0.10
44 Slušovice-1 Central 3573 1.50 0.05 4.97 435 331 0.01
44 Slušovice-1 Central 3576 1.10 0.40 2.95 427 268 0.12
44 Slušovice-1 Central 3698 0.70 0.04 0.69 437 98 0.06
44 Slušovice-1 Central 3698 1.10 0.51 1.62 438 147 0.24
45 Vrbka-1 Central 1495 1.37 0.06 1.30 425 95 0.04
46 Ždánice-25 Central 799 2.50 0.10 9.43 428 377 0.01
47 Ždánice-27 Central 836 3.80 0.59 2.09 418 55 0.22
48 Ždánice-46 Central 780 2.09 1.80 4.18 428 200 0.30
48 Ždánice-46 Central 784 1.54 0.45 2.25 426 146 0.17
49 Ždánice-47 Central 735 5.20 0.50 13.10 420 252 0.04
49 Ždánice-47 Central 760 0.86 0.07 1.03 429 120 0.06
50 Ždánice-53 Central 948 0.59 0.26 0.70 423 118 0.27
50 Ždánice-53 Central 962 1.05 0.14 1.42 422 135 0.09
51 Ždánice-54 Central 750 3.03 0.40 6.39 425 211 0.06
52 Ždánice-55 Central 702 0.61 0.09 0.36 416 59 0.20
52 Ždánice-55 Central 725 0.61 0.03 0.30 422 49 0.09
52 Ždánice-55 Central 750 0.77 0.05 0.45 428 59 0.10
52 Ždánice-55 Central 777 1.67 0.06 1.24 428 74 0.05
53 Ždánice-57 Central 760 9.17 2.20 8.25 413 90 0.21
53 Ždánice-57 Central 760 4.29 0.30 6.01 429 140 0.05
54 Ždánice-58 Central 772 2.28 0.60 1.53 415 67 0.28
54 Ždánice-58 Central 794 2.97 0.27 1.81 426 61 0.13
55 Ždánice-59 Central 748 3.00 1.10 9.93 419 331 0.10
55 Ždánice-59 Central 830 2.56 0.75 3.48 423 136 0.18
56 Ždánice-60 Central 695 0.60 0.23 0.62 425 103 0.27
56 Ždánice-60 Central 730 0.91 0.45 0.67 428 74 0.40
57 Ždánice-66 Central 710 1.75 0.40 2.24 431 128 0.15
57 Ždánice-66 Central 715 2.76 0.20 8.83 422 320 0.02
57 Ždánice-66 Central 720 0.64 0.06 0.98 428 153 0.06
57 Ždánice-66 Central 795 0.53 0.10 0.57 432 107 0.15
58 Brod n. Dyjí-1 Southern 695 1.97 0.10 8.55 431 434 0.01
26 Březí-1 Southern 912 nd nd nd 430 nd nd
27 Březí-2 Southern 1242 nd nd nd 421 nd nd
27 Březí-2 Southern 1296 nd nd nd 428 nd nd
28 Dunajovice-1 Southern 752 nd nd nd 430 nd nd
29 Dunajovice-3 Southern 1121 2.00 0.76 5.10 425 255 0.13
30 Dunajovice-16 Southern 1043 nd nd nd 425 nd nd
59 Mikulov-4 Southern 795 0.65 0.29 0.68 429 104 0.03
59 Mikulov-4 Southern 940 0.77 0.02 0.62 429 80 0.03
59 Mikulov-4 Southern 1055 0.53 0.01 0.23 419 44 0.04
59 Mikulov-4 Southern 1065 1.15 0.02 1.10 427 96 0.02
31 Mušov-2 Southern 81 nd nd nd 426 nd nd
60 Nikolčice-3 Southern 1095 2.90 0.69 7.89 425 272 0.08
61 Pohořelice-1 Southern 500 0.82 0.09 1.42 420 173 0.06
TOC‐totalOrganicCarbon,S1‐volatilehydrocarbon(HC)content,S2‐residualHCgenerative
potential,Tmax‐temperatureofthemaximumofS2peak,HI‐hydrogenIndex,PI‐productionIndex,
nanotavailable,ndnotdetermined.

APPENDIX 2
Random reflectance of huminite/vitrinite of organic matter in Miocene samples
from the Carpathian Foredeep in the Czech Republic
Well ID Borehole
Segment
Depth
[m]
Rr
[%]
10 Janovice-8 Northern 1142 0.54
11 Frenštát pod
Radhoštěm-13 Northern 777 0.47
12 Frenštát pod
Radhoštěm-3 Northern 955 0.51
13 Lhotka-5 Northern 871 0.34
14 NP-547 Northern 962 0.51
15 NP-549 Northern 998 0.46
15 NP-549 Northern 993 0.52
15 NP-549 Northern 994 0.53
15 NP-549 Northern 995 0.54
15 NP-549 Northern 995 0.55
16 NP-779 Northern 179 0.36
17 NP-803 Northern 1035 0.46
17 NP-803 Northern 1035 0.48
17 NP-803 Northern 1034 0.50
17 NP-803 Northern 1028 0.56
18 NP-812 Northern 942 0.39
18 NP-812 Northern 879 0.43
19 NP-818 Northern 910 0.44
20 NP-824 Northern 1002 0.52
21 NP-828 Northern 1353 0.58
26 Březí-1 Southern 912 0.32
27 Březí-2 Southern 1242 0.33
27 Březí-2 Southern 1296 0.43
28 Dunajovice-1 Southern 1024 0.28
29 Dunajovice-3 Southern 1122 0.27
30 Dunajovice-16 Southern 1043 0.41
31 Mušov-2 Southern 801 0.29
Data from the borehole reports
ResearchGate has not been able to resolve any citations for this publication.
Con trast ing tec tonic and sed i men tary his tory of the cen tral and east ern parts of the Pol ish Carpathian foredeep ba sin -re sults of seis mic data in ter pre ta tion. Ma rine and Pe troleum Ge ol ogy
  • P Krzywiec
Krzywiec, P., 2001. Con trast ing tec tonic and sed i men tary his tory of the cen tral and east ern parts of the Pol ish Carpathian foredeep ba sin -re sults of seis mic data in ter pre ta tion. Ma rine and Pe troleum Ge ol ogy, 18: 13-38.
Rock-Eval 6 ap pli cations in hy dro car bon ex plo ra tion, pro duc tion, and soil con tam ina tion stud ies
  • E Lafargue
  • F Mar Quis
  • D Pillot
Lafargue, E., Mar quis, F., Pillot, D., 1998. Rock-Eval 6 ap pli cations in hy dro car bon ex plo ra tion, pro duc tion, and soil con tam ina tion stud ies. Re vue de l'Institut Français du Pétrole, 53: 421-437.
Dy nam ics of Com plex Intracontinental Bas ins
  • R Littke
  • U Bayer
  • D Gajewski
  • S Nelskap
Littke, R., Bayer, U., Gajewski, D., Nelskap, S., 2008. Dy nam ics of Com plex Intracontinental Bas ins. Springer, Berlin Hei del berg.
Karpatian sandy de pos its in the south ern part of the Carpathian Foredeep in Moravia. Bul le tin of Czech Geo log i cal Sur vey
  • S Nehyba
  • P Petrová
Nehyba, S., Petrová, P., 2000. Karpatian sandy de pos its in the south ern part of the Carpathian Foredeep in Moravia. Bul le tin of Czech Geo log i cal Sur vey, 75: 53-66.
Depositional ar chi tec ture, se quence stra tig ra phy and geodynamic de vel op ment of the Carpathian Foredeep (Czech Re pub lic)
  • S Nehyba
  • J Šikula
Nehyba, S., Šikula, J., 2007. Depositional ar chi tec ture, se quence stra tig ra phy and geodynamic de vel op ment of the Carpathian Foredeep (Czech Re pub lic). Geologica Carpathica, 58: 53-69.
Evo lu tion of a sed i men tary infill of a palaeovalley at a dis tal mar gin of the pe riph eral fore land ba sin
  • S Nehyba
  • H Gilíková
  • P Tomanová Petrová
  • J Otava
  • Z Skácelová
Nehyba, S., Gilíková, H., Tomanová Petrová, P., Otava, J., Skácelová, Z., 2019a. Evo lu tion of a sed i men tary infill of a palaeovalley at a dis tal mar gin of the pe riph eral fore land ba sin. Geo log i cal Quar terly, 63 (2): 319-344.
The fore land state at the on set of the flexurally in duced trans gres sion: data from prov e nance anal y sis at the pe riph eral Carpathian Foredeep (Czech Re pub lic)
  • S Nehyba
  • J Otava
  • P Tomanová Petrová
  • A Gazdová
Nehyba, S., Otava, J., Tomanová Petrová, P., Gazdová, A., 2019b. The fore land state at the on set of the flexurally in duced trans gres sion: data from prov e nance anal y sis at the pe riph eral Carpathian Foredeep (Czech Re pub lic). Geologica Carpathica, 70: 241-260.
Ge ol ogy and ther mal ma tu rity of Namurian de pos its in the Nìmèièky Sub-ba sin as the south-east ern con tin u a tion of the Up per Silesian Coal Ba sin (Czech Re pub lic)
  • V Opletal
  • E Geršlová
  • S Nehyba
  • I Sýkorová
  • J Rez
Opletal, V., Geršlová, E., Nehyba, S., Sýkorová, I., Rez, J., 2019. Ge ol ogy and ther mal ma tu rity of Namurian de pos its in the Nìmèièky Sub-ba sin as the south-east ern con tin u a tion of the Up per Silesian Coal Ba sin (Czech Re pub lic). In ter na tional Journal of Coal Ge ol ogy, 216: 303-323.
Palaeotectonic Evo lu tion of the Outer Carpathian and Pieniny Klippen Belt Basins (in Pol ish with Eng lish sum mary
  • N Oszczypko
  • A Uchman
  • E Malata
Oszczypko, N., Uchman, A., Malata, E., 2006. Palaeotectonic Evo lu tion of the Outer Carpathian and Pieniny Klippen Belt Basins (in Pol ish with Eng lish sum mary): 111-126. Instytut Nauk Geolo gicznych Uniwersytetu Jagielloñskiego, Kraków.
An oxia vs. pro duc tiv ity: what con trols the for ma tion of or ganic-car bon-rich sed i ments and sed i men tary rocks?
  • T F Pedersen
  • S E Calvert
Pedersen, T.F., Calvert, S.E., 1990. An oxia vs. pro duc tiv ity: what con trols the for ma tion of or ganic-car bon-rich sed i ments and sed i men tary rocks? AAPG Bul le tin, 74: 454-466.