ArticlePDF Available

PROSPECTS OF NEWLY DISCOVERED UGUR AREA IN THE NORTHWEST OF THE GEDABEY ORE DISTRICT (LESSER CAUCASUS, AZERBAIJAN)

Authors:

Abstract

The article describes Ugur exploration area located in Gedabey Ore District of the Lesser Caucasus in NW of Azerbaijan. Results of trenches and channels sampling on the surface, RC bore holes and summary of significant drill intercepts (>0.29 ppm Au) of Ugur Exploration area are presented. It has been established that The deposit is enlarged by highly gold-silver result of surface outcrop rock chip samples over an area of 2.5 kms North-South by 2 kms East-West, with the Reza gold deposit located in the central part. Out of metallic minerals crystalline hematite was observed. On surface intensive barite and barite-hematite vein and veinlets, also gossan zones were observed. The main mineralization zones have been sampled in three trenches at a distance up to 270 m by trenches #1, #2 and #3 and received positive results for gold and silver. Also there have taken approximately 550 samples from outcrop #1 and #2. On the main orebody at surface centre there occured secondary quartzites with vein-veinlets barite-hematite mineralization over which there remain accumulations of hydrous ferric oxides cementing breccias of quartz and quartzites. And in erosion parts "reddish mass" being oxidation product of stock and stockverk hematite ores were observed. Representing typical gossans, these accumulations by the data of trenches for thickness about 5-10 m contain gold 0.3-2.0 ppm and silver 1.0-15.0 ppm. Ten diamond drill holes, named UGDD 01-10 were drilled in the center part of the deposit. The drill holes were sampled mainly in 1 meter lengths from the top of the hole to the bottom. The core samples were marked and placed into standard boxes. Significant intervals of weighted averages greater than 0.29 ppm over down hole intervals of 1 metres or greater (>0.29 ppm Au and >0.9 m) are summarized in table 3 below. In conclusion, the outcropping alteration at the deposit is typical of the upper steam-heated levels of high-sulfidation epithermal (HSE) deposits, which in most mineralized systems of this type, may cap higher-grade gold mineralization which is hosted by underlying vuggy and oxide zones.
ISSN 1728–2713 ГЕОЛОГІЯ. 2(93)/2021 ~ 53 ~
UDC 553.3/.4
DOI: http://doi.org/10.17721/1728-2713.93.06
N. Imamverdiyev1, Dr. Sci. (Geol.-Min.), Prof.,
E-mail: inazim17@yahoo.com;
V. Baba-zadeh1, Dr. Sci. (Geol.-Min.), Prof.,
E-mail: vbabazade1938@mail.ru;
S. Mursalov1,2, Mining geology,
E-mail: samir.m.s@mail.ru;
A. Valiyev1,2, PhD, Exploration Geology Manager,
E-mail: velizade_anar@yahoo.com;
M. Mansurov1, Cand. Sci. (Geol.-Min.), Assist. Prof.,
E-mail: mamoy_mansurov@mail.ru;
A. Ismayilova1, Cand. Sci. (Geol.-Min.), Assist. Prof.,
E-mail: aygun46 @mail.ru;
1Baku State University, 23 Z. Khalilov Str., Baku, AZ1148, Republic of Azerbaijan;
2Azerbaijan International Mining Company Limited,
20 Huseyn Javid Ave., 520, Baku, AZ1073, Republic of Azerbaijan
PROSPECTS OF NEWLY DISCOVERED UGUR AREA
IN THE NORTHWEST OF THE GEDABEY ORE DISTRICT
(LESSER CAUCASUS, AZERBAIJAN)
(Представлено членом редакційної колегії д-ром геол. наук, проф. В.А. Михайловим)
The article describes Ugur exploration area located in Gedabey Ore District of the Lesser Caucasus in NW of Azerbaijan. Results of
trenches and channels sampling on the surface, RC bore holes and summary of significant drill intercepts (>0.29 ppm Au) of Ugur
Exploration area are presented. It has been established that The deposit is enlarged by highly gold-silver result of surface outcrop rock
chip samples over an area of 2.5 kms North-South by 2 kms East-West, with the Reza gold deposit located in the central part. Out of
metallic minerals crystalline hematite was observed. On surface intensive barite and barite-hematite vein and veinlets, also gossan zones
were observed. The main mineralization zones have been sampled in three trenches at a distance up to 270 m by trenches #1, #2 and #3
and received positive results for gold and silver. Also there have taken approximately 550 samples from outcrop #1 and #2. On the main
orebody at surface centre there occured secondary quartzites with vein-veinlets barite-hematite mineralization over which there remain
accumulations of hydrous ferric oxides cementing breccias of quartz and quartzites. And in erosion parts "reddish mass" being oxidation
product of stock and stockverk hematite ores were observed. Representing typical gossans, these accumulations by the data of trenches
for thickness about 5-10 m contain gold 0.3-2.0 ppm and silver 1.0-15.0 ppm. Ten diamond drill holes, named UGDD 01-10 were drilled in
the center part of the deposit. The drill holes were sampled mainly in 1 meter lengths from the top of the hole to the bottom. The core
samples were marked and placed into standard boxes.
Significant intervals of weighted averages greater than 0.29 ppm over down hole intervals of 1 metres or greater (>0.29 ppm Au and
>0.9 m) are summarized in table 3 below. In conclusion, the outcropping alteration at the deposit is typical of the upper steam-heated
levels of high-sulfidation epithermal (HSE) deposits, which in most mineralized systems of this type, may cap higher-grade gold
mineralization which is hosted by underlying vuggy and oxide zones.
Keywords: Ugur exploration area, prospects, mineralization zones, content of Au, Ag, Cu, Zn, Gedabey Ore District, Lesser Caucasus.
Formulation of the problem. In spite of the fact that the
ore region is well studied, a number of issues, including the
assessment of perceptions of offenses and deep horizons
of the private Gedabak field, the study of modern
geological and geochemical methods of other ore beds and
manifestations in the region is carried out.
Ore district belongs to the Lok-Karabakh island of the
Jurassic – Cretaceous age, formed by subduction of the
Tetis Ocean to the Eurasian Caucasus in the Tetis
metallogenic belt. The results of recent geological
exploration and research activities in the Gedabak Ore
region are high-sulfidation type (high sulfidation) of the
Gedabey deposit, with high sulfidation, and the Au-Ag-Zn-
Pb filtration of the Gadir and Ugur deposits near it. Low
sulfidation bedrock hopes to discover new porphyry-
epithermal ore deposits as part of a single epithermal
system of the ore region. The location of gold-copper-
porphyry ores on the Gedabey deposit by experts as a
"Gedabey copper deposit" in the Lesser Caucasus can be
a promising criterion for the unique, non-ferrous and rare
metals in the ore region.
The purpose of the work is to identify the regularities of
the bed and manifestations of the Gedabey ore region using
modern complex geological research methods, and to
develop predictive search criteria to identify new
perspective areas.
During the implementation of the article, maps were
drawn based on the data of a company (Samir Mursalaov),
and results of chemical and geochemical analyzes were
used. Macro and micronutrient analysis (over 500
micronutrients, including Au, Ag, Cu) was performed by
X-ray fluorescence (XRF) laboratory at SGS Mineral
Services UK LTD in Ontario.
The article considers new data on the contents of Au,
Ag, Cu, Zn taken from trenches and wells in these deposits.
This article describes Ugur exploration area – Reza gold
deposit, and some mineralization areas (Gyzyldjadag,
Shah Yatag, Yukhari Narzan and Dashbulag) which can be
of interest from commercial point of view for future.
Geology. Gedabey ore district is located in the territory
of Shamkir uplift of the Lok-Karabakh island arc volcanic
structural-formation zone in the Lesser Caucasus Mega-
anticlinorium. The ore region has a complex geological
structure, and it has become complex with the intrusive
masses and breaking structures of different ages and
different composition. Lower Bajocian is essentially
composed of an uneven succession of diabase and
andesite covers, agglomerate tuffs, tuff-gravelites and
siltstones. Tuff facies of the Lower Bajocian were exposed
to strong metamorphism (skarn alteration and hornfelsing)
as a result of the impact of Upper Bajocian volcanism and
intrusives of Upper Jurassic age. Only subvolcanic facie of
the Upper Bajocian in the Gedabey mine has been studied
(rhyolite and rhyodacite, quartz-porphyry). Rocks related to
the Bathonian stage have developed mainly in the northern
and southern edges of Shamkir uplift.
Gedabey ore district and Shamkir uplift in general is
complex in terms of its tectonic structure and its magmatism
is complex too. Magmatic processes in this region have
occurred intensely. There are 3 phases of magmatism in the
ore area: 1-Bajocian phases, 2-Bathonian phases, 3-Upper
Jurassic phases (Abdullaev et al.,1988) (Fig. 1).
©
Imamverdiyev N., Baba-zadeh
V
., Mursalov S.,
V
aliyev A., Mansurov M., Ismayilova A., 2021
~ 54 ~ ВІСНИК Київського національного університету імені Тараса Шевченка ISSN 1728-3817
Fig. 1. Lithological-structural map of the Gedabey Ore District (perspective areas for Cu, Au, Ag, Zn & As)
The Bajocian phase is divided into two autonomous
sub-stages:
Lower Bajocian age rocks – intermediate and basic
composition pyroclastic volcanic and volcanic disturbed rocks –
occupy the central portion of Shamkir uplift, and have become
complex with intrusive and subvolcanic complexes and
breaking structures of different ages, morphology.
Acid composition products of the Upper Bajocian
magmatism are represented very broadly by all facies
within Gedabey ore district. It can be considered that the
magmatic center of the Upper Bajocian period is located in
the Shamkir uplift.
Andesite, partially andesite-basalt composition products
of the Bathonian phase of magmatism, as well as various
composition pyroclastic materials and lava flows Upper
Jurassic phase are spread mainly in the sidelines of Shamkir
uplift. Along the breaking structures and in the areas
between them, rocks along micro cracks have become
strongly quartizated, kaolinized, sericitized and in most
cases changed to secondary quartzite. Breaking structures
have not caused Lower Bajocian rocks to become too
complex. The main complexity were generated by
subvolcanic masses of rhyolite, rhyodacite and quartz–
porphyry composition of Upper Bajocian age which occurred
along the Gedabey-Bittibulag depth fault and which began
to cool down in the area close to the surface (Baba-zadeh,
Abdullayeva, 2012).
Rhyolites and rhyodacites changed to various types of
quartzite, and the surrounding rocks changed into quartzite,
skarn rocks and hornstones depending upon petrographic,
mineralogical and lithological compositions. However, the
processes mentioned above did not occur all through the
ISSN 1728–2713 ГЕОЛОГІЯ. 2(93)/2021 ~ 55 ~
subvolcanic masses and contact rocks. These processes
occurred in such areas where there was a constant contact
(open channel or open contact zone) between the subvolcano
and magmatic source. One of such areas was the Misdag
area in which Gedabey mineral deposit (mine) is located.
The NW part of Gedabey ore district is located along
Gedabey-Bittibulag deeper fault, from the Yogundag
Mountain area to Bittibulag copper-arsenic deposit. This
area with respect to tectonics and metallogenic is confined
to volcano-plutonic structure of Shamkir uplift of Lok-
Karabakh structure-formation, Lesser Caucasus
metallogenic zone (Adamia et al., 2011). The ore
perspective areas (porphyry, high and low sulfidation
epithermal deposit types) are embedded in cone-shaped
Mountain Yogundag at elevation 2085 m and Gyzyldjadag
at altitude 2250.6 m.
The study of the Gedabey ore district was carried out by
many geologists. They examined mainly the geology and
magmatism of the region (Abdullaev et al., 1988; Abdullaev,
2018; Baba-zadeh, 2005; Baba-zadeh, Abdullaeva, 2012;
Baba-zadeh et al., 2015, 2017; Guseynov et al, 2014; Moritz et
al., 2016; Ramazanov et al., 2012; Suleymanov, Aliev, 1977;
Hemon et al., 2012, 2013). However, there is little information
about the new discovered deposits of the region, with the direct
participation of the co-authors of this article (Gedabey
Exploration Group – Anar Veliyev, Samir Mursalov).
The NW part in southern of Gedabey ore district has
been explored for porphyry-epithermal ore perspective
areas due to its favorable geological setting for Gedabey
and Gadir type of deposit. In the result of exploration
activities there were discovered several new local
epithermal mineralization areas, one of which has
underground mining, named Gadir deposit (low sulfidation
type) (Baba-zadeh et al., 2015; Valiyev et al., 2016, 2018;
Novruzov et al., 2019) and named Ugur exploration area –
Reza gold deposit (by AIMC Gedabey Exploration Group,
2014). Other ore perspective areas are in advanced stages
of exploration, such as Umid, AC, Zefer and Bittibulag
(Baba-zadeh et al., 2019).
Identification of exploration targets by mineral
prospecting often includes reviews of available information,
interpretation of remote sensing data, geological mapping
and soil geochemical surveys.
This article describes Ugur exploration area – Reza gold
deposit, and some mineralization areas (Gyzyldjadag, Shah
Yatag, Yukhari Narzan and Dashbulag) which can be of
interest from the commercial point of view in future (fig. 2).
Available information on property description and
location, which is common to all the exploration projects,
may be found above in the report section with that name.
The following information comes largely from Gedabey
Exploration Group.
A personal inspection of the Ugur Exploration Area was
made by Vice President Farhang Hedjazi and Director of
Geology Dr. Stephen Westhead. It was concluded that, for
present purposes, Gedabey NW Project is an advanced
exploration project. A substantial amount of historical and
more recent exploratory work has been carried out by
previous and current owners and exploration activity is
ongoing.
Ugur Exploration Area is identified in the following list
(Fig. 2):
Reza gold deposit (Au-Ag); high sulfidation type;
Gyzydjadag sulphur mineralization area (Au-Ag-S);
high sulfidation type;
Dashbulag mineralization area (Au-Ag-Cu); high
sulfidation type;
SHAH Yatag mineralization area (Au-Ag-Cu); high
sulfidation type;
Yukhari Narzan mineralization area (Au-Ag), high
sulfidation type.
Fig. 2. Schematic map of the ore perspective area of Ugur Exploration Area
~ 56 ~ ВІСНИК Київського національного університету імені Тараса Шевченка ISSN 1728-3817
Regional geological-structural setting. Ugur
Exploration Area is located at 4 km to the southwest
Gedabey high sulfidation epithermal deposit, on Mountain
Gyzyldjadag (Fig. 3).
The Reza gold deposit, Shah Yataq, Gyzydjadag,
Dashbulag and Yukhari Narzan mineralization areas are all
located within on the Gedabey-Bittibulag regional deeper
fault system. The major elongated structural zones within
the system form the framework for the region.
Middle Jurassic to Upper Jurassic sedimentary,
magmatic and metamorphic rocks forms the basement of
the region. These are intruded by Upper Bajocian to
Kimmeridgian age plagiogranites, gabbros, diorites,
granodiorites and granites. In a geological structure of
mineralization area includes Upper Bajocian rhyolite-dacites
and their agglomerated tuffs and secondary quartzites of
compound genesis. There are also widely developed
contact hydrothermalites along with fumarole-solfatara type
due to acid volcanism of Upper Bajocian Age. Contact
hydrothermalites get their origin in plagiogranite intrusion
exposures having wide expansion in a large field of
hydrothermalites spread in the head river Djeyirchay. And a
broad net of discontinued dislocations is developed on the
given area where the dominant role among them belongs to
Gedabey-Bittibulag deeper fault.
Within the mineralization area bounds there also
observed Gyzyldjadag fault of latitudinal strike in which zone
at a thickness 15 m the rock are brecciated, silicificated and
limonitized. The area is confined to an intersection knot of
above-listed faults however the dominant role in
mineralization localization belongs to Gedabey-Bittibulag
deeper fault (Fig. 3).
Rocks within the mineralization areas bounds, enclosed
between tectonic structures, are strongly kaolinized and
impregnated by phenocrysts of pyrite and rarely chalcopyrite
at which leaching formed a gossan composed of strongly
limonitized, ocherous rocks.
Copper minerals as rare phenocrysts of chalcopyrite and
hypergene formations as malachite are observed on an
intersection area of Gedabey-Bittibulag fault with
Gyzyldjadag fault.
Deposit was discovered in 2016 by GEG and called Reza
in honour of Reza Vaziri who is the president of Azerbaijan
International Mining Company, Anglo Asian Mining PLC.
The Reza gold deposit is located in Gedabey Ore District
of the Lesser Caucasus in NW of Azerbaijan, 358 kms East
of the capital city Baku, 48 kms East of the city of Ganja and
Ganja airport, 4.7 kms NW of Gedabey open-pit gold copper
mine. The deposit is the well within the Ugur exploration
area, NW Area polygon of Gedabey Contract Area.
Fig. 3. Location of Ugur Exploration Area on Gedabey-Bittibulag regional deeper fault system (www.googleearth.com)
The exploration centre of the project is the partially
backfilled outcrop, independently located on Google Earth
at Latitude 40°37'13.10"N and Longitude 45°46'15.34"E.
The known gold mineralization has an estimated north-south
strike length of 400 m and a total area of approximately 20
hectares or 0.2 km². The deposit is enlarged by highly gold-
silver surface outcrop rock chip samples over an area of
2.5 kms North-South by 2 kms East-West, with the Reza
gold deposit located on the central part.
In a geological structure of section there participated
secondary quartzites being formed under the influence of
Atabek-Slavyanka plagiogranite intrusion exposures
observed to the north from the gold mineralization area. The
area in tectonic attitude is confined to Gyzyldjadag fault of
Northeastern sub-latitudinal strike 80° with a vertical dip.
The mineralization zone thickness within the area bounds is
up to 80–120 m.
Rocks in the alteration zone area crumpled, argillic
alterated, brecciated, strongly limonitized and hematitized.
Out of metallic minerals crystalline hematite was observed.
On surface intensive barite and barite-hematite vein and
veinlets, also gossan zones were observed. The main
mineralization zones have been sampled in three trenches
at a distance up to 270m by trenches #1, #2 and #3 and
received positive results for gold and silver. Also there have
taken approximately 550 samples from outcrop #1 and #2.
On the main orebody at surface centre there occured
secondary quartzites with vein-veinlets barite-hematite
mineralization over which accumulations of hydrous ferric
oxides cementing breccias of quartz and quartzites remain.
And in erosion parts "reddish mass" being oxidation product
of stock and stockverk hematite ores are observed.
Representing typical gossans, these accumulations by the
data of trenches for thickness about 5-10 m contain gold 0.3-
2.0 ppm and silver 1.0–15.0 ppm.
Surface sampling. GEG AIMCL is pleased to announce
that rock chip and channel sampling has identified multiple
high-grade gold mineralizations at Ugur exploration are.
Following the previously reported discovery of potentially
significant outcropping hematite-barite vein and breccia
ISSN 1728–2713 ГЕОЛОГІЯ. 2(93)/2021 ~ 57 ~
mineralization (Exploration Report, 2013-2015) at Gedabey
NW Project has undertaken systematic geological mapping
and rock chip and channel sampling. This sampling has
delivered exceptional gold results including 4.96 ppm Au
(UGA-01), 3.07 ppm Au (UGA-43) and 3.43 ppm Au (UGA-
200) confirming the existence of outcropping high-grade
gold mineralization. The mineralization occurs within in NW
subparallel structural zones within 200 m in the deposit and
partly in the East part.
The majority of the new results are from sampling
surface outcrops that occur in the centre of known high
sulfidation epithermal mineralization at Reza area, and the
style of mineralization indicates a potential link between
known gold-rich barite-hematite vein mineralization. A total
of 48 rock chips samples were collected from out cropping
and sub cropping areas across three main outcrops. The
majority of samples returned highly values (30% of samples
graded more than Au 0.3 ppm; see table 1 and Fig. 4).
Significantly a total of 177 samples returned grades higher
than Au 0.3 ppm and 31 samples returned more than Au
0.99 ppm (up to 4.96 ppm Au).
Fig. 4. Base on surface and trenches (T-2 and T-3) samples assays,
Au>0.15 ppm in the Reza gold deposit of Ugur Exploration Area
Table 1
Assay results of trenches and channels sampling on the surface of Ugur Exploration area
Sample_id Au, ppm Ag, ppm Cu, % Zn, % Easting Northing Altitude
UGA-01 4.96 1.5 0.073 0.1069 565888 4497351 1691
UGA-30 0.35 1.3 0.044 0.0600 565813 4497325 1717
UGA-39 4.49 1.3 0.064 0.0874 565886 4497351 1688
UGA-42 0.67 1.5 0.034 0.1006 565958 4497418 1685
UGA-43 3.07 9.9 0.125 0.1375 565961 4497420 1685
UGA-44 2.48 3.5 0.079 0.0903 565963 4497421 1684
UGA-46 0.33 1.7 0.096 0.0993 565965 4497423 1682
UGA-63 0.56 1.5 0.116 0.1844 566148 4497480 1662
UGA-64 0.59 1.5 0.131 0.1387 566147 4497481 1662
UGA-65 0.97 2.1 0.070 0.1561 566118 4497459 1667
UGA-69 0.96 2.4 0.046 0.0223 565684 4497294 1667
UGA-72 1.37 2.3 0.037 0.0576 565658 4497273 1667
UGA-74 0.64 2.9 0.041 0.0374 565622 4497260 1667
UGA-75 1.33 6.6 0.050 0.0375 565595 4497262 1667
UGA-76 0.71 2.2 0.055 0.0724 565569 4497251 1667
UGA-88 0.29 7.7 0.053 0.1536 565310 4496898 1869
UGA-91 0.36 2.8 0.047 0.1277 565310 4496897 1869
UGA-92 0.71 22.1 0.066 0.2127 565309 4496897 1869
UGA-93 0.44 2.9 0.075 0.0990 565308 4496896 1869
UGA-94 0.34 5.1 0.055 0.2089 565308 4496895 1869
UGA-98 0.36 8.2 0.033 0.1403 565310 4496893 1875
UGA-99 0.63 6.3 0.059 0.1967 565311 4496892 1875
UGA-100 0.50 6.0 0.059 0.1458 565314 4496902 1873
UGA-101 0.44 7.6 0.060 0.1487 565311 4496903 1871
UGA-106 0.57 7.0 0.038 0.1107 565321 4496907 1867
UGA-107 0.93 3.9 0.078 0.1457 565323 4496908 1867
UGA-108 0.84 2.9 0.069 0.1489 565323 4496911 1866
~ 58 ~ ВІСНИК Київського національного університету імені Тараса Шевченка ISSN 1728-3817
Ending table 1
Sample_id Au, ppm Ag, ppm Cu, % Zn, % Easting Northing Altitude
UGA-112 0.60 3.8 0.127 0.1713 565329 4496908 1863
UGA-113 0.32 4.1 0.160 0.2472 565330 4496920 1859
UGA-114 0.88 6.0 0.136 0.1357 565328 4496921 1858
UGA-115 1.36 10.3 0.150 0.2102 565329 4496928 1857
UGA-116 0.45 9.0 0.151 0.2487 565325 4496920 1860
UGA-118 0.99 2.9 0.086 0.1769 565334 4496925 1856
UGA-120 0.44 6.7 0.067 0.1425 565330 4496948 1850
UGA-124 0.31 0.9 0.002 0.0100 565263 4497029 1872
UGA-125 0.42 1.6 0.012 0.0082 565264 4497027 1873
UGA-126 0.65 1.0 0.016 0.0398 565264 4497025 1873
UGA-127 0.58 1.7 0.020 0.0256 565263 4497023 1873
UGA-128 0.76 1.0 0.020 0.0230 565262 4497022 1873
UGA-129 0.46 1.1 0.021 0.0344 565262 4497020 1873
UGA-131 0.71 1.1 0.016 0.0168 565261 4497016 1874
Trenching. Reza gold deposit trenches were dug with
the objective of discovering mineral bodies under the
unconsolidated cover, sampling and ascertaining the
orientation. Two main phases of trenching occurred, with the
initial trenching taking place on surface of the deposit, with
validation and infill trenching completed by GEG (Fig. 5).
In the aim to identify the gold presence in oxidized
secondary quartzite zone on the surface 5 trenches were
provided. Trenches were dug by excavator in length
between 50 to 170 m the depth of 1.5 m. The trenches were
mapped and sampled manually by taking one-to two meter
long channel samples. The samples weights ranged
between 2–5 kilograms.
The main mineralization targets have been sampled in
three trenches at a distance up to 270m by trenches #1, #2
and #3 (Fig. 4) and given good results for gold and silver.
Also approximately 350 samples from outcrop #1 and #2
have been taken.
Rc drilling. In the Reza gold deposit, 55 bore holes were
drilled on a 50x50 m grid (Fig. 6) (the results of the analyzes
are given in table 2).
RC holes were drilled at an angle of -90 degrees at a
diameter 146 mm. The air-flush RC holes were intended to
test the extension of the oxidized gold mineralization at
depth. Slurry recovery was in the range 80-100%. However,
although drilling below the level of ground water is
technically feasible, the slurry material is lost and enriched
with heavy residues.
Fifty-five RC holes were drilled for a total of 1482 m to
test oxide gold mineralization in the central part of the
deposit, also in flanks.
Fig. 5. Controlling of exploration surface sampling of trenches Reza gold deposit of Ugur Exploration Area
Fig. 6. Location of UGDD 01 & 02 bore holes at the Reza gold deposit
ISSN 1728–2713 ГЕОЛОГІЯ. 2(93)/2021 ~ 59 ~
Table 2
Assay results of RC bore holes of Reza gold deposit, Ugur exploration area (>0.29ppm Au)
hole_id sample_id from, m to, m length, m Au, ppm Ag, ppm Cu, % Zn, %
UGRC02 UGRC02-14 13 14 1 0.61 0.83 0.0037 0.0337
UGRC02 UGRC02-15 14 15 1 0.50 1.05 0.0025 0.0296
UGRC02 UGRC02-16 15 16 1 0.38 0.75 0.0036 0.0269
UGRC02 UGRC02-17 16 17 1 0.32 0.76 0.0032 0.0234
UGRC02 UGRC02-20 18 19 1 0.30 0.75 0.0034 0.0290
UGRC03 UGRC03-15 13 14 1 0.44 2.39 0.0323 0.2893
UGRC03 UGRC03-16 14 15 1 0.46 2.96 0.0497 0.3735
UGRC03 UGRC03-17 15 16 1 1.42 3.35 0.0535 0.3302
UGRC03 UGRC03-18 16 17 1 0.89 11.91 0.0481 0.3271
UGRC03 UGRC03-19 17 18 1 1.90 60.18 0.0356 0.3624
UGRC03 UGRC03-20 18 19 1 1.36 55.77 0.0120 0.2446
UGRC03 UGRC03-22 19 20 1 1.11 13.18 0.0170 0.2566
UGRC03 UGRC03-23 20 21 1 0.98 23.36 0.0080 0.2487
UGRC03 UGRC03-24 21 22 1 0.60 8.33 0.0223 0.3277
UGRC03 UGRC03-25 22 23 1 0.43 9.25 0.0253 0.3225
UGRC03 UGRC03-27 24 25 1 0.67 7.23 0.0356 0.2741
UGRC03 UGRC03-28 25 26 1 0.36 10.59 0.0253 0.3404
UGRC04 UGRC04-3 5 6 1 1.01 5.56 0.0038 0.1304
UGRC04 UGRC04-4 6 7 1 0.78 3.63 0.0049 0.1067
UGRC04 UGRC04-15 16 17 1 1.89 9.14 0.0190 0.0835
UGRC04 UGRC04-16 17 18 1 1.90 10.03 0.0246 0.0477
UGRC04 UGRC04-17 18 19 1 2.17 6.76 0.0248 0.1258
UGRC04 UGRC04-18 19 20 1 1.60 14.01 0.0122 0.1175
UGRC04 UGRC04-19 24 25 1 1.93 7.78 0.0119 0.0601
UGRC04 UGRC04-21 25 26 1 1.89 10.15 0.0292 0.0885
UGRC04 UGRC04-22 26 27 1 2.11 20.78 0.0202 0.1019
UGRC05 UGRC05-11 9 10 1 1.75 27.78 0.0344 0.0875
UGRC05 UGRC05-12 10 11 1 1.62 71.70 0.0266 0.0718
UGRC05 UGRC05-13 11 12 1 2.04 36.75 0.0228 0.0735
UGRC05 UGRC05-14 12 13 1 2.10 33.08 0.0209 0.0673
UGRC14 UGRC14-23 20 21 1 10.27 74.53 0.0113 0.0182
UGRC14 UGRC14-25 21 22 1 16.08 46.21 0.0055 0.0019
UGRC14 UGRC14-26 22 23 1 11.08 56.52 0.0070 0.0030
UGRC14 UGRC14-27 23 24 1 2.15 39.04 0.0038 0.0080
UGRC14 UGRC14-28 24 25 1 1.29 22.08 0.0109 0.0062
UGRC14 UGRC14-29 25 26 1 2.10 18.08 0.0130 0.0386
UGRC14 UGRC14-30 26 27 1 3.28 14.90 0.0144 0.0071
UGRC14 UGRC14-31 27 28 1 7.33 28.82 0.0150 0.0281
Diamond drill holes. Ten diamond drill holes, named
UGDD 01-10 were drilled in the central part of the deposit.
The drill holes were sampled mainly in 1 meter lengths from
the top of the hole to the bottom.
The exploratory core holes were drilled at an angle of
–90 degrees at a diameter 122.6 mm (PQ) for the first 40–
72.5 m. Thereafter, the bore hole diameter was 86 mm,
producing 80 or 84 mm diameter cores. The core samples
were marked and placed into standard boxes.
Significant intervals of weighted averages greater than
0.29 gramme per tonne gold (ppm) over down hole intervals
of 1 metres or greater (>0.29 ppm Au and >0.9 m) are
summarized in table 3 below. Drill hole UGDD02 was the
highest grade mineralized of the program, averaging 3.52
ppm Au over a 58.5 m length of the drill hole (Fig. 6). Drill
hole UGDD10 was the widest mineralized of the program,
averaging 1.23 ppm Au over a 106.5 m length of the drill
hole. Other notably mineralized drill holes included
UGDD01, UGDD03, UGDD04, UGDD06, UGDD07,
UGDD08 and UGDD09. Drill hole UGDD05 was the least
mineralized with a best intercept of 0.45 ppm Au for 11–
16 m (5 m) and 0.40 ppm Au for 20–25 m (5 m).
Table 3
Summary of significant drill intercepts (>0.29 ppm Au) of Reza gold deposit
hole_id sample_id from, m to, m length, m Au, ppm Ag, ppm Cu, %
UGDD01 UGDD01-17 19.00 20.00 1.00 0.85 23.58 0.0211
UGDD01 UGDD01-18 20.00 21.00 1.00 0.75 18.85 0.0203
UGDD01 UGDD01-19 21.00 22.00 1.00 1.45 25.25 0.0170
UGDD01 UGDD01-20 22.00 23.00 1.00 1.09 19.16 0.0165
UGDD01 UGDD01-21 23.00 24.00 1.00 1.34 10.66 0.0124
UGDD01 UGDD01-33 34.75 35.50 0.75 2.81 8.81 0.0161
UGDD01 UGDD01-34 35.50 36.50 1.00 5.05 4.69 0.0076
UGDD01 UGDD01-35 36.50 37.50 1.00 15.87 1.25 0.0044
UGDD01 UGDD01-36 37.50 38.35 0.85 5.14 0.97 0.0035
UGDD01 UGDD01-37 38.35 39.15 0.80 3.19 1.41 0.0043
UGDD01 UGDD01-38 39.15 40.00 0.85 2.51 1.01 0.0037
UGDD02 UGDD02-04 4.00 5.00 1.00 18.45 31.57 0.0075
UGDD02 UGDD02-05 5.00 6.00 1.00 13.96 28.83 0.0063
UGDD02 UGDD02-06 6.00 7.00 1.00 5.33 16.53 0.0042
UGDD08 UGDD08-42 41.00 42.00 1.00 17.38 64.74 0.0885
UGDD08 UGDD08-43 42.00 42.50 0.50 15.38 53.51 0.0388
~ 60 ~ ВІСНИК Київського національного університету імені Тараса Шевченка ISSN 1728-3817
Local geological-structural setting. The gold
mineralization in the Reza deposit developed mainly during
the Upper Bajocian tectonic-magmatic cycle (Fig. 7).
Tectonic zone is the main host structure for the West
(central zone) and East zones of gold mineralization. During
Upper Bajocian times, the central tectonic zone was a right-
lateral strike-slip fault represented by a number of sub-
parallel-trending faults (55º–85º) with a combined length of
1–1.5 kilometres. The fault dips are from 70º to 80° to the
north-west. The faults of the central zone control the
hydrothermal metasomatic alteration, gold mineralization,
Upper Bajocian Atabek-Slavyanka plagiogranite massive
intrusion, and in some cases are the borders of the elevated
tectonic blocks formed by Lower Bajocian volcanic rocks.
a
b
Fig. 7. Lithological-structural map (a) of the Reza gold deposit, Ugur exploration area
(scale 1:2800, A3 format, Original scale 1:1 000 (by GEG, 2016)) and lithological-structural cross section along AA1 line (b).
Legend: 1 – andesite tuff agglomerates facie; 2 – gossan; 3 – pyrite stock and stockverk; 6 – breccia zone of silicified andesite porphyritic
rocks; 5 – secondary quartzite; 6 – pyroclastic (from small clastic to lapilli) facie of rhyolite-dacite porphyry;
7 – lava facie of rhyolite-dacite porphyry; 8 – silicified andesite porphyritic rocks; 9 – andesite porphyritic rocks; 10 – quartz porphyry zone
(weak hematitized, limonitezation); 11 – faults; 12 – probably faults; 13 – topographic contour line; 14 – cross section lines; 15 – bore holes
points; 16 – bore holes ; 17 – deep angle of faults and dykes; 18 – structural elements of rocks; 19 – lithological contact; 20 – rivers
The East tectonic zone is complicated by the occurrence
of numerous related faults such as antithetic and synthetic
faults, down throw and thrust faults and intense folding due
to faulting. The combination of these structures determines
the general morphology of both the oxide and primary sulfide
mineralization. Where zones of either fracture cleavage or
quartz veinlets occur in drill core, these intervals are
described as fault zones. In many cases the intervals of
faulting are represented by tectonic breccias in which relics
of the host volcanic-sedimentary rocks are cemented by
dacitic rock. The tectonic breccias probably formed after
emplacement of the sulfide mineralization, during the
ISSN 1728–2713 ГЕОЛОГІЯ. 2(93)/2021 ~ 61 ~
formation of the sub-longitudinal faults. The intervals of
tectonic breccia exhibit lower gold grades in comparison with
zones of fracture cleavage and quartz veinlets.
The Reza gold deposit was emplaced in the intersection
of NW, NE, N and E trending structural systems regionally
controlled by a first order NW transcurrent structure.
Structure geometry and kinematics determined from
surface mapping and drilling information suggest that the
volcanic sequence hosted at central part might have been
accumulated in a "pull-apart" basin controlled by NW
structures. These structures were affected by two
compressive deformation processes: the first as a result of
the N to the NNE sub-horizontal contraction and the second
being formed during a post mineral NW contraction.
Field geological exploration information, cross-cutting
relationships between structures, veins and brecciation
types and hydrothermal alterations styles suggest that the
mineralization was controlled by NW brittle dextral shears,
associated with E-W left lateral and N-S pure extensional
structures, with all them related to the contraction event
within a transpressional regimen.
Deposit type. The Gedabey NW project is a new local ore
belt system discovered by GEG while following-up high
priority alteration targets in a key mineralization area located
in the Gedabey-Bittibulag ore belt of the Gedabey ore district
in Azerbaijan. The ore belt contains a series of Jurassic-age
porphyry, high-sulfidation and low-sulfidation epithermal gold
deposits and mineralization occurrences. The remote sensing
anomalous (in NW and SW) area is believed to remain open
in all directions under shallow, post-mineral cover. Deposit
alteration signature has characteristics which suggest the
current outcrop level may be near the top of a mineralized,
gold-bearing high sulfidation epithermal (HSE) system.
The gold mineralization at the deposit is interpreted as
forming in shallow high sulfidation epithermal systems
(Sillitoe, Hedenquist, 2003; Simmons, 2005; Sillitoe,
2010) . The mineralization has been noted to occur in two
different styles:
well-confined hydrothermal breccias;
associated with pyrite stock-stockwork.
The majority of the deposit material and current
estimates are formed within the barite-hematite-quartz-
kaoline mineralization in the secondary quartzite rocks.
The main brecciation and stockwork are hosted within
secondary quartzite, sometime massive silicified andesite
porphyritic rocks.
Outcropping gold mineralization in the project is
oxidized with no sulfides recognised at surface.
Mineralization is hosted by brecciated, and intense
advanced argillically-altered andesitic volcanics and
possible domes, including large areas of "powdery"
probably alunite-opal alteration (Fig. 8).
Fig. 8. International high sulfidation epithermal model for the Reza gold deposit
The outcropping alteration at the deposit is typical of the
upper steam-heated levels of high-sulfidation epithermal
(HSE) deposits, which in most mineralized systems of this
type, may cap higher-grade gold mineralization which is
hosted by underlying vuggy and oxide zones.
From our current mapping and sampling, the gold
mineralization at the deposit appears to form a crescent
shape surrounding a "core" of barite-hematite
mineralisation in advanced argillically & silicification –
altered porphyritic andesite host rock.
Recommended. The objectives and recommended
methodology of the next phase of work are outlined below.
Stage 1: Re-logging of core and re-interpretation to
confirm geology model. Any mineralized exposures that are
open, or were undiscovered, should be systematically
sampled and documented.
Stage 2: Complete a thorough review and compilation
of the database. This should include re-logging of core and
standardizing nomenclature for log coding. Data can then be
used to build new accurate cross sections for future drill hole
planning. Field checks of geologic mapping to verify
structural and lithologic interpretations should be completed
as warranted. An intrusive suite of samples will be collected
for detail petrographic-mineralogical and fluid inclusion
studies.
Stage 3: All data will be compiled for detailed drill hole
planning for initial confirmation drilling.
~ 62 ~ ВІСНИК Київського національного університету імені Тараса Шевченка ISSN 1728-3817
Список використаних джерел
Абдуллаев, Р.Н., Мустафаев, Г.В., Мустафаев, М.А. и др. (1988). Ме-
зозойские магматические формации Малого Кавказа и связанное с ними
эндогенное оруденение. Баку: Элм.
Абдуллаева, Ш.Ф. (2018). Вулканогенные золотосодержащие сульфи-
дные месторождения островодужных зон, условия их геодинамического
развития, закономерности размещения и критерии прогнозирования
(Малый Кавказ). Автореф. дис. … д-ра наук (науки о Земле): 2520.01.
Бакинский Государственный Университет, Баку.
Баба-заде, В.М. (Ред.). (2005). Минерально-сырьевые ресурсы Азер-
байджана. Баку: Озан.
Баба-заде, В.М., Абдуллаева, Ш.Ф. (2012). Благороднометалльные
рудно-магматические системы. Баку: изд. "Бакинского Университета".
Баба-заде, В.М., Имамвердиев, Н.А., Мансуров, М.И. и др. (2019). Опре-
деление гидротермально-измененных и минерализованных зон с исполь-
зованием данных спутника АSТЕR (Кедабекский рудный район). Вестник
Бакинского Университета. Серия естественных наук, 1, 69-78.
Баба-заде, В.М., Кекелия, С.А., Абдуллаева, Ш.Ф. и др. (2017). Золотору-
дные месторождения, условия их образования и характерные особенности
геодинамического развития (Малый Кавказ). Статья I. Вестник Бакинского
Университета. Серия естественных наук, 1, 83-110.
Баба-заде, В.М., Кекелия, С.А., Абдуллаева, Ш.Ф., Кекелия, М.А.
(2015). Золотосодержащие сульфидные месторождения островодужных
палеосистем, их металлогенические особенности и условия геодинами-
ческого развития. Баку: СВS.
Баба-заде, В.М., Кекелия, С.А., Абдуллаева, Ш.Ф., Кекелия, М.А.
(2017). Рудные месторождения центрального сегмента альпийского го-
рно-складчатого пояса и проблемы их генезиса (Большой и Малый Кав-
каз, Восточные Понтиды). Баку: СВS.
Рамазанов, В.Г., Мориц, Р., Каландаров, Б.Г. и др. (2012). Месторож-
дения благородных и цветных металлов Кедабекского рудного района,
перспективы их поисков. Вестник Бакинского Университета. Серия ес-
тественных наук, 3, 117-133.
Сулейманов, С.М., Алиев, В.И. (1977). Фации и минеральные типы
вторичных кварцитов Кедабекского рудного района. Ученые записки
АГУ, сер геол.-геогр. наук, 2, 3-11.
Adamia, Sh., Zakariadze, G., Chkhotua, T. et al. (2011). Geology of the
Caucasus: a review. Turkish Journal of Earth Sciences, 20, 489-544
AIMC Gedabey Exploration Group (GEG). (2014). Report about the results
and future planning of the perspective areas (Au, Ag, Cu, Mo, Zn) of Gedabey
Ore District, Gedabey.
Baba-zadeh, V.M., Mursalov, S.S., Veliyev, A.A., Imamverdiyev, N.A. et al.
(2019). Geochemical anomalies in the NW flank of Gedabey mine (Lesser
Caucasus, Azerbijan). International Journal of Mining Science (IJMS), 5, 1,
31-42. ISSN 2454-9460.
Baba-zadeh, V.M. Veliyev, A.A. Abdullayeva, Sh.F. et al. (2015). New
perspective Gadir mineralization field in Gеdabey ore region. Reports of
National Academy of Sciences of Azerbaijan, 2, 74-79.
Guseynov, G., Valiyev, A., Mammadov, S., Bayramov, A. (2014).
Mineralization of the Gedabey gold-copper deposit, (Lesser Caucasus). 8th
International Symposium on Eastern Mediterranean Geology, October 13-17,
2014, Mugla, Turkey, 116.
Hemon, P., Moritz, R., Ramazanov, V., Spangenberg, J. (2012). The
Gedabey ore deposit: A Lower Cretaceous epithermal system within the
Lesser Caucasus of western Azerbaijan. Society of Economic Geologists
Conference, September, 2012, Lima, Peru. Abstract Volume, Poster 50.
Hemon, P., Moritz, R., Ramazanov, V. (2013). The Gedabey epithermal
Cu-Au deposit, Lesser Caucasus, Western Azerbaijan: Geology, alterations,
petrography and evolution of the sulfidation fluid states. Conferens on recent
research activities and new results about the regional geology, the
geodynamics and the metallogeny of the Lesser Caucasus. A SCOPES
meeting, Tbilisi, 19-20
Moritz, R., Selby D., Popkhadze, N. et al. (2016). Metallogeny of the Lesser
Caucasus: From Arc Construction to Postcollision Evolution. Society of
Economic Geologists, Inc. Spesial Publication, 19, 157-192.
Novruzov, N., Valiyev, A., Bayramov, Ay. et al. (2019). Mineral composition
and paragenesis of altered and mineralized zones in the Gadir low sulfidation
epitermal deposit (Lesser Caucasus, Azerbaijan). Iranian Journal of Earth
Sciences, II, 1, 14-29.
Sillitoe, R.H. (2010). Porphyry copper systems. Economic Geology, 105,
3-41.
Sillitoe, R.H., Hedenquist, J.W. (2003). Linkages between volcanotectonic
settings, ore-uid compositions, and epithermal precious metal deposits.
Special Publication-Society of Economic Geologists, 10, 315-343.
Simmons, S.F., White, N.C. John, D.A. (2005). Geological characteristics
of epithermal precious and base metal deposits. Economic Geology, 100th
Anniversary Volume, 485-522.
Valiyev, A., Bayramov, A., Mammadov, S., Mursalov, S. et al. (2016). Structural
Geology, Lithology, Mineralization, and New Perspectives on the Gadir Low-
Sulfidation Deposit, Gedabey District; a Newly Discovered Orebody in the Tethyan
Metallogenic Belt, Lesser Caucasus, Azerbaijan. Society of Economic Geologists,
Inc. SEG Conference, Chesme, Izmir, Turkey.
Valiyev, A., Bayramov, Ay., Ibrahimov, J. et al. (2018). Geological Setting
and Ore Perspective of the New Discovered Gadir Low Sulfidation Epithermal
Deposit, Gedabey NW Flank, Lesser Caucasus, Azerbaijan. Universal
Journal of Geoscience, 6(3), 78-101.
References
Abdullaev, R.N., Mustafaev, G.V., Mustafaev, M.A. et al. (1988). Mesozoic
igneous formations of the Lesser Caucasus and related endogenous
mineralization. Baku: Elm. [in Russian]
Abdullaeva, Sh.F. (2018).Volcanogenic gold-bearing sulfide deposits of island-
arc zones, conditions for their geodynamic development, patterns of distribution
and forecasting criteria (Small Caucasus). Extended abstract of Doctor's thesis
(Earth Sci.): 2520.01. Baku State University, Baku. [in Russian]
Adamia, Sh., Zakariadze, G., Chkhotua, T. et al. (2011). Geology of the
Caucasus: a review. Turkish Journal of Earth Sciences, 20, 489-544
AIMC Gedabey Exploration Group (GEG). (2014). Report about the results
and future planning of the perspective areas (Au, Ag, Cu, Mo, Zn) of Gedabey
Ore District, Gedabey.
Baba-zadeh, V.M. (Eds.) (2005). Mineral resources of Azerbaijan. Baku:
Ozan. [in Russian]
Baba-zadeh, V.M., Abdullaeva, Sh.F. (2012). Noble metal ore-magical
systems. Baku: Baku University. [in Russian]
Baba-zadeh, V.M., Imamverdiyev, N.A., Mansurov, M.I. et al. (2019.).
Detection of hydrothermally altered and mineralized zones using ASTER
materials (Kedabek ore district). Baku University News. Series of Natural
Sciences, 1, 69-78. [in Russian]
Baba-zadeh, V.M., Kekelia, S.A., Abdullaeva, Sh.F. et al. (2017). Gold ore
deposits, the conditions of their formation and the characteristic features of
geodynamic development (Lesser Caucasus). Article I. Baku University
News. Series of Natural Sciences, 1, 83-110. [in Russian]
Baba-zadeh, V.M., Kekelia, S.A., Abdullaeva, Sh.F., Kekelia M.A. (2017).
Ore deposits of the central segment of the alpine mountain-folded belt and
problems of their genesis (Greater and Lesser Caucasus, East Pontids).
Baku: CBS. [in Russian]
Baba-zadeh, V.M., Kekelia, S.A., Abdullaeva, Sh.F., Kekelia, M.A. (2015).
Gold-bearing sulfide deposits of island-arc paleosystems, their metallogenic
features and conditions of geodynamic development. Baku: CBS.
Baba-zadeh, V.M., Mursalov, S.S., Veliyev, A.A., Imamverdiyev, N.A. et al.
(2019). Geochemical anomalies in the NW flank of Gedabey mine (Lesser
Caucasus, Azerbijan). International Journal of Mining Science (IJMS), 5, 1,
31-42. ISSN 2454-9460.
Baba-zadeh, V.M. Veliyev, A.A. Abdullayeva, Sh.F. et al. (2015). New
perspective Gadir mineralization field in Gеdabey ore region. Reports of
National Academy of Sciences of Azerbaijan, 2, 74-79.
Guseynov, G., Valiyev, A., Mammadov, S., Bayramov, A. (2014).
Mineralization of the Gedabey gold-copper deposit, (Lesser Caucasus). 8th
International Symposium on Eastern Mediterranean Geology, October 13-17,
2014, Mugla, Turkey, 116.
Hemon, P., Moritz, R., Ramazanov, V., Spangenberg, J. (2012). The
Gedabey ore deposit: A Lower Cretaceous epithermal system within the
Lesser Caucasus of western Azerbaijan. Society of Economic Geologists
Conference, September, 2012, Lima, Peru. Abstract Volume, Poster 50.
Hemon, P., Moritz, R.t, Ramazanov, V. (2013). The Gedabey epithermal
Cu-Au deposit, Lesser Caucasus, Western Azerbaijan: Geology, alterations,
petrography and evolution of the sulfidation fluid states. Conferens on recent
research activities and new results about the regional geology, the
geodynamics and the metallogeny of the Lesser Caucasus. A SCOPES
meeting, Tbilisi, 19-20
Moritz, R., Selby D., Popkhadze, N. et al. (2016). Metallogeny of the Lesser
Caucasus: From Arc Construction to Postcollision Evolution. Society of
Economic Geologists, Inc. Spesial Publication, 19, 157-192.
Novruzov, N., Valiyev, A., Bayramov, Ay. et al. (2019). Mineral composition
and paragenesis of altered and mineralized zones in the Gadir low sulfidation
epitermal deposit (Lesser Caucasus, Azerbaijan). Iranian Journal of Earth
Sciences, II, 1, 14-29.
Ramazanov, V.G., Moritz, R., Kalandarov, B.G. et al. (2012). Deposits of
noble and non-ferrous metals of the Kedabek ore district, prospects for their
searches. Baku University News. Series of Natural Sciences, 3, 117-133.
Sillitoe, R.H. (2010). Porphyry copper systems. Economic Geology, 105,
3-41. [in Russian]
Sillitoe, R.H., Hedenquist, J.W. (2003). Linkages between volcanotectonic
settings, ore-uid compositions, and epithermal precious metal deposits.
Special Publication-Society of Economic Geologists, 10, 315-343.
Simmons, S.F., White, N.C. John, D.A. (2005). Geological characteristics
of epithermal precious and base metal deposits. Economic Geology, 100th
Anniversary Volume, 485-522.
Suleymanov, S.M., Aliev, V.I. (1977). Facies and mineral types of
secondary quartzites of the Kedabek ore district. Uchenye Zapiski ASU.
Series geol.-geogr. Sciences, 2, 3-11. [in Russian]
Valiyev, A., Bayramov, A., Mammadov, S., Mursalov, S. et al. (2016).
Structural Geology, Lithology, Mineralization, and New Perspectives on the
Gadir Low-Sulfidation Deposit, Gedabey District; a Newly Discovered
Orebody in the Tethyan Metallogenic Belt, Lesser Caucasus, Azerbaijan.
Society of Economic Geologists, Inc. SEG Conference, Chesme, Izmir,
Turkey.
Valiyev, A., Bayramov, Ay., Ibrahimov, J. et al. (2018). Geological Setting
and Ore Perspective of the New Discovered Gadir Low Sulfidation Epithermal
Deposit, Gedabey NW Flank, Lesser Caucasus, Azerbaijan. Universal
Journal of Geoscience, 6(3), 78-101.
Надійшла до редколегії 12.01.21
ISSN 1728–2713 ГЕОЛОГІЯ. 2(93)/2021 ~ 63 ~
Н. Імамвердієв1, д-р геол.-мінералог. наук, проф.,
E-mail: inazim17@yahoo.com;
В. Баба-заде1, д-р геол.-мінералог. наук, проф., академік НАН Азербайджану,
E-mail: vbabazade1938@mail.ru;
С. Мурсалов2, горний геолог,
E-mail: samir.m.s@mail.ru;
А. Валієв2, PhD (науки про Землю), гол. геолог,
E-mail: velizade_anar@yahoo.com;
М. Мансуров1, канд. геол.-мінералог. наук, доц.,
E-mail: mamoy_mansurov@mail.ru;
А. Ісмаїлова1, PhD (науки про Землю), доц.,
E-mail: aygun46 @mail.ru;
1Бакинський державний університет, вул. З. Халилова, 23, м. Баку, Az 1148, Азербайджан;
2Азербайджанська міжнародна рудна компанія, м. Баку, Азербайджан
ПЕРСПЕКТИВИ ОСВОЄННЯ НОВОГО РУДНОГО ВУЗЛА УГУР
НА ПІВНІЧНОМУ ЗАХОДІ КЕДАБЕКСЬКОГО РУДНОГО РАЙОНУ
(МАЛИЙ КАВКАЗ, АЗЕРБАЙДЖАН)
Описано рудний вузол Угур, розташований на північному заході Кедабекського рудного району Малого Кавказу в республіці Азербай-
джан. Наведено результати аналізу проб, відібраних з відкритих гірничих виробок (траншей, канав), зі свердловин, пробурених методом
RC, а також зведені дані про рудні перетини із значущим вмістом золота (>0,29 ppm). Встановлено, що площа рудного вузла може бути
збільшена за рахунок високих вмістів золота і срібла в бороздовій і штуфних пробах на 2,5 км у широтному і на 2 км у довготному
напрямках; при цьому золоторудне родовище Реза приурочено до центральної частини рудного вузла. З рудних мінералів присутній
кристалічний гематит. Ближче до земної поверхні спостерігаються інтенсивні баритові і барит-гематитові прожилки, а також зу-
стрічається залізний капелюх сульфідних покладів. У ході розвідувального випробування головних зон мінералізації, розкритих тран-
шеями 1, 2, 3, які розташовані на відстані до 270 м одна від одної, у відібраних зразках було виявлено промислові вмісти золота і
срібла. Також було відібрано близько 550 зразків з оголень 1 і 2. У місцях виходу основного рудного тіла на денну поверхню спосте-
рігаються вторинні кварцити з барит-гематитовими прожилками, над якими збереглися скупчення гідроксидів заліза, що цементують
брекчії кварцу і кварцитів. А на ділянках з інтенсивно виявленим вивітрюванням зустрічається "червона маса", що є продуктом окис-
нення гематитових штоків і штокверків. Являючи собою типові залізні капелюхи сульфідних покладів, ці, розкриті в канавах, рудні
скупчення, мають потужність близько 5–10 м з вмістом золота 0,3–2,0 ppm і срібла 1,0–15,0 ppm. У центральній частині родовища було
пробурено алмазним бурінням десять свердловин (UGDD 01–10). Свердловини випробовувалися цілком і безперервно, а довжини проб в
основному становили 1 метр.
Значущі інтервали з довжинами проб 1 м і більше та із середньозваженими вмістами, що перевищують 0,29 ppm (>0,29 ppm і >0,9 м),
узагальнено в таблиці. Зроблено висновок про те, що характер навколорудних гідротермально-метасоматичних змін вмісних порід, що
зустрічається на даному родовищі, типовий для верхніх рівнів високосульфідних епітермальних родовищ, що зазнали оброку паром.
Даний тип гідротермальних змін у більшості рудних систем може перекривати інтервали з кавернозними і оксидними зонами, що міс-
тять більш багату золоторудну мінералізацію.
Ключові слова: рудний вузол Угур; зони мінералізації; вміст золота, срібла, міді, цинку; Кедабекський рудний район; Малий Кавказ.
Н. Имамвердиев1, д-р геол.-минералог. наук, проф.,
E-mail: inazim17@yahoo.com;
В. Баба-заде1, д-р геол.-минералог. наук, проф., акад. НАН Азербайджана,
E-mail: vbabazade1938@mail.ru;
С. Мурсалов2, горный геолог,
E-mail: samir.m.s@mail.ru;
А. Валиев2, PhD (науки о Земле), гл. геолог,
E-mail: velizade_anar@yahoo.com;
М. Мансуров1, канд. геол.-минералог. наук, доц,
E-mail: mamoy_mansurov@mail.ru;
А. Исмаилова1, PhD (науки о Земле), доц.,
E-mail: aygun46 @mail.ru;
1Бакинский государственный университет, ул. З. Халилова, 23, г. Баку, Az 1148, Азербайджан
2Азербайджанская международная рудная компания, г. Баку, Азербайджан
ПЕРСПЕКТИВЫ ОСВОЕНИЯ НОВОГО РУДНОГО УЗЛА УГУР
НА СЕВЕРО-ЗАПАДЕ КЕДАБЕКСКОГО РУДНОГО РАЙОНА
(МАЛЫЙ КАВКАЗ, АЗЕРБАЙДЖАН)
Описан рудный узел Угур, расположенный на северо-западе Кедабекского рудного района Малого Кавказа в республике Азербайджан.
Приведены результаты анализа проб, отобранных из открытых горных выработок (траншей, канав), из скважин, пробуренных методом
RC, а также сводные данные о рудных пересечениях со значимыми содержаниями золота (>0,29 ppm). Установлено, что площадь рудного
узла может быть увеличена за счет высоких содержаний золота и серебра в бороздовых и штуфных пробах на 2,5 км в широтном и на 2 км
в долготном направлениях; при этом золоторудное месторождение Реза приурочено к центральной части рудного узла. Из рудных мине-
ралов присутствует кристаллический гематит. Ближе к земной поверхности наблюдаются интенсивные баритовые и барит-гемати-
товые прожилки, а также встречается железная шляпа сульфидных залежей. В ходе разведочного опробования главных зон
минерализации, вскрытых траншеями 1, 2, 3, находящихся на расстоянии до 270 м друг от друга, в отобранных образцах были выявлены
промышленные содержания золота и серебра. Также было отобрано около 550 образцов из обнажений 1 и 2. В местах выхода основ-
ного рудного тела на дневную поверхность наблюдаются вторичные кварциты с барит-гематитовыми прожилками, над которыми со-
хранились скопления гидрооксидов железа, цементирующих брекчии кварца и кварцитов. А на участках с интенсивно проявленным
выветриванием встречается "красноватая масса", являющаяся продуктом окисления гематитовых штоков и штокверков. Представляя
собой типичные железные шляпы сульфидных залежей, эти, вскрытые в канавах, рудные скопления имеют мощность около 5–10 м с со-
держаниями золота 0,3–2,0 ppm и серебра 1,0–15,0 ppm. В центральной части месторождения были пробурены алмазным бурением десять
буровых скважин (UGDD 01–10). Скважины опробовались целиком и непрерывно, а длины проб в основном составляли 1 метр.
Значимые интервалы c длинами проб в 1 м и более и со средневзвешенными содержаниям, превышающими 0,29 ppm (>0,29 ppm
и >0,9 м), обобщены в таблице. Сделан вывод о том, что характер околорудных гидротермально-метасоматических изменений вме-
щающих пород, встречающийся на данном месторождении, типичен для подвергшихся обработке паром верхних уровней высоко-
сульфидных эпитермальных месторождений. Данный тип гидротермальных изменений в большинстве рудных систем может
перекрывать интервалы с кавернозными и оксидными зонами, содержащими более богатую золоторудную минерализацию.
Ключевые слова: рудный узел Угур; зоны минерализации; содержание золота, серебра, меди, цинка; Кедабекский рудный район;
Малый Кавказ.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Mineralogy, gold mineralization and metal contents of the Gadir deposit have been investigated during current research in order to determine the geological conditions, temporal and spatial relationship with certain mineral assemblages and associations. The mineralogy of orebodies is mainly composed of pyrite, chalcopyrite, sphalerite, galena, petsite, native gold, electrum and subordinate molybdenite. Gold is hosted by pyrite and chalcopyrite minerals in fracture-filling textures and forms a thin dispersion condition. The native gold was observed in chalcopyrite, which is probably related to the second stage of ore deposition. The Gadir deposit can be classified to Au-Ag-Cu-Zn±Pb stockwork-type mineralization which is characteristic of low sulfidation epithermal deposit.
Chapter
Full-text available
Epithermal Au and Ag deposits of both vein and bulk-tonnage styles may be broadly grouped into high-sulfidation (HS), intermediate-sulfidation (IS), and low-sulfidation (LS) types based on the sulfidation states of their hypogene sulfide assemblages. The HS and LS types may be subdivided using additional parameters, particularly related igneous rock types and metal content. Most HS deposits are generated in calc-alkaline andesitic-dacitic arcs characterized by near-neutral stress states or mild extension, although a few major deposits also occur in compressive arcs characterized by the suppression of volcanic activity. Rhyolitic rocks generally lack appreciable HS deposits. Highly acidic fluids produced the advanced argillic lithocaps that presage HS mineralization, which itself is due to higher-pH, moderate- to low-salinity fluids. Similar lithocaps in the Bolivian Sn-Ag belt, some mineralized with Ag and Sn, accompany reduced, ilmenite-series magmatism. IS epithermal deposits occur in a broadly similar spectrum of andesitic-dacitic arcs, but commonly do not show such a close connection with porphyry Cu deposits as do many of the HS deposits. However, igneous rocks as silicic as rhyolite are related to a few IS deposits. IS deposits form from fluids spanning broadly the same salinity range as those responsible for the HS type, although Au-Ag, Ag-Au, and base-metalrich Ag-(Au) subtypes reveal progressively higher ore-fluid salinities. Most LS deposits, including nearly 60 percent of the world’s bonanza veins, are associated with bimodal (basalt-rhyolite) volcanic suites in a broad spectrum of extensional tectonic settings, including intra-, near-, and backarc, as well as postcollisional, rifts. Some LS deposits, however, accompany extension-related alkaline magmatism, which unlike the bimodal suites, is capable of generating porphyry Cu deposits. Extensional arcs characterized by active andesitic-dacitic volcanism do, however, host a few LS deposits. LS deposits genetically linked to bimodal volcanism are formed from extremely dilute fluids, whereas modestly saline contributions account for the LS deposits in alkaline centers. Early lithocap-forming and HS fluids, as well as LS fluids in deposits associated with alkaline igneous rocks, display clear evidence for a close genetic relationship to magmatism and, although the linkage is less intimate, late HS fluids responsible for much of the Au introduction along with similar IS fluids also seem to owe much to their magmatic parentage. Where ascending IS fluids enter lithocaps, they evolve to HS fluids. Eventual neutralization and lowering of sulfidation state by wallrock interaction can convert HS back to IS fluids, as confirmed by both spatial and paragenetic transitions from HS to IS mineralization. In contrast, LS fluids other than those of alkaline affiliation lack such clear-cut connections to magmatism, although Giggenbach’s work on the geothermal fluids associated with the Taupo Volcanic Zone in New Zealand suggests that a deep magmatic source different to that of fluids in andesitic arc terranes is probable. In addition, at least in some regions, there appears to be a correlation between the reduced sulfide assemblages of LS deposits and the reduced nature of the volcanic rocks with which they are associated. Therefore, it may be argued that the defining characteristics of epithermal deposits are related directly to their magmatic roots, notwithstanding the existence of important unanswered questions, especially regarding the source of LS fluids. This review puts forward several exploration guidelines for epithermal precious-metal deposits. Exploration activity in andesitic-dacitic arcs should be restricted to HS and potentially related IS deposits containing Au and/or Ag, whereas a variety of rift-related bimodal suites and convergent-margin alkaline rocks offer the prime environments for Ag-deficient, LS Au deposits (Ag/Au <~15). Bonanza Au veins are more likely to be of LS type and to be discovered at relatively shallow paleodepths in bimodal rift settings, where rhyolitic and/or basaltic rocks may be proximal to Au ore. Even tholeiitic basalts in emergent mid-ocean ridge or hotspot settings might possess underappreciated epithermal Au potential. Subaerial extensions to some VMS belts may possess LS Au potential because of the broadly similar volcanotectonic settings for both deposit types. The reduced, ilmenite-series volcanic rocks of the Bolivian Sn-Ag belt are unfavorable for epithermal Au. Deficiency of volcanic rocks in epithermal provinces is typical of highly compressive arcs (HS-IS deposits) and some rifts swamped by fluviolacustrine sedimentation with silica sinter occurrences (LS deposits). In contrast to HS and IS deposits, exploration for LS Au deposits, even where exposed, may be hampered by the visually subtle nature of many outcropping examples.
Chapter
This contribution reviews the metallogenic setting of the Lesser Caucasus within the framework of the complex geodynamic evolution of the Central Tethys belt during convergence and collision of Arabia, Eurasia and Gondwana-derived microplates. New rhenium-osmium molybdenite ages are also presented for several major deposits and prospects, allowing us to constrain the metallogenic evolution of the Lesser Caucasus. The host rock lithologies, magmatic associations, deposit styles, ore controls and metal endowment vary greatly along the Lesser Caucasus as a function of the age and tectono-magmatic distribution of the ore districts and deposits. The ore deposits and ore districts can be essentially assigned to two different evolution stages: (1) Mesozoic arc construction and evolution along the Eurasian margin, and (2) Cenozoic magmatism and tectonic evolution following late Cretaceous accretion of Gondwana-derived microplates with the Eurasian margin. The available data suggest that during Jurassic arc construction along the Eurasian margin, i.e. the Somkheto-Karabagh belt and the Kapan zone, the metallogenic evolution was dominated by subaqueous magmatic-hydrothermal systems, VMS-style mineralization in a fore-arc environment or along the margins of a back-arc ocean located between the Eurasin margin and Gondwana-derived terranes. This metallogenic event coincided broadly with a rearrangement of tectonic plates, resulting in steepening of the subducting plate during the middle to late Jurassic transition. Typical porphyry Cu and high-sulfidation epithermal systems were emplaced in the Somkheto-Karabagh belt during the late Jurassic and the early Cretaceous, once the arc reached a more mature stage with a thicker crust, and fertile magmas were generated by magma storage and MASH processes. During the late Cretaceous, low-sulfidation type epithermal deposits and transitional VMS-porphyry-epithermal systems were formed in the northern Lesser Caucasus during compression, uplift and hinterland migration of the magmatic arc, coinciding with flattening of the subduction geometry. Late Cretaceous collision of Gondwana-derived terranes with Eurasia resulted in a rearrangement of subduction zones. Cenozoic magmatism and ore deposits stitched the collision and accretion zones. Eocene porphyry Cu-Mo deposits and associated precious metal epithermal systems were formed during subduction-related magmatism in the southernmost Lesser Caucasus. Subsequently, late Eocene-Oligocene accretion of Arabia with Eurasia and final closure of the southern branch of the Neotethys resulted in the emplacement of Neogene collision to post-collision porphyry Cu-Mo deposits along major translithospheric faults in the southernmost Lesser Caucasus. The Cretaceous and Cenozoic magmatic and metallogenic evolutions of the northern Lesser Caucasus and the Turkish Eastern Pontides are intimately linked to each other. The Cenozoic magmatism and metallogenic setting of the southernmost Lesser Caucasus can also be traced southwards into the Cenozoic Iranian Urumieh-Dokhtar and Alborz belts. However, contrasting tectonic, magmatic and sedimentary records during the Mesozoic are consistent with the absence of any metallogenic connection between the Alborz in Iran and the southernmost Lesser Caucasus.
Article
Porphyry Cu systems host some of the most widely distributed mineralization types at convergent plate boundaries, including porphyry deposits centered on intrusions; skarn, carbonate-replacement, and sedimenthosted Au deposits in increasingly peripheral locations; and superjacent high- and intermediate-sulfidation epithermal deposits. The systems commonly define linear belts, some many hundreds of kilometers long, as well as occurring less commonly in apparent isolation. The systems are closely related to underlying composite plutons, at paleodepths of 5 to 15 km, which represent the supply chambers for the magmas and fluids that formed the vertically elongate (>3 km) stocks or dike swarms and associated mineralization. The plutons may erupt volcanic rocks, but generally prior to initiation of the systems. Commonly, several discrete stocks are emplaced in and above the pluton roof zones, resulting in either clusters or structurally controlled alignments of porphyry Cu systems. The rheology and composition of the host rocks may strongly influence the size, grade, and type of mineralization generated in porphyry Cu systems. Individual systems have life spans of ∼100,000 to several million years, whereas deposit clusters or alignments as well as entire belts may remain active for 10 m.y. or longer. The alteration and mineralization in porphyry Cu systems, occupying many cubic kilometers of rock, are zoned outward from the stocks or dike swarms, which typically comprise several generations of intermediate to felsic porphyry intrusions. Porphyry Cu ± Au ± Mo deposits are centered on the intrusions, whereas carbonate wall rocks commonly host proximal Cu-Au skarns, less common distal Zn-Pb and/or Au skarns, and, beyond the skarn front, carbonate-replacement Cu and/or Zn-Pb-Ag ± Au deposits, and/or sediment-hosted (distal-disseminated) Au deposits. Peripheral mineralization is less conspicuous in noncarbonate wall rocks but may include base metal- or Au-bearing veins and mantos. High-sulfidation epithermal deposits may occur in lithocaps above porphyry Cu deposits, where massive sulfide lodes tend to develop in deeper feeder structures and Au ± Ag-rich, disseminated deposits within the uppermost 500 m or so. Less commonly, intermediatesulfidation epithermal mineralization, chiefly veins, may develop on the peripheries of the lithocaps. The alteration-mineralization in the porphyry Cu deposits is zoned upward from barren, early sodic-calcic through potentially ore-grade potassic, chlorite-sericite, and sericitic, to advanced argillic, the last of these constituting the lithocaps, which may attain >1 km in thickness if unaffected by significant erosion. Low sulfidation-state chalcopyrite ± bornite assemblages are characteristic of potassic zones, whereas higher sulfidation-state sulfides are generated progressively upward in concert with temperature decline and the concomitant greater degrees of hydrolytic alteration, culminating in pyrite ± enargite ± covellite in the shallow parts of the lithocaps. The porphyry Cu mineralization occurs in a distinctive sequence of quartz-bearing veinlets as well as in disseminated form in the altered rock between them. Magmatic-hydrothermal breccias may form during porphyry intrusion, with some of them containing high-grade mineralization because of their intrinsic permeability. In contrast, most phreatomagmatic breccias, constituting maar-diatreme systems, are poorly mineralized at both the porphyry Cu and lithocap levels, mainly because many of them formed late in the evolution of systems. Porphyry Cu systems are initiated by injection of oxidized magma saturated with S- and metal-rich, aqueous fluids from cupolas on the tops of the subjacent parental plutons. The sequence of alteration-mineralization events charted above is principally a consequence of progressive rock and fluid cooling, from >700° to <250°C, caused by solidification of the underlying parental plutons and downward propagation of the lithostatichydrostatic transition. Once the plutonic magmas stagnate, the high-temperature, generally two-phase hypersaline liquid and vapor responsible for the potassic alteration and contained mineralization at depth and early overlying advanced argillic alteration, respectively, gives way, at <350°C, to a single-phase, low- to moderatesalinity liquid that causes the sericite-chlorite and sericitic alteration and associated mineralization. This same liquid also causes mineralization of the peripheral parts of systems, including the overlying lithocaps. The progressive thermal decline of the systems combined with synmineral paleosurface degradation results in the characteristic overprinting (telescoping) and partial to total reconstitution of older by younger alteration-mineralization types. Meteoric water is not required for formation of this alteration-mineralization sequence although its late ingress is commonplace. Many features of porphyry Cu systems at all scales need to be taken into account during planning and execution of base and precious metal exploration programs in magmatic arc settings. At the regional and district scales, the occurrence of many deposits in belts, within which clusters and alignments are prominent, is a powerful exploration concept once one or more systems are known. At the deposit scale, particularly in the porphyry Cu environment, early-formed features commonly, but by no means always, give rise to the best orebodies. Late-stage alteration overprints may cause partial depletion or complete removal of Cu and Au, but metal concentration may also result. Recognition of single ore deposit types, whether economic or not, in porphyry Cu systems may be directly employed in combination with alteration and metal zoning concepts to search for other related deposit types, although not all those permitted by the model are likely to be present in most systems. Erosion level is a cogent control on the deposit types that may be preserved and, by the same token, on those that may be anticipated at depth. The most distal deposit types at all levels of the systems tend to be visually the most subtle, which may result in their being missed due to overshadowing by more prominent alteration-mineralization.
Mesozoic igneous formations of the Lesser Caucasus and related endogenous mineralization
  • R N Abdullaev
  • G V Mustafaev
  • M A Mustafaev
Abdullaev, R.N., Mustafaev, G.V., Mustafaev, M.A. et al. (1988). Mesozoic igneous formations of the Lesser Caucasus and related endogenous mineralization. Baku: Elm. [in Russian]
Volcanogenic gold-bearing sulfide deposits of islandarc zones, conditions for their geodynamic development, patterns of distribution and forecasting criteria (Small Caucasus)
  • Sh F Abdullaeva
  • Sh Adamia
  • G Zakariadze
  • T Chkhotua
Abdullaeva, Sh.F. (2018).Volcanogenic gold-bearing sulfide deposits of islandarc zones, conditions for their geodynamic development, patterns of distribution and forecasting criteria (Small Caucasus). Extended abstract of Doctor's thesis (Earth Sci.): 2520.01. Baku State University, Baku. [in Russian] Adamia, Sh., Zakariadze, G., Chkhotua, T. et al. (2011). Geology of the Caucasus: a review. Turkish Journal of Earth Sciences, 20, 489-544 AIMC Gedabey Exploration Group (GEG). (2014). Report about the results and future planning of the perspective areas (Au, Ag, Cu, Mo, Zn) of Gedabey Ore District, Gedabey. Baba-zadeh, V.M. (Eds.) (2005). Mineral resources of Azerbaijan. Baku: Ozan. [in Russian]
Noble metal ore-magical systems
  • V M Baba-Zadeh
  • Sh F Abdullaeva
Baba-zadeh, V.M., Abdullaeva, Sh.F. (2012). Noble metal ore-magical systems. Baku: Baku University. [in Russian]
Detection of hydrothermally altered and mineralized zones using ASTER materials (Kedabek ore district)
  • V M Baba-Zadeh
  • N A Imamverdiyev
  • M I Mansurov
Baba-zadeh, V.M., Imamverdiyev, N.A., Mansurov, M.I. et al. (2019.). Detection of hydrothermally altered and mineralized zones using ASTER materials (Kedabek ore district). Baku University News. Series of Natural Sciences, 1, 69-78. [in Russian]
Gold ore deposits, the conditions of their formation and the characteristic features of geodynamic development (Lesser Caucasus). Article I
  • V M Baba-Zadeh
  • S A Kekelia
  • Sh F Abdullaeva
Baba-zadeh, V.M., Kekelia, S.A., Abdullaeva, Sh.F. et al. (2017). Gold ore deposits, the conditions of their formation and the characteristic features of geodynamic development (Lesser Caucasus). Article I. Baku University News. Series of Natural Sciences, 1, 83-110. [in Russian]