Technical ReportPDF Available

Eastern Pacific Leatherback Turtle: Ex situ Management Recommendation Development Workshop Report

Authors:

Abstract

In July 2020, the Conservation Planning Specialist Group (CPSG) of the International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) was enlisted by the international non-profit sea turtle conservation organization, Upwell, to design and facilitate a two-step decision making process to inform conservation efforts for the Critically Endangered Eastern Pacific subpopulation of the leatherback turtle Dermochelys coriacea (shortened to EPLB within the report). The focus of the process was to determine the extent to which ex situ management activities (specifically head-starting and egg translocation) should be considered as complements to in situ efforts for the species. The process involved the participatory development of a Population Viability Analysis (PVA) model for the subpopulation, reflecting both its status and trajectory and potential future trajectories based on different conservation management interventions (both in situ and ex situ). This first phase was then followed by a second participatory planning phase, in which a wider group of stakeholders from both within and beyond the region were led through a series of meetings to develop a shared recommendation for future work. This recommendation was restricted to determining the extent to which head-starting and/or egg translocation could be used as complementary actions to augment ongoing efforts to prevent extinction of the sub-population. The two-step process began in November 2020 and ended in February 2021. The final recommendation developed was that, given current uncertainties concerning the practicability and likely impact of ex situ management activities on EPLB recovery, such actions should not be embarked upon at the current time, though they merited further examination and study. A range of research themes were identified by the group that should be further investigated to help reduce uncertainties surrounding the ex situ management approaches proposed. This would ensure that, should ongoing in situ interventions be unsuccessful in slowing population decline, or an urgent need for ex situ actions be identified, ex situ conservation practitioners will be better equipped with the knowledge and capabilities to maximize the probability of success of additional ex situ measures.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The Eastern Pacific leatherback turtle population (Dermochelys coriacea) has declined precipitously in recent years. One of the major causes is bycatch from coastal and pelagic fisheries. Fisheries observations are often underutilized, despite strong potential for this data to affect policy. In this study, we created a spatiotemporal species distribution model that synthesizes fisheries observations with remotely sensed environmental data. The model will be developed into a dynamic management tool for the Eastern Pacific leatherback population. We obtained leatherback observation data from multiple fisheries that have operated in the Southeast Pacific (2001-2018). A dynamic Poisson point process model was applied to predict leatherback intensity (observation per unit area) as a function of dynamic environmental covariates. This model serves as a tool for application by managers and stakeholders toward the reduction of leatherback turtle bycatch and provides a modeling framework for analyzing fisheries observations from other vulnerable populations and species.
Article
Full-text available
The impact of a range of different threats has resulted in the listing of six out of seven sea turtle species on the IUCN Red List of endangered species. Disease risk analysis (DRA) tools are designed to provide objective, repeatable and documented assessment of the disease risks for a population and measures to reduce these risks through management options. To the best of our knowledge, DRAs have not previously been published for sea turtles, although disease is reported to contribute to sea turtle population decline. Here, a comprehensive list of health hazards is provided for all seven species of sea turtles. The possible risk these hazards pose to the health of sea turtles were assessed and “One Health” aspects of interacting with sea turtles were also investigated. The risk assessment was undertaken in collaboration with more than 30 experts in the field including veterinarians, microbiologists, social scientists, epidemiologists and stakeholders, in the form of two international workshops and one local workshop. The general finding of the DRA was the distinct lack of knowledge regarding a link between the presence of pathogens and diseases manifestation in sea turtles. A higher rate of disease in immunocompromised individuals was repeatedly reported and a possible link between immunosuppression and environmental contaminants as a result of anthropogenic influences was suggested. Society based conservation initiatives and as a result the cultural and social aspect of interacting with sea turtles appeared to need more attention and research. A risk management workshop was carried out to acquire the insights of local policy makers about management options for the risks relevant to Queensland and the options were evaluated considering their feasibility and effectiveness. The sea turtle DRA presented here, is a structured guide for future risk assessments to be used in specific scenarios such as translocation and head-starting programs.
Article
Full-text available
Maximum lifespan for most animal species is difficult to define. This is challenging for wildlife management as it is critical for estimating important aspects of population biology such as mortality rate, population viability, and period of reproductive potential. Recently, it has been shown cytosine-phosphate-guanine (CpG) density is predictive of maximum lifespan in vertebrates. This has made it possible to predict lifespan in long-lived species, which are generally the most intractable. In this study, we use gene promoter CpG density to predict the lifespan of five marine turtle species. Marine turtles are a particularly difficult group for lifespan estimation because of their migratory behaviour, longevity and high juvenile mortality rates, which all restrict individual tracking over their lifespan. Sanger sequencing was used to determine the CpG density in selected promoters. We predicted the lifespans for marine turtle species ranged from 50.4 years (flatback turtle, Natator depressus) to 90.4 years (leatherback turtle, Dermochelys coriacea). These lifespan predictions have broad applications in marine turtle research such as better understanding life cycles and determining population viability.
Article
Full-text available
Failure to improve the conservation status of endangered species is often related to inadequate allocation of conservation resources to highest priority issues. Eastern Pacific (EP) leatherbacks are perhaps the most endangered sea turtle population in the world, and continue on a path to regional extinction. To provide coherent, regional conservation targets, we developed a population viability analysis and examined hypothetical scenarios describing effects of conservation activities that either reduced mortality or increased production of hatchlings (or both). Under status quo conditions, EP leatherbacks will be extirpated in <60 yr. To ensure a positive, long-term population trajectory, conservation efforts must increase adult survivorship (i.e., reduce adult mortality) by ≥20%, largely through reduction of fisheries bycatch mortality. Positive trajectories can be accelerated by increased production of hatchlings through enhanced nest protection and treatment. We estimate that these efforts must save approximately 200–260 adult and subadult leatherbacks and produce approximately 7,000–8,000 more hatchlings annually. Critically, reductions in late-stage mortality must begin within 5 years and reach 20% overall within the next 10–15 years to ensure population stabilization and eventual increase. These outcomes require expanded, sustained, coordinated, high-priority efforts among several entities working at multiple scales. Fortunately, such efforts are underway.
Article
Full-text available
The El Niño Southern Oscillation (ENSO) is the predominant interannual pattern of climate variability in the world and may become extreme approximately once every 20 years. Climate-forced interannual variability in fecundity rates of long-lived species are well-studied, but the effect of extreme events is less clear. Here, we analyzed the effect of the extreme 2015–16 El Niño event on three long-lived sea turtle species in a region highly influenced by ENSO. The effect of this extreme event varied considerably among species. While reproductive success dramatically declined in leatherback turtles (Dermochelys coriacea), the reduction was only marginal in green turtles (Chelonia mydas). Nevertheless, the number of nesting green turtles decreased following the extreme El Niño event, likely due to decreased ocean productivity. We used global climate models to project an increase in the decadal occurrence of extreme events from ~ 0.7 events (beginning of twentieth century) to ~ 2.9 events per decade (end of twenty-first century). This resulted in a projected decline in the reproductive success of leatherback turtles (~ 19%), a milder decline in olive ridley turtles (Lepidochelys olivacea) (~ 7%), and no decline in green turtles (~ 1%). Extreme El Niño events can have a strong detrimental effect on East Pacific leatherback turtles, a population that is already critically endangered due to other anthropogenic impacts. Our results highlight the importance of conducting species-specific and site-specific analyses of climatic impacts on sea turtles.
Article
Full-text available
Data characterizing somatic growth patterns and the ages and sizes at which organisms mature are fundamental to understanding population dynamics. However, obtaining this information for endangered leatherback sea turtles (Dermochelys coriacea) is particularly challenging due to unusual physiology and prevalence of remote oceanic habitat use, which limit direct observation. While inference has been made through indirect approaches such as captive, genetic, and/or skeletal growth mark (skeletochronology) studies, these diverse methods have yielded similarly varied results, limiting usefulness of available information for management and conservation. To address this data gap, we conducted refined skeletochronological analysis of Atlantic and Pacific leatherback scleral ossicle bones, allowing estimation of carapace length-at-age relationships throughout individual turtles’ lives, including the juvenile life stage. In addition, this improved approach made it possible to estimate mean and range for age and size at sexual maturation (ASM and SSM, respectively), as well as post-maturation longevity. Updated mean ASM estimates from the current study of 17–19 years were lower than those previously proposed using skeletochronology and more similar to predictions from captive growth and genetic data. Maximum estimates of reproductive longevity (18–22 years) were consistent with the 16–19 years reported previously from mark–recapture of nesting females. Together, these results indicate that the application of the refined analytical approach described in the current study may offer opportunities to increase understanding of leatherback age and growth.
Article
Full-text available
The utilization and capabilities of biotelemetry are expanding enormously as technology and access rapidly improve. These large, correlated datasets pose statistical challenges requiring advanced statistical techniques to appropriately interpret and model animal movement. We used satellite telemetry data of critically endangered Eastern Pacific leatherback turtles (Dermochelys coriacea) to develop a habitat‐based model of their motility (and conversely residence time) using a hierarchical Bayesian framework, which could be broadly applied across species. To account for the spatiotemporally auto‐correlated, unbalanced, and presence‐only telemetry observations, in combination with dynamic environmental variables, a novel modeling approach was applied. We expanded a Poisson generalized linear model in a continuous‐time discrete‐space (CTDS) model framework to predict individual leatherback movement based on environmental drivers, such as sea surface temperature. Population‐level movement estimates were then obtained with a Bayesian approach and used to create monthly, near real‐time predictions of Eastern Pacific leatherback movement in the South Pacific Ocean. This model framework will inform the development of a dynamic ocean management model, “South Pacific TurtleWatch (SPTW),” and could be applied to telemetry data from other populations and species to predict motility and residence times in dynamic environments, while accounting for statistical uncertainties arising at multiple stages of telemetry analysis.
Article
Full-text available
Understanding population dynamics in broadly distributed marine species with cryptic life history stages is challenging. Information on the population dynamics of sea turtles tends to be biased toward females, due to their accessibility for study on nesting beaches. Males are encountered only at sea; there is little information about their migratory routes, residence areas, foraging zones, and population boundaries. In particular, male leatherbacks (Dermochelys coriacea) are quite elusive; little is known about adult and juvenile male distribution or behavior. The at-sea distribution of male turtles from different breeding populations is not known. Here, 122 captured or stranded male leatherback turtles from the USA, Turkey, France, and Canada (collected 1997–2012) were assigned to one of nine Atlantic basin populations using genetic analysis with microsatellite DNA markers. We found that all turtles originated from western Atlantic nesting beaches (Trinidad 55%, French Guiana 31%, and Costa Rica 14%). Although genetic data for other Atlantic nesting populations were represented in the assignment analysis (St. Croix, Brazil, Florida, and Africa (west and south), none of the male leatherbacks included in this study were shown to originate from these populations. This was an unexpected result based on estimated source population sizes. One stranded turtle from Turkey was assigned to French Guiana, while others that were stranded in France were from Trinidad or French Guiana breeding populations. For 12 male leatherbacks in our dataset, natal origins determined from the genetic assignment tests were compared to published satellite and flipper tag information to provide evidence of natal homing for male leatherbacks, which corroborated our genetic findings. Our focused study on male leatherback natal origins provides information not previously known for this cryptic, but essential component of the breeding population. This method should provide a guideline for future studies, with the ultimate goal of improving management and conservation strategies for threatened and endangered species by taking the male component of the breeding population into account.
Article
Full-text available
Marine turtles migrate across long distances, exhibit complex life histories, and occupy habitats that are difficult to observe. These factors present substantial challenges to understanding fundamental aspects of their biology or assessing human impacts, many of which are important for the effective conservation of these threatened and endangered species. The early development and application of genetic tools made important contributions to understanding marine turtle population and evolutionary biology, such as providing evidence of regional natal homing by breeding adults, establishing connectivity between rookeries and foraging habitats, and determining phylogeography and broad scale stock structure for most marine turtle species. Recent innovations in molecular technologies, statistical methods, and creative application of genetic tools have significantly built upon this knowledge to address key questions in marine turtle biology and conservation management. Here, we evaluate the latest major advances and potential of marine turtle genetic applications, including improved resolution and large-scale syntheses of population structure, connectivity and phylogeography, estimation of key demographic rates such as age to maturity and operational or breeding sex ratios, insight into reproductive strategies and behavior, and assessment of differential human impacts among populations. We then discuss remaining challenges and emerging capabilities, such as rapid, multiplexed genotyping and investigation of the genomic underpinnings of adaptive variation afforded by high-throughput sequencing technologies.
Article
Population viability analysis (PVA) has been used for three decades to assess threats and evaluate conservation options for wildlife populations. What has been learned from PVA on in situ populations are valuable lessons also for assessing and managing viability and sustainability of ex situ populations. The dynamics of individual populations are unpredictable, due to limited knowledge about important factors, variability in the environment, and the probabilistic nature of demographic events. PVA considers such uncertainty within simulations that generate the distribution of likely fates for a population; management of ex situ populations should also take into consideration the uncertainty in our data and in the trajectories of populations. The processes affecting wildlife populations interact, with feedbacks often leading to amplified threats to viability; projections of ex situ populations should include such feedbacks to allow for management that foresees and responds to the cumulative and synergistic threats. PVA is useful for evaluating conservation options only if the goals for each population and measures of success are first clearly identified; similarly, for ex situ populations to contribute maximally to species conservation, the purposes for the population and definitions of sustainability in terms of acceptable risk must be documented. PVA requires a lot of data, knowledge of many processes affecting the populations, modeling expertize, and understanding of management goals and constraints. Therefore, to be useful in guiding conservation it must be a collaborative, trans‐disciplinary, and social process. PVA can help integrate management of in situ and ex situ populations within comprehensive species conservation plans.