Chapter

Vitamin E | metabolism and requirements

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Vitamin E, a fat-soluble antioxidant, is required from the diet but amounts in excess of requirements have not been demonstrated to decrease chronic disease risk. Vitamin E is a chain-breaking, peroxyl radical scavenger that halts lipid peroxidation and protects polyunsaturated fatty acids. This antioxidant activity serves to protect the nervous system in the developing embryo, in sensory neurons in children and adults. Plants synthesize eight vitamin E forms, but only one, α-tocopherol, meets human requirements. Two physiologic functions maintain the preference for α-tocopherol in the human body. These are (1) the preferential secretion of α-tocopherol into the plasma, facilitated by the hepatic α-tocopherol transfer protein and (2) vitamin E metabolism, which promotes non-α-tocopherol and “excess” α-tocopherol excretion from the body.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

Article
Full-text available
Vitamin E (VitE) is essential for vertebrate embryogenesis, but the mechanisms involved remain unknown. To study embryonic development, we fed zebrafish adults (>55 days) either VitE sufficient (E+) or deficient (E–) diets for >80 days, then the fish were spawned to generate E+ and E– embryos. To evaluate the transcriptional basis of the metabolic and phenotypic outcomes, E+ and E– embryos at 12, 18 and 24 h post-fertilization (hpf) were subjected to gene expression profiling by RNASeq. Hierarchical clustering, over-representation analyses and gene set enrichment analyses were performed with differentially expressed genes. E– embryos experienced overall disruption to gene expression associated with gene transcription, carbohydrate and energy metabolism, intracellular signaling and the formation of embryonic structures. mTOR was apparently a major controller of these changes. Thus, embryonic VitE deficiency results in genetic and transcriptional dysregulation as early as 12 hpf, leading to metabolic dysfunction and ultimately lethal outcomes.
Article
Full-text available
Vitamin E (α-tocopherol, VitE) was discovered as a nutrient essential to protect fetuses, but its molecular role in embryogenesis remains undefined. We hypothesize that the increased lipid peroxidation due to VitE deficiency drives a complex mechanism of overlapping biochemical pathways needed to maintain glutathione (GSH) homeostasis that is dependent on betaine and its methyl group donation. We assess amino acids and thiol changes that occur during embryogenesis [12, 24 and 48 h post fertilization (hpf)] in VitE-sufficient (E+) and deficient (E−) embryos using two separate, novel protocols to quantitate changes using UPLC-MS/MS. Using partial least squares discriminant analysis, we found that betaine is a critical feature separating embryos by VitE status and is higher in E− embryos at all time points. Other important features include: glutamic acid, increased in E− embryos at 12 hpf; choline, decreased in E− embryos at 24 hpf; GSH, decreased in E− embryos at 48 hpf. By 48 hpf, GSH was significantly lower in E− embryos (P < 0.01), as were both S-adenosylmethionine (SAM, P < 0.05) and S-adenosylhomocysteine (SAH, P < 0.05), while glutamic acid was increased (P < 0.01). Since GSH synthesis requires cysteine (which was unchanged), these data suggest that both the conversion of homocysteine and the uptake of cystine via the Xc– exchanger are dysregulated. Our data clearly demonstrates the highly inter-related dependence of methyl donors (choline, betaine, SAM) and the methionine cycle for maintenance of thiol homeostasis. Additional quantitative flux studies are needed to clarify the quantitative importance of these routes.
Article
Full-text available
Vitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E+) or deficient (E-) diets, were spawned to obtain E+ and E- embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E- embryos. They also displayed disrupted patterns of paired box 2a (pax2a) and SRY-box transcription factor 10 (sox10) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E- embryos, the collagen sheath notochord markers (col2a1a and col9a2) appeared bent. Severe developmental errors in E- embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E- embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa, is required for development of the brain and peripheral nervous system in this vertebrate embryo model.
Article
Full-text available
Oxidative stress (OS) in non-alcoholic fatty liver disease (NAFLD) promotes liver injury and inflammation. Treatment with vitamin E (α-tocopherol, αT), a lipid-soluble antioxidant, improves liver injury but also decreases steatosis, thought to be upstream of OS, through an unknown mechanism. To elucidate the mechanism, we combined a mechanistic human trial interrogating pathways of intrahepatic triglyceride (IHTG) accumulation and in vitro experiments. 50% of NAFLD patients (n=20) treated with αT (200-800 IU/d) for 24 weeks had a >= 25% relative decrease in IHTG by magnetic resonance spectroscopy. Paired liver biopsies at baseline and week 4 of treatment revealed a decrease in markers of hepatic de novo lipogenesis (DNL) that strongly predicted week 24 response. In vitro, using HepG2 cells and primary human hepatocytes, αT inhibited glucose-induced DNL by decreasing SREBP-1 processing and lipogenic gene expression. This mechanism is dependent on the antioxidant capacity of αT, as redox-silenced methoxy-αT is unable to inhibit DNL in vitro. OS by itself was sufficient to increase S2P expression in vitro, and S2P is upregulated in NAFLD livers. In summary, we utilized αT to demonstrate a vicious cycle in which NAFLD generates OS, which feeds back to augment DNL and increases steatosis. Clinicaltrials.gov: NCT01792115.
Article
Full-text available
Introduction: Familial isolated deficiency of vitamin E (VED or AVED; MIM #277460) is a progressive neurodegenerative disorder resembling Friedreich ataxia. It is caused by the deficiency of α-tocopherol transfer protein that prevents patients from retaining vitamin E. Oral vitamin E supplements are an accepted treatment, but detailed dosage recommendations and reports on long-term therapeutic results are scarce. Methods: The first patient with VED was discovered at our institution at the age of 12 years and has since been followed with clinical, neurophysiological, neuroradiological, and biochemical investigations to his present age of 52 years. For the last 36 years, the patient has scrupulously followed a custom-made high-dose vitamin E supplement regimen that we devised on the basis of studies of his metabolism of vitamin E. Results: Over the long period of observation, the patient has remained in good general health and has not shown progression of neurological symptoms and signs. His vitamin E plasma levels were always moderately above the normal range. During short interruptions of vitamin E supplements, vitamin E levels fell rapidly, even after years of massive supplementation. Discussion: In this VED patient, a specified and carefully controlled high-dose vitamin E therapy has prevented any recognizable progression of the neurodegenerative process over more than 3 decades of observation.
Article
Full-text available
BACKGROUND We hypothesized that obesity-associated hepatosteatosis is a pathophysiological chemical depot for fat-soluble vitamins and altered normal physiology. Using α-tocopherol (vitamin E) as a model vitamin, pharmacokinetics and kinetics principles were used to determine whether excess liver fat sequestered α-tocopherol in women with obesity-associated hepatosteatosis versus healthy controls.METHODS Custom-synthesized deuterated α-tocopherols (d3- and d6-α-tocopherols) were administered to hospitalized healthy women and women with hepatosteatosis under investigational new drug guidelines. Fluorescently labeled α-tocopherol was custom-synthesized for cell studies.RESULTSIn healthy subjects, 85% of intravenous d6-α-tocopherol disappeared from the circulation within 20 minutes but reappeared within minutes and peaked at 3-4 hours; d3- and d6-α-tocopherols localized to lipoproteins. Lipoprotein redistribution occurred only in vivo within 1 hour, indicating a key role of the liver in uptake and re-release. Compared with healthy subjects who received 2 mg, subjects with hepatosteatosis had similar d6-α-tocopherol entry rates into liver but reduced initial release rates (P < 0.001). Similarly, pharmacokinetics parameters were reduced in hepatosteatosis subjects, indicating reduced hepatic d6-α-tocopherol output. Reductions in kinetics and pharmacokinetics parameters in hepatosteatosis subjects who received 2 mg were echoed by similar reductions in healthy subjects when comparing 5- and 2-mg doses. In vitro, fluorescent-labeled α-tocopherol localized to lipid in fat-loaded hepatocytes, indicating sequestration.CONCLUSIONS The unique role of the liver in vitamin E physiology is dysregulated by excess liver fat. Obesity-associated hepatosteatosis may produce unrecognized hepatic vitamin E sequestration, which might subsequently drive liver disease. Our findings raise the possibility that hepatosteatosis may similarly alter hepatic physiology of other fat-soluble vitamins.TRIAL REGISTRATIONClinicalTrials.gov, NCT00862433.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases and NIH grants DK053213-13, DK067494, and DK081761.
Article
Full-text available
Background: Determining the human vitamin E [α-tocopherol (α-T)] requirement is difficult, and novel approaches to assess α-T absorption and trafficking are needed. Objective: We hypothesized that the dual-isotope technique, using 2 deuterium-labeled [intravenous (IV) d6- and oral d3-] α-T, would be effective in determining α-T fractional absorption. Further, defined liquid meal (DLM) fat or fasting would modulate α-T fractional absorption and lipoprotein transport. Methods: A 3-phase cr ossover design was used. At 0 h, participants received IV d6-α-T and consumed d3-α-T with a 600-kcal DLM (40% or 0% fat) followed by controlled meals or by the 0% fat DLM, a 12-h fast, and then controlled meals. Blood samples and fecal samples were collected at intervals and analyzed by LC-MS. Pharmacokinetic parameters were calculated from plasma tracer concentrations and enrichments. Fractional absorption was calculated from d3- to d6-α-T areas under the curve, from a novel mathematical model, and from the balance method (oral d3-α-T minus fecal d3-α-T excreted). Results: Estimated α-T fractional absorption during the 40% fat intervention was 55% ± 3% (mean ± SEM; n = 10), which was 9% less than during the 0% fat intervention (64% ± 3%, n = 10; P < 0.02). Fasting had no apparent effect (56% ± 3%, n = 7), except it slowed plasma oral d3-α-T appearance. Both balance data and model outcomes confirmed that the DLM fat did not potentiate d3-α-T absorption. During the IV emulsion clearance, HDL rapidly acquired d6-α-T (21 ± 2 nmol/L plasma per minute). During the first 8 h postdosing, triglyceride-rich lipoproteins (TRLs) were preferentially d3-α-T enriched relative to LDL or HDL, showing the TRL precursor role. Conclusions: Quantitatively, α-T absorption is not limited by fat absence or by fasting. However, α-T leaves the intestine by a process that is prolonged during fasting and potentiated by eating, suggesting that α-T absorption is highly dependent on chylomicron assembly processes. This trial was registered at clinicaltrials.gov as NCT00862433.
Article
Full-text available
Metabolic syndrome (MetS) is a constellation of cardiometabolic risk factors, which together predict increased risk of more serious chronic diseases. We propose that one consequence of dietary overnutrition is increased abundance of Gram-negative bacteria in the gut that cause increased inflammation, impaired gut function, and endotoxemia that further dysregulate the already compromised antioxidant vitamin status in MetS. This discussion is timely because “healthy” individuals are no longer the societal norm and specialized dietary requirements are needed for the growing prevalence of MetS. Further, these lines of evidence provide the foundational basis for investigation that poor vitamin C status promotes endotoxemia, leading to metabolic dysfunction that impairs vitamin E trafficking through a mechanism involving the gut-liver axis. This report will establish a critical need for translational research aimed at validating therapeutic approaches to manage endotoxemia—an early, but inflammation-inducing phenomenon, which not only occurs in MetS, but is also prognostic of more advanced metabolic disorders including type 2 diabetes mellitus, as well as the increasing severity of nonalcoholic fatty liver diseases.
Article
Full-text available
Background: Vitamin E occurs naturally in the diet. It has several biological activities, including functioning as an antioxidant to scavenge toxic free radicals. Evidence that free radicals may contribute to the pathological processes behind cognitive impairment has led to interest in the use of vitamin E supplements to treat mild cognitive impairment (MCI) and Alzheimer's disease (AD). This is an update of a Cochrane Review first published in 2000, and previously updated in 2006 and 2012. Objectives: To assess the efficacy of vitamin E in the treatment of MCI and dementia due to AD. Search methods: We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources on 22 April 2016 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. Selection criteria: We included all double-blind, randomised trials in which treatment with any dose of vitamin E was compared with placebo in people with AD or MCI. Data collection and analysis: We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. Where appropriate we attempted to contact authors to obtain missing information. Main results: Four trials met the inclusion criteria, but we could only extract outcome data in accordance with our protocol from two trials, one in an AD population (n = 304) and one in an MCI population (n = 516). Both trials had an overall low to unclear risk of bias. It was not possible to pool data across studies owing to a lack of comparable outcome measures. In people with AD, we found no evidence of any clinically important effect of vitamin E on cognition, measured with change from baseline in the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) over six to 48 months (mean difference (MD) -1.81, 95% confidence interval (CI) -3.75 to 0.13, P = 0.07, 1 study, n = 272; moderate quality evidence). There was no evidence of a difference between vitamin E and placebo groups in the risk of experiencing at least one serious adverse event over six to 48 months (risk ratio (RR) 0.86, 95% CI 0.71 to 1.05, P = 0.13, 1 study, n = 304; moderate quality evidence), or in the risk of death (RR 0.84, 95% CI 0.52 to 1.34, P = 0.46, 1 study, n = 304; moderate quality evidence). People with AD receiving vitamin E showed less functional decline on the Alzheimer's Disease Cooperative Study/Activities of Daily Living Inventory than people receiving placebo at six to 48 months (mean difference (MD) 3.15, 95% CI 0.07 to 6.23, P = 0.04, 1 study, n = 280; moderate quality evidence). There was no evidence of any clinically important effect on neuropsychiatric symptoms measured with the Neuropsychiatric Inventory (MD -1.47, 95% CI -4.26 to 1.32, P = 0.30, 1 study, n = 280; moderate quality evidence). We found no evidence that vitamin E affected the probability of progression from MCI to probable dementia due to AD over 36 months (RR 1.03, 95% CI 0.79 to 1.35, P = 0.81, 1 study, n = 516; moderate quality evidence). Five deaths occurred in each of the vitamin E and placebo groups over the 36 months (RR 1.01, 95% CI 0.30 to 3.44, P = 0.99, 1 study, n = 516; moderate quality evidence). We were unable to extract data in accordance with the review protocol for other outcomes. However, the study authors found no evidence that vitamin E differed from placebo in its effect on cognitive function, global severity or activities of daily living . There was also no evidence of a difference between groups in the more commonly reported adverse events. Authors' conclusions: We found no evidence that the alpha-tocopherol form of vitamin E given to people with MCI prevents progression to dementia, or that it improves cognitive function in people with MCI or dementia due to AD. However, there is moderate quality evidence from a single study that it may slow functional decline in AD. Vitamin E was not associated with an increased risk of serious adverse events or mortality in the trials in this review. These conclusions have changed since the previous update, however they are still based on small numbers of trials and participants and further research is quite likely to affect the results.
Article
Full-text available
The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2-dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing.
Article
Full-text available
Background: Intestinal absorption of dietary lipids involves their hydrolysis in the lumen of proximal intestine as well as uptake, intracellular transport and re-assembly of hydrolyzed lipids in enterocytes, leading to the formation and secretion of the lipoproteins chylomicrons and HDL. In this study, we examined the potential involvement of cytosolic lipid droplets (CLD) whose function in the process of lipid absorption is poorly understood. Methods: Intestinal lipid absorption was studied in mouse after gavage. Three populations of CLD were purified by density ultracentrifugations, as well as the brush border membranes, which were analyzed by western-blots. Immunofluorescent localization of membranes transporters or metabolic enzymes, as well as kinetics of CLD production, were also studied in intestine or Caco-2 cells. Results: We isolated three populations of CLD (ranging from 15 to 1000 nm) which showed differential expression of the major lipid transporters scavenger receptor BI (SR-BI), cluster of differentiation 36 (CD-36), Niemann Pick C-like 1 (NPC1L1), and the ATP-binding cassette transporters ABCG5/G8 but also caveolin 2 and fatty acid binding proteins. The enzyme monoacylglycerol acyltransferase 2 (MGAT2) was identified in the brush border membrane (BBM) in addition to the endoplasmic reticulum, suggesting local synthesis of triglycerides and CLD at both places. Conclusions: We show a very fast production of CLD by enterocytes associated with a transfer of apical constituents as lipid transporters. Our findings suggest that following their uptake by enterocytes, lipids can be partially metabolized at the BBM and packaged into CLD for their transportation to the ER.
Article
Full-text available
We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E-) or with added α-tocopherol (E+, 500mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E- and E+ embryos. The E- compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96hours post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E- compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E- at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E- compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E- embryos.
Article
Full-text available
Background: Increasing dietary fat intake is expected to improve α-tocopherol bioavailability, which could be beneficial for improving α-tocopherol status, especially in cohorts at high cardiometabolic risk who fail to meet dietary α-tocopherol requirements. Objective: Our objective was to assess dose-dependent effects of dairy fat and metabolic syndrome (MetS) health status on α-tocopherol pharmacokinetics in plasma and lipoproteins. Design: A randomized, crossover, double-blind study was conducted in healthy and MetS adults (n = 10/group) who ingested encapsulated hexadeuterium-labeled (d6)-RRR-α-tocopherol (15 mg) with 240 mL nonfat (0.2 g fat), reduced-fat (4.8 g fat), or whole (7.9 g fat) milk before blood collection at regular intervals for 72 h. Results: Compared with healthy participants, those with MetS had lower (P < 0.05) baseline plasma α-tocopherol (μmol/mmol lipid) and greater oxidized low-density lipoprotein (LDL), interleukin (IL)-6, IL-10, and C-reactive protein. Regardless of health status, d6-α-tocopherol bioavailability was unaffected by increasing amounts of dairy fat provided by milk beverages, but MetS participants had lower estimated d6-α-tocopherol absorption (±SEM) than did healthy participants (26.1% ± 1.0% vs. 29.5% ± 1.1%). They also had lower plasma d6-α-tocopherol AUC from 0 to 72 h, as well as maximal concentrations (Cmax: 2.04 ± 0.14 vs. 2.73 ± 0.18 μmol/L) and slower rates of plasma disappearance but similar times to Cmax. MetS participants had lower d6-α-tocopherol AUC from t = 0-12 h (AUC0- t final) in lipoprotein fractions [chylomicron, very-low-density lipoprotein (VLDL), LDL, high-density lipoprotein]. Percentages of d6-α-tocopherol AUC0- t final in both the chylomicron (r = -0.46 to -0.52) and VLDL (r = -0.49 to -0.68) fractions were inversely correlated with oxidized LDL, IL-10, IL-6, and C-reactive protein. Conclusions: At dietary intakes equivalent to the Recommended Dietary Allowance, α-tocopherol bioavailability is unaffected by dairy fat quantity but is lower in MetS adults, potentially because of greater inflammation and oxidative stress that limits small intestinal α-tocopherol absorption and/or impairs hepatic α-tocopherol trafficking. These findings support higher dietary α-tocopherol requirements for MetS adults. This trial was registered at www.clinicaltrials.gov as NCT01787591.
Article
Full-text available
Background: Observational and experimental data suggest that antioxidant and/or zinc supplements may delay progression of age-related macular degeneration (AMD) and vision loss. Objective: To evaluate the effect of high-dose vitamins C and E, beta carotene, and zinc supplements on AMD progression and visual acuity. Design: The Age-Related Eye Disease Study, an 11-center double-masked clinical trial, enrolled participants in an AMD trial if they had extensive small drusen, intermediate drusen, large drusen, noncentral geographic atrophy, or pigment abnormalities in 1 or both eyes, or advanced AMD or vision loss due to AMD in 1 eye. At least 1 eye had best-corrected visual acuity of 20/32 or better. Participants were randomly assigned to receive daily oral tablets containing: (1) antioxidants (vitamin C, 500 mg; vitamin E, 400 IU; and beta carotene, 15 mg); (2) zinc, 80 mg, as zinc oxide and copper, 2 mg, as cupric oxide; (3) antioxidants plus zinc; or (4) placebo. Main outcome measures: (1) Photographic assessment of progression to or treatment for advanced AMD and (2) at least moderate visual acuity loss from baseline (> or =15 letters). Primary analyses used repeated-measures logistic regression with a significance level of.01, unadjusted for covariates. Serum level measurements, medical histories, and mortality rates were used for safety monitoring. Results: Average follow-up of the 3640 enrolled study participants, aged 55-80 years, was 6.3 years, with 2.4% lost to follow-up. Comparison with placebo demonstrated a statistically significant odds reduction for the development of advanced AMD with antioxidants plus zinc (odds ratio [OR], 0.72; 99% confidence interval [CI], 0.52-0.98). The ORs for zinc alone and antioxidants alone are 0.75 (99% CI, 0.55-1.03) and 0.80 (99% CI, 0.59-1.09), respectively. Participants with extensive small drusen, nonextensive intermediate size drusen, or pigment abnormalities had only a 1.3% 5-year probability of progression to advanced AMD. Odds reduction estimates increased when these 1063 participants were excluded (antioxidants plus zinc: OR, 0.66; 99% CI, 0.47-0.91; zinc: OR, 0.71; 99% CI, 0.52-0.99; antioxidants: OR, 0.76; 99% CI, 0.55-1.05). Both zinc and antioxidants plus zinc significantly reduced the odds of developing advanced AMD in this higher-risk group. The only statistically significant reduction in rates of at least moderate visual acuity loss occurred in persons assigned to receive antioxidants plus zinc (OR, 0.73; 99% CI, 0.54-0.99). No statistically significant serious adverse effect was associated with any of the formulations. Conclusions: Persons older than 55 years should have dilated eye examinations to determine their risk of developing advanced AMD. Those with extensive intermediate size drusen, at least 1 large druse, noncentral geographic atrophy in 1 or both eyes, or advanced AMD or vision loss due to AMD in 1 eye, and without contraindications such as smoking, should consider taking a supplement of antioxidants plus zinc such as that used in this study.
Article
Full-text available
Severe vitamin E deficiency results in lethal myopathy in animal models. Membrane repair is an important myocyte response to plasma membrane disruption injury as when repair fails, myocytes die and muscular dystrophy ensues. Here we show that supplementation of cultured cells with α-tocopherol, the most common form of vitamin E, promotes plasma membrane repair. Conversely, in the absence of α-tocopherol supplementation, exposure of cultured cells to an oxidant challenge strikingly inhibits repair. Comparative measurements reveal that, to promote repair, an anti-oxidant must associate with membranes, as α-tocopherol does, or be capable of α-tocopherol regeneration. Finally, we show that myocytes in intact muscle cannot repair membranes when exposed to an oxidant challenge, but show enhanced repair when supplemented with vitamin E. Our work suggests a novel biological function for vitamin E in promoting myocyte plasma membrane repair. We propose that this function is essential for maintenance of skeletal muscle homeostasis.
Article
Full-text available
The initial report of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) found no reduction in risk of prostate cancer with either selenium or vitamin E supplements but a statistically nonsignificant increase in prostate cancer risk with vitamin E. Longer follow-up and more prostate cancer events provide further insight into the relationship of vitamin E and prostate cancer. To determine the long-term effect of vitamin E and selenium on risk of prostate cancer in relatively healthy men. A total of 35,533 men from 427 study sites in the United States, Canada, and Puerto Rico were randomized between August 22, 2001, and June 24, 2004. Eligibility criteria included a prostate-specific antigen (PSA) of 4.0 ng/mL or less, a digital rectal examination not suspicious for prostate cancer, and age 50 years or older for black men and 55 years or older for all others. The primary analysis included 34,887 men who were randomly assigned to 1 of 4 treatment groups: 8752 to receive selenium; 8737, vitamin E; 8702, both agents, and 8696, placebo. Analysis reflect the final data collected by the study sites on their participants through July 5, 2011. Oral selenium (200 μg/d from L-selenomethionine) with matched vitamin E placebo, vitamin E (400 IU/d of all rac-α-tocopheryl acetate) with matched selenium placebo, both agents, or both matched placebos for a planned follow-up of a minimum of 7 and maximum of 12 years. Prostate cancer incidence. This report includes 54,464 additional person-years of follow-up and 521 additional cases of prostate cancer since the primary report. Compared with the placebo (referent group) in which 529 men developed prostate cancer, 620 men in the vitamin E group developed prostate cancer (hazard ratio [HR], 1.17; 99% CI, 1.004-1.36, P = .008); as did 575 in the selenium group (HR, 1.09; 99% CI, 0.93-1.27; P = .18), and 555 in the selenium plus vitamin E group (HR, 1.05; 99% CI, 0.89-1.22, P = .46). Compared with placebo, the absolute increase in risk of prostate cancer per 1000 person-years was 1.6 for vitamin E, 0.8 for selenium, and 0.4 for the combination. Dietary supplementation with vitamin E significantly increased the risk of prostate cancer among healthy men. Clinicaltrials.gov Identifier: NCT00006392.
Article
Full-text available
To evaluate the effect of vitamin E supplementation on incident total, ischaemic, and haemorrhagic stroke. Systematic review and meta-analysis of randomised, placebo controlled trials published until January 2010. Electronic databases (Medline, Embase, Cochrane Central Register of Controlled Trials) and reference lists of trial reports. Selection criteria Randomised, placebo controlled trials with ≥1 year of follow-up investigating the effect of vitamin E on stroke. Review methods and data extraction Two investigators independently assessed eligibility of identified trials. Disagreements were resolved by consensus. Two different investigators independently extracted data. Risk ratios (and 95% confidence intervals) were calculated for each trial based on the number of cases and non-cases randomised to vitamin E or placebo. Pooled effect estimates were then calculated. Nine trials investigating the effect of vitamin E on incident stroke were included, totalling 118 765 participants (59 357 randomised to vitamin E and 59 408 to placebo). Among those, seven trials reported data for total stroke and five trials each for haemorrhagic and ischaemic stroke. Vitamin E had no effect on the risk for total stroke (pooled relative risk 0.98 (95% confidence interval 0.91 to 1.05), P=0.53). In contrast, the risk for haemorrhagic stroke was increased (pooled relative risk 1.22 (1.00 to 1.48), P=0.045), while the risk of ischaemic stroke was reduced (pooled relative risk 0.90 (0.82 to 0.99), P=0.02). There was little evidence for heterogeneity among studies. Meta-regression did not identify blinding strategy, vitamin E dose, or morbidity status of participants as sources of heterogeneity. In terms of absolute risk, this translates into one additional haemorrhagic stroke for every 1250 individuals taking vitamin E, in contrast to one ischaemic stroke prevented per 476 individuals taking vitamin E. In this meta-analysis, vitamin E increased the risk for haemorrhagic stroke by 22% and reduced the risk of ischaemic stroke by 10%. This differential risk pattern is obscured when looking at total stroke. Given the relatively small risk reduction of ischaemic stroke and the generally more severe outcome of haemorrhagic stroke, indiscriminate widespread use of vitamin E should be cautioned against.
Article
Full-text available
Nonalcoholic steatohepatitis is a common liver disease that can progress to cirrhosis. Currently, there is no established treatment for this disease. We randomly assigned 247 adults with nonalcoholic steatohepatitis and without diabetes to receive pioglitazone at a dose of 30 mg daily (80 subjects), vitamin E at a dose of 800 IU daily (84 subjects), or placebo (83 subjects), for 96 weeks. The primary outcome was an improvement in histologic features of nonalcoholic steatohepatitis, as assessed with the use of a composite of standardized scores for steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis. Given the two planned primary comparisons, P values of less than 0.025 were considered to indicate statistical significance. Vitamin E therapy, as compared with placebo, was associated with a significantly higher rate of improvement in nonalcoholic steatohepatitis (43% vs. 19%, P=0.001), but the difference in the rate of improvement with pioglitazone as compared with placebo was not significant (34% and 19%, respectively; P=0.04). Serum alanine and aspartate aminotransferase levels were reduced with vitamin E and with pioglitazone, as compared with placebo (P<0.001 for both comparisons), and both agents were associated with reductions in hepatic steatosis (P=0.005 for vitamin E and P<0.001 for pioglitazone) and lobular inflammation (P=0.02 for vitamin E and P=0.004 for pioglitazone) but not with improvement in fibrosis scores (P=0.24 for vitamin E and P=0.12 for pioglitazone). Subjects who received pioglitazone gained more weight than did those who received vitamin E or placebo; the rates of other side effects were similar among the three groups. Vitamin E was superior to placebo for the treatment of nonalcoholic steatohepatitis in adults without diabetes. There was no benefit of pioglitazone over placebo for the primary outcome; however, significant benefits of pioglitazone were observed for some of the secondary outcomes. (ClinicalTrials.gov number, NCT00063622.)
Article
Full-text available
Postabsorptive elimination of the various forms of vitamin E appears to play a key role in regulation of tissue tocopherol concentrations, but mechanisms of tocopherol metabolism have not been elucidated. Here we describe a pathway involving cytochrome P450-mediated omega-hydroxylation of the tocopherol phytyl side chain followed by stepwise removal of two- or three-carbon moieties, ultimately yielding the 3'-carboxychromanol metabolite that is excreted in urine. All key intermediates of gamma-tocopherol metabolism via this pathway were identified in hepatocyte cultures using gas chromatography-mass spectrometry. NADPH-dependent synthesis of the initial gamma- and alpha-tocopherol 13'-hydroxy and -carboxy metabolites was demonstrated in rat and human liver microsomes. Functional analysis of several recombinant human liver P450 enzymes revealed that tocopherol-omega-hydroxylase activity was associated only with CYP4F2, which also catalyzes omega-hydroxylation of leukotriene B(4) and arachidonic acid. Tocopherol-omega-hydroxylase exhibited similar binding affinities but markedly higher catalytic activities for gamma-tocopherol than alpha-tocopherol, suggesting a role for this pathway in the preferential physiological retention of alpha-tocopherol and elimination of gamma-tocopherol. Sesamin potently inhibited tocopherol-omega-hydroxylase activity exhibited by CYP4F2 and rat or human liver microsomes. Since dietary sesamin also results in elevated tocopherol levels in vivo, this pathway appears to represent a functionally significant means of regulating vitamin E status.
Article
Full-text available
Human alpha-tocopherol (alpha-T) transfer protein (ATTP) plays a central role in vitamin E homeostasis, preventing degradation of alpha-T by routing this lipophilic molecule for secretion by hepatocytes. Mutations in the gene encoding ATTP have been shown to cause a severe deficiency in alpha-T, which results in a progressive neurodegenerative spinocerebellar ataxia, known as ataxia with vitamin E deficiency (AVED). We have determined the high-resolution crystal structure of human ATTP with (2R,4'R,8'R)-alpha-T in the binding pocket. Surprisingly, the ligand is sequestered deep in the hydrophobic core of the protein, implicating a large structural rearrangement for the entry and release of alpha-T. A comparison to the structure of a related protein, Sec14p, crystallized without a bona fide ligand, shows a possibly relevant open conformation for this family of proteins. Furthermore, of the known mutations that cause AVED, one mutation, L183P, is located directly in the binding pocket. Finally, three mutations associated with AVED involve arginine residues that are grouped together on the surface of ATTP. We propose that this positively charged surface may serve to orient an interacting protein, which might function to regulate the release of alpha-T through an induced change in conformation of ATTP.
Article
Full-text available
Patients with abetalipoproteinemia develop progressive ataxic neuropathy and retinopathy that are thought to be due, in part, to oxidative damage resulting from deficiencies of vitamins E and A. The goal was to determine the degree of oxidative stress in abetalipoproteinemia patients who had received vitamin E (100 mg/kg) and vitamin A (10 000-15 000 IU/d) since infancy. Ten patients aged 3-25 y were studied. Assessed were plasma carbonyl concentrations as a marker of oxidative damage to proteins; total plasma oxidizability, which was used to evaluate the susceptibility of plasma lipoproteins to oxidation; and cyclic voltammetry, which represents the overall reducing and antioxidant capacity stemming from low-molecular-weight antioxidants in plasma. Concentrations of plasma carbonyls did not differ significantly between patients and control subjects ( +/- SE: 0.5670 +/- 0.031 and 0.5039 +/- 0.0134 nmol/mg protein, respectively). The lag phase of plasma oxidizability was 28.03 +/- 3.16 min in the patients and 24.0 +/- 2.79 min in healthy subjects in whom oxidizability of isolated HDL was measured (NS). Cyclic voltammetry showed a peak potential of 330 +/- 8.3 mV in all samples studied, denoting that the same antioxidants were present in the plasma of the patients and the control subjects. The anodic current of the samples, a measure of the concentration of hydrophilic low-molecular-weight antioxidants, was 5.227 +/- 0.25 and 5.38 +/- 0.20 micro A in the patients and the control subjects, respectively (NS). Enhanced oxidative stress is not apparent in the plasma of abetalipoproteinemia patients receiving long-term supplementation with vitamins E and A.
Article
Full-text available
Human cytochrome P450 4F2 (CYP4F2) catalyzes the initial omega-hydroxylation reaction in the metabolism of tocopherols and tocotrienols to carboxychromanols and is, to date, the only enzyme shown to metabolize vitamin E. The objective of this study was to characterize this activity, particularly the influence of key features of tocochromanol substrate structure. The influence of the number and positions of methyl groups on the chromanol ring, and of stereochemistry and saturation of the side chain, were explored using HepG2 cultures and microsomal reaction systems. Human liver microsomes and microsomes selectively expressing recombinant human CYP4F2 exhibited substrate activity patterns similar to those of HepG2 cells. Although activity was strongly associated with substrate accumulation by cells or microsomes, substantial differences in specific activities between substrates remained under conditions of similar microsomal membrane substrate concentration. Methylation at C5 of the chromanol ring was associated with markedly low activity. Tocotrienols exhibited much higher Vmax values than their tocopherol counterparts. Side chain stereochemistry had no effect on omega-hydroxylation of alpha-tocopherol (alpha-TOH) by any system. Kinetic analysis of microsomal CYP4F2 activity revealed Michaelis-Menten kinetics for alpha-TOH but allosteric cooperativity for other vitamers, especially tocotrienols. Additionally, alpha-TOH was a positive effector of omega-hydroxylation of other vitamers. These results indicate that CYP4F2-mediated tocopherol-omega-hydroxylation is a central feature underlying the different biological half-lives, and therefore biopotencies, of the tocopherols and tocotrienols.
Article
Full-text available
It is generally believed that vitamin E is absorbed along with chylomicrons. However, we previously reported that human colon carcinoma Caco-2 cells use dual pathways, apolipoprotein B (apoB)-lipoproteins and HDLs, to transport vitamin E. Here, we used primary enterocytes and rodents to identify in vivo vitamin E absorption pathways. Uptake of [(3)H]alpha-tocopherol by primary rat and mouse enterocytes increased with time and reached a maximum at 1 h. In the absence of exogenous lipid supply, these cells secreted vitamin E with HDL. Lipids induced the secretion of vitamin E with intermediate density lipoproteins, and enterocytes supplemented with lipids and oleic acid secreted vitamin E with chylomicrons. The secretion of vitamin E with HDL was not affected by lipid supply but was enhanced when incubated with HDL. Microsomal triglyceride transfer protein inhibition reduced vitamin E secretion with chylomicrons without affecting its secretion with HDL. Enterocytes from Mttp-deficient mice also secreted less vitamin E with chylomicrons. In vivo absorption of [(3)H]alpha-tocopherol by mice after poloxamer 407 injection to inhibit lipoprotein lipase revealed that vitamin E was associated with triglyceride-rich lipoproteins and small HDLs containing apoB-48 and apoA-I. These studies indicate that enterocytes use two pathways for vitamin E absorption. Absorption with chylomicrons is the major pathway of vitamin E absorption. The HDL pathway may be important when chylomicron assembly is defective and can be exploited to deliver vitamin E without increasing fat consumption.
Article
Full-text available
CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminobenzotriazole and the requirement for NADPH. Apparent K(m) and V(max) values ranged from 0.6 to 2.4 microM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid omega-hydroxylation rates (r(2) = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3-18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics.
Article
Vitamin A, acting through its metabolite, all- trans-retinoic acid, is a potent transcriptional regulator affecting expression levels of hundreds of genes through retinoic acid response elements present within these genes. However, the literature is replete with claims that consider vitamin A to be an antioxidant vitamin, like vitamins C and E. This apparent contradiction in the understanding of how vitamin A acts mechanistically within the body is a major focus of this review. Vitamin E, which is generally understood to act as a lipophilic antioxidant protecting polyunsaturated fatty acids present in membranes, is often proposed to be a transcriptional regulator. The evaluation of this claim is another focus of the review. We conclude that vitamin A is an indirect antioxidant, whose indirect function is to transcriptionally regulate a number of genes involved in mediating the body's canonical antioxidant responses. Vitamin E, in addition to being a direct antioxidant, enables the increase of peroxidized lipids that alter both metabolic pathways and gene expression profiles within tissues and cells. However, there is little compelling evidence that vitamin E has a direct transcriptional mechanism like that of vitamin A. Thus, we propose that the term antioxidant not be applied to vitamin A, and we discourage the use of the term transcriptional mediator when discussing vitamin E. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Rationale: Although there has been a long-standing interest in the human health effects of vitamin E, a comprehensive analysis of the association between circulating vitamin E and long-term mortality has not been conducted. Objective: Determine whether serum α-tocopherol (the predominant form of vitamin E) is related to long-term overall and cause-specific mortality and elucidate the dose-response relationships with better quantification of the associations. Methods and results: We conducted a biochemical analysis of 29 092 participants in the ATBC Study (Alpha-Tocopherol, Beta-Carotene Cancer Prevention) that originally tested vitamin E and β-carotene supplementation. Serum α-tocopherol was measured at baseline using high-performance liquid chromatography, and during a 30-year follow-up we identified 23 787 deaths, including deaths from cardiovascular disease (9867), cancer (7687), respiratory disease (2161), diabetes mellitus (119), injuries and accidents (1255), and other causes (2698). After adjusting for major risk factors, we found that men with higher serum α-tocopherol had significantly lower all-cause mortality (hazard ratios=0.83, 0.79, 0.75, and 0.78 for quintile 2 (Q2)-Q5 versus Q1, respectively; Ptrend<0.0001), and significantly decreased mortality from cardiovascular disease, heart disease, stroke, cancer, respiratory disease, and other causes, with risk reductions from 17% to 47% for the highest versus lowest quintile. The α-tocopherol association with overall mortality was similar across subgroups of smoking intensity, years of smoking, alcohol consumption, trial supplementation, and duration of follow-up. The association was, however, significantly modified by baseline age and body mass index, with stronger inverse associations for younger men and men with a lower body mass index ( Pinteraction≤0.006). Conclusions: In this long-term prospective cohort study, higher baseline serum α-tocopherol biochemical status was associated with lower risk of overall mortality and mortality from all major causes. Our data support the long-term health benefits of higher serum α-tocopherol for overall and chronic disease mortality and should be replicated in other more diverse populations.
Article
Vitamin E is an essential molecule for our development and health. It has long been thought that it was absorbed and transported through cellular membranes by a passive diffusion process. However, data obtained during the past 15 years showed that its absorption is actually mediated, at least in part, by cholesterol membrane transporters including the scavenger receptor class B type I (SR‐BI), CD36 molecule (CD36), NPC1‐like transporter 1 (NPC1L1), and ATP‐binding cassettes A1 and G1 (ABCA1 and ABCG1). This review focuses on the absorption process of vitamin E across the enterocyte. A special attention is given to the regulation of this process, including the possible competition with other fat‐soluble micronutrients, and the modulation of transporter expressions. Overall, recent results noticeably increased the comprehension of vitamin E intestinal transport, but additional investigations are still required to fully appreciate the mechanisms governing vitamin E bioavailability.
Article
Background: It has been proposed that antioxidants may prevent cellular damage in the retina by reacting with free radicals that are produced in the process of light absorption. Higher dietary levels of antioxidant vitamins and minerals may reduce the risk of progression of age-related macular degeneration (AMD). Objectives: The objective of this review was to assess the effects of antioxidant vitamin or mineral supplementation on the progression of AMD in people with AMD. Search methods: We searched CENTRAL (2017, Issue 2), MEDLINE Ovid (1946 to March 2017), Embase Ovid (1947 to March 2017), AMED (1985 to March 2017), OpenGrey (System for Information on Grey Literature in Europe, the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 29 March 2017. Selection criteria: We included randomised controlled trials (RCTs) that compared antioxidant vitamin or mineral supplementation (alone or in combination) to placebo or no intervention, in people with AMD. Data collection and analysis: Both review authors independently assessed risk of bias in the included studies and extracted data. One author entered data into RevMan 5; the other author checked the data entry. We graded the certainty of the evidence using GRADE. Main results: We included 19 studies conducted in USA, Europe, China, and Australia. We judged the trials that contributed data to the review to be at low or unclear risk of bias.Nine studies compared multivitamins with placebo (7 studies) or no treatment (2 studies) in people with early and moderate AMD. The duration of supplementation and follow-up ranged from nine months to six years; one trial followed up beyond two years. Most evidence came from the Age-Related Eye Disease Study (AREDS) in the USA. People taking antioxidant vitamins were less likely to progress to late AMD (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.58 to 0.90; 2445 participants; 3 RCTs; moderate-certainty evidence). In people with very early signs of AMD, who are at low risk of progression, this would mean that there would be approximately 4 fewer cases of progression to late AMD for every 1000 people taking vitamins (1 fewer to 6 fewer cases). In people at high risk of progression (i.e. people with moderate AMD) this would correspond to approximately 8 fewer cases of progression for every 100 people taking vitamins (3 fewer to 13 fewer). In one study of 1206 people, there was a lower risk of progression for both neovascular AMD (OR 0.62, 95% CI 0.47 to 0.82; moderate-certainty evidence) and geographic atrophy (OR 0.75, 95% CI 0.51 to 1.10; moderate-certainty evidence) and a lower risk of losing 3 or more lines of visual acuity (OR 0.77, 95% CI 0.62 to 0.96; 1791 participants; moderate-certainty evidence). Low-certainty evidence from one study of 110 people suggested higher quality of life scores (National Eye Institute Visual Function Questionnaire) in treated compared with the non-treated people after 24 months (mean difference (MD) 12.30, 95% CI 4.24 to 20.36). Six studies compared lutein (with or without zeaxanthin) with placebo. The duration of supplementation and follow-up ranged from six months to five years. Most evidence came from the AREDS2 study in the USA. People taking lutein or zeaxanthin may have similar or slightly reduced risk of progression to late AMD (RR 0.94, 95% CI 0.87 to 1.01; 6891 eyes; low-certainty evidence), neovascular AMD (RR 0.92, 95% CI 0.84 to 1.02; 6891 eyes; low-certainty evidence), and geographic atrophy (RR 0.92, 95% CI 0.80 to 1.05; 6891 eyes; low-certainty evidence). A similar risk of progression to visual loss of 15 or more letters was seen in the lutein and control groups (RR 0.98, 95% CI 0.91 to 1.05; 6656 eyes; low-certainty evidence). Quality of life (measured with Visual Function Questionnaire) was similar between groups in one study of 108 participants (MD 1.48, 95% -5.53 to 8.49, moderate-certainty evidence). One study, conducted in Australia, compared vitamin E with placebo. This study randomised 1204 people to vitamin E or placebo, and followed up for four years. Participants were enrolled from the general population; 19% had AMD. The number of late AMD events was low (N = 7) and the estimate of effect was uncertain (RR 1.36, 95% CI 0.31 to 6.05, very low-certainty evidence). There were no data on neovascular AMD or geographic atrophy.There was no evidence of any effect of treatment on visual loss (RR 1.04, 95% CI 0.74 to 1.47, low-certainty evidence). There were no data on quality of life. Five studies compared zinc with placebo. The duration of supplementation and follow-up ranged from six months to seven years. People taking zinc supplements may be less likely to progress to late AMD (OR 0.83, 95% CI 0.70 to 0.98; 3790 participants; 3 RCTs; low-certainty evidence), neovascular AMD (OR 0.76, 95% CI 0.62 to 0.93; 2442 participants; 1 RCT; moderate-certainty evidence), geographic atrophy (OR 0.84, 95% CI 0.64 to 1.10; 2442 participants; 1 RCT; moderate-certainty evidence), or visual loss (OR 0.87, 95% CI 0.75 to 1.00; 3791 participants; 2 RCTs; moderate-certainty evidence). There were no data reported on quality of life.Very low-certainty evidence was available on adverse effects because the included studies were underpowered and adverse effects inconsistently reported. Authors' conclusions: People with AMD may experience some delay in progression of the disease with multivitamin antioxidant vitamin and mineral supplementation. This finding was largely drawn from one large trial, conducted in a relatively well-nourished American population. We do not know the generalisability of these findings to other populations. Although generally regarded as safe, vitamin supplements may have harmful effects. A systematic review of the evidence on harms of vitamin supplements is needed. Supplements containing lutein and zeaxanthin are heavily marketed for people with age-related macular degeneration but our review shows they may have little or no effect on the progression of AMD.
Article
Vitamin E (α-tocopherol, VitE) was discovered in 1922 for its role in preventing embryonic mortality. We investigated the underlying mechanisms causing lethality using targeted metabolomics analyses of zebrafish VitE-deficient embryos over five days of development, which coincided with their increased morbidity and mortality. VitE deficiency resulted in peroxidation of docosahexaenoic acid (DHA), depleting DHA-containing phospholipids, especially phosphatidylcholine, which also caused choline depletion. This increased lipid peroxidation also increased NADPH oxidation, which depleted glucose by shunting it to the pentose phosphate pathway. VitE deficiency was associated with mitochondrial dysfunction with concomitant impairment of energy homeostasis. The observed morbidity and mortality outcomes could be attenuated, but not fully reversed, by glucose injection into VitE-deficient embryos at developmental day one. Thus, embryonic VitE deficiency in vertebrates leads to a metabolic reprogramming that adversely affects methyl donor status and cellular energy homeostasis with lethal outcomes.
Article
The Food and Drug Administration (FDA or we) is amending its labeling regulations for conventional foods and dietary supplements to provide updated nutrition information on the label to assist consumers in maintaining healthy dietary practices. The updated information is consistent with current data on the associations between nutrients and chronic diseases, health-related conditions, physiological endpoints, and/or maintaining a healthy dietary pattern that reflects current public health conditions in the United States, and corresponds to new information on consumer understanding and consumption patterns. The final rule updates the list of nutrients that are required or permitted to be declared; provides updated Daily Reference Values and Reference Daily Intake values that are based on current dietary recommendations from consensus reports; amends requirements for foods represented or purported to be specifically for children under the age of 4 years and pregnant and lactating women and establishes nutrient reference values specifically for these population subgroups; and revises the format and appearance of the Nutrition Facts label.
Article
This article is in tribute to Helmut Sies and is written by his friends from the Oxygen Club of California with personal recollections from each of us: Enrique Cadenas on “Oxidative Stress and Mentorship”, Lester Packer on “The Antioxidant Network”, and Maret G. Traber on “Nutrition and Chronic Disease”. We conclude with a brief overview of the positive influence Helmut Sies has had on the Oxygen Club of California.
Article
Vitamin E is often used in the treatment of nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH); however, the magnitude of treatment response associated with vitamin E in improving liver function and histology in NAFLD/NASH has not, to our knowledge, been quantified systematically. Thus, we conducted a meta-analysis of randomized controlled trials (RCTs) using vitamin E in the treatment of NAFLD/NASH. PubMed, Medline, and Cochrane Library Full Text Database, and Japan Medical-Literature Database (Igaku Chuo Zasshi) were searched until March 2014, and five RCTs were identified for meta-analysis. According to a random effect model analysis of the five studies, vitamin E significantly reduced aspartate transaminase (AST) by -19.43 U/L, alanine aminotransferase (ALT) by -28.91 U/L, alkaline phosphatase (ALP) by -10.39 U/L, steatosis by -0.54 U/L, inflammation by -0.20 U/L, and hepatocellular ballooning by -0.34 U/L compared with the control group. Vitamin E treatment with NASH adult patients showed obvious reductions in not only AST of -13.91 U/L, ALT by -22.44 U/L, steatosis of -0.67 U/L, inflammation of -0.20 U/L, but also fibrosis of -0.30 U/L compared to the control treatment. Vitamin E significantly improved liver function and histologic changes in patients with NAFLD/NASH. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
Abetalipoproteinemia is a rare metabolic disorder that causes disturbed lipid absorption with consequent hypocholesterolaemia and liposoluble avitaminosis. The broad spectrum of presentations includes malabsorption, failure to thrive and acanthocytosis in children, while later in life expected manifestations include coagulopathy, myopathy, retinitis pigmentosa, peripheral neuropathy, hyporeflexia and ataxia. These neurological complications stem from demyelination secondary to vitamin E deficiency. Another complication is reduced fertility in women. In the event of a successful conception, issues arise in vitamin supplementation, the mainstay of treatment of abetalipoproteinemia. The skilful clinician must master the delicate balance between the teratogenic effects on the fetus of over as well as under replacement of vitamins, pregnancy complications such as premature rupture of membranes and eclampsia, and, finally, maternal complications such as corneal ulcers. We describe the management of a patient ranging from pubertal growth to bearing a successful spontaneous pregnancy with an outcome of a completely healthy mother and child. 2014 BMJ Publishing Group Ltd.
Article
1. An increasing number of studies have indicated the roles of CYP4 proteins in drug metabolism; however, CYP4 expression has not been measured in cynomolgus monkeys, an important animal species for drug metabolism studies. 2. In this study, cynomolgus CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, along with CYP2J2, were immunoquantified using selective antibodies in 28 livers and 35 small intestines, and their content was compared with CYP1A, CYP2A, CYP2B6, CYP2C9/19, CYP2D, CYP2E1, CYP3A4 and CYP3A5, previously quantified. 3. In livers, CYP2J2, CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, varied 1.3- to 4.3-fold, represented 11.2, 14.4, 8.0, 2.7 and 0.3% of total immunoquantified CYP1-4 proteins, respectively. 4. In small intestines, CYP2J2, CYP4F2/3, CYP4F11 and CYP4F12, varied 2.4- to 9.7-fold, represented 6.9, 36.4, 2.4 and 9.3% of total immunoquantified CYP1-4 proteins, respectively, making CYP4F the most abundant P450 subfamily in small intestines. CYP4A11 was under the detection limit in all of the samples analyzed. 5. Significant correlations were found in liver for CYP4A11 with lauric acid 11-/12-hydroxylation and for CYP4F2/3 and CYP4F11 with astemizole hydroxylation. 6. This study revealed the relatively abundant contents of cynomolgus CYP2J2, CYP4A11 and CYP4Fs in liver and/or small intestine, suggesting their potential roles for the metabolism of xenobitotics and endogenous substrates.
Article
Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Due to their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling, and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorder in human. Recently, it has been shown that the interaction of α-TTP with phosphoinositide plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.
Article
Background: Vitamin E is a dietary compound that functions as an antioxidant scavenging toxic free radicals. Evidence that free radicals may contribute to the pathological processes of cognitive impairment including Alzheimer's disease has led to interest in the use of vitamin E in the treatment of mild cognitive impairment (MCI) and Alzheimer's dementia (AD). Objectives: To assess the efficacy of vitamin E in the treatment of AD and prevention of progression of MCI to dementia. Search methods: The Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources were searched on 25 June 2012 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. Selection criteria: All unconfounded, double-blind, randomised trials in which treatment with vitamin E at any dose was compared with placebo for patients with AD and MCI. Data collection and analysis: Two review authors independently applied the selection criteria and assessed study quality and extracted and analysed the data. For each outcome measure data were sought on every patient randomised. Where such data were not available an analysis of patients who completed treatment was conducted. It was not possible to pool data between studies owing to a lack of comparable outcome measure. Main results: Only three studies met the inclusion criteria: two in an AD population and one in an MCI population. In the first of the AD studies (Sano 1996) the authors reported some benefit from vitamin E (2000 IU/day) with fewer participants reaching an end point of death, institutionalisation, change to a Clinical Dementia Rating (CDR) of three, or loss of two basic activities of daily living within two years. Of patients completing treatment, 58% (45/77) on vitamin E compared with 74% (58/78) on placebo reached one of the end points (odds ratio (OR) 0.49; 95% confidence interval (CI) 0.25 to 0.96). The second AD treatment study (Lloret 2009) explored the effects of vitamin E (800 IU/day) on cognitive progression in relation to oxidative stress levels. Patients whose oxidative stress markers were lowered by vitamin E showed no significant difference in the percentage change in Mini-Mental State Examination (MMSE) score, between baseline and six months, compared to the placebo group. The primary aim of the MCI study (Petersen 2005) was to investigate the effect of vitamin E (2000 IU/day) on the time to progression from MCI to possible or probable AD. A total of 214 of the 769 participants progressed to dementia, with 212 being classified as having possible or probable AD. There was no significant difference in the probability of progression from MCI to AD between the vitamin E group and the placebo group (hazard ratio 1.02; 95% CI 0.74 to 1.41; P = 0.91). Authors' conclusions: No convincing evidence that vitamin E is of benefit in the treatment of AD or MCI. Future trials assessing vitamin E treatment in AD should not be restricted to alpha-tocopherol.
Article
Kinetic models enable nutrient needs and kinetic behaviors to be quantified and provide mechanistic insights into metabolism. Therefore, we modeled and quantified the kinetics, bioavailability, and metabolism of RRR-α-tocopherol in 12 healthy adults. Six men and 6 women, aged 27 ± 6 y, each ingested 1.81 nmol of [5(-14)CH(3)]-(2R, 4'R, 8'R)-α-tocopherol; each dose had 3.70 kBq of (14)C. Complete collections of urine and feces were made over the first 21 d from dosing. Serial blood samples were drawn over the first 70 d from dosing. All specimens were analyzed for RRR-α-tocopherol. Specimens were also analyzed for (14)C using accelerator MS. From these data, we modeled and quantified the kinetics of RRR-α-tocopherol in vivo in humans. The model had 11 compartments, 3 delay compartments, and reservoirs for urine and feces. Bioavailability of RRR-α-tocopherol was 81 ± 1%. The model estimated residence time and half-life of the slowest turning-over compartment of α-tocopherol (adipose tissue) at 499 ± 702 d and 184 ± 48 d, respectively. The total body store of RRR-α-tocopherol was 25,900 ± 6=220 μmol (11 ± 3 g) and we calculated the adipose tissue level to be 1.53 μmol/g (657 μg/g). We found that a daily intake of 9.2 μmol (4 mg) of RRR-α-tocopherol maintained plasma RRR-α-tocopherol concentrations at 23 μmol/L. These findings suggest that the dietary requirement for vitamin E may be less than that currently recommended and these results will be important for future updates of intake recommendations.
Chapter
Most individuals with ataxia with vitamin E deficiency (AVED) present at puberty; common characteristics of the disease include progressive ataxia, clumsiness of the hands, loss of proprioception (especially of vibration and joint position sense), and areflexia. Other features often observed are dysdiadochokinesia, positive Romberg sign, head titubation, decreased visual acuity, and positive Babinski sign. The phenotype and disease severity vary widely among families with different mutations; age of onset and disease course are more uniform within a given family, but symptoms and disease severity can vary even among sibs. Presently, no consensus diagnostic criteria for AVED exist; the principal criterion for diagnosis is a Friedreich ataxia-like neurologic phenotype plus markedly reduced plasma vitamin E (α-tocopherol) concentration in the absence of known causes of malabsorption. In most cases, molecular analysis of TTPA, the gene encoding α-tocopherol transfer protein and the only gene known to be associated with AVED, allows confirmation of the diagnosis. Treatment of manifestations: Lifelong high-dose oral vitamin E supplementation to bring plasma vitamin E concentrations into the high-normal range; treatment early in the disease process may to some extent reverse ataxia and mental deterioration. Prevention of primary manifestations: Vitamin E therapy in presymptomatic children with homozygous TTPA mutations prevents development of symptoms. Individuals heterozygous for TTPA mutations (carriers) do not need vitamin E supplementation and do not manifest neurologic symptoms. Evaluation of relatives at risk: Evaluation for vitamin E deficiency, especially in younger sibs of a proband. Agents/circumstances to avoid: Smoking; occupations requiring quick responses or good balance. Other: Before learning to drive a car, assessment to determine if abnormal position sense in the extremities presents a danger. AVED is inherited in an autosomal recessive manner. The parents of an affected child are obligate heterozygotes and carry one mutant allele; heterozygotes are asymptomatic. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Once an at-risk sib is known to be unaffected, the risk of his/her being a carrier is 2/3. Carrier detection for at-risk family members and prenatal diagnosis for pregnancies at increased risk are possible if the disease-causing mutations in the family have been identified.
Article
Little is known about factors that modulate dietary alpha-tocopherol bioavailability. The study aimed to assess the efficacy of vitamin E-fortified apples as a low-fat vitamin E delivery system, the influence of fat on vitamin E absorption, and human vitamin E requirements by using plasma alpha-tocopherol kinetics at a dosage of alpha-tocopherol found in food. Apples fortified with deuterium-labeled alpha-tocopheryl acetate were consumed by 5 participants at a breakfast containing 0%, 6%, or 21% kcal from fat in 3 sequential trials. The trials were separated by a 2-wk washout period. Blood samples were obtained up to 72 h, and plasma was analyzed for labeled and unlabeled alpha-tocopherol. Compared with observations in the 0% fat trial, the maximum observed plasma d6-alpha-tocopherol concentrations (Cmax) and the areas under the curve increased 2- and 3-fold during the 6% and 21% fat trials, respectively. The mean (+/-SD) estimated percentage d6-alpha-tocopherol absorbed increased from 10 +/- 4% during the 0% fat trial to 20 +/- 3% and 33 +/- 5% during the 6% and 21% fat trials, respectively. The mean time to Cmax (9 +/- 2 h), fractional disappearance rates (0.022 +/- 0.003 pools/d), and half-lives (32 +/- 4 h) did not differ significantly between the trials. With the use of fractional disappearance rates and baseline plasma alpha-tocopherol concentrations, the estimated daily plasma alpha-tocopherol efflux was 13-14 mg. The estimated rate of alpha-tocopherol delivery to tissues was 5 mg/d. Given an estimated 33% absorption, the amount of dietary vitamin E needed daily to replace irreversible losses is </=15 mg. These estimates support the current human vitamin E requirements despite the claims that the median amount of vitamin E that Americans consume is 7 mg/d.
Article
Ataxia with vitamin E deficiency (AVED) is a rare autosomal recessive neurodegenerative disease, due to mutations in TTPA gene (Arita et al. in Biochem J 306(Pt. 2):437-443, 1995; Hentati et al. in Ann Neurol 39:295-300, 1996), which encodes for alpha-TTP, a cytosolic liver protein that is presumed to function in the intracellular transport of alpha-tocopherol. This disease is characterized clinically by symptoms with often striking resemblance to those of Friedreich ataxia. The neurological symptoms include ataxia, dysarthria, hyporeflexia, and decreased vibration sense, sometimes associated with cardiomyopathy and retinitis pigmentosa (Mariotti et al. in Neurol Sci 25:130-137, 2004). Vitamin E supplementation improves symptoms and prevents disease progress (Doria-Lamba et al. in Eur J Pediatr 165(7):494-495, 2006). Over 20 mutations have been identified in patients with AVED. In the present paper we summarize the recent findings on molecular genetic of this disease including the list of the known mutations.
Article
Background: Nonalcoholic fatty liver disease (NAFLD) in children can lead to steatohepatitis, cirrhosis, and end-stage liver disease. The cause of NAFLD is unknown, but it is commonly associated with obesity, insulin resistance, and dyslipidemia. Objectives: TONIC is conducted to test whether treatment with metformin, an insulin sensitizer, or vitamin E, a naturally available antioxidant, will lead to improvements in biochemical and histological features of nondiabetic children with biopsy-proven NAFLD. Design: TONIC is a randomized, multicenter, double-masked, placebo-controlled trial of 96 weeks of treatment with metformin or vitamin E. The primary outcome measure chosen for the trial is improvement in serum alanine aminotransferase (ALT) levels with treatment as compared to placebo. An improvement in ALT is defined as reduction in serum ALT levels to below 50% of the baseline values or into the normal range (40 U/L or less) during the last 48 weeks of treatment. Histological improvement is defined by changes in liver histology between a baseline and end-of-treatment liver biopsy in regards to (1) steatohepatitis, (2) NAFLD Activity Score, consisting of scores for steatosis, lobular inflammation, and hepatocellular injury (ballooning), and (3) fibrosis score. Methods: Between September 2005 and September 2007, 173 children were enrolled into TONIC at 10 clinical centers in the United States. Participants were randomized to receive either metformin (500 mg b.i.d.), vitamin E (400 IU b.i.d.), or placebo for 96 weeks. This protocol was approved by all participating center Institutional Review Boards (IRBs) and an independent Data and Safety Monitoring Board (DSMB). (ClinicalTrials.gov number, NCT00063635.).
Article
P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61-74 (WGHQGMVNPTEEG) and 65-77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly variable CYP4F2 expression in liver (16.4+/-18.6pmol/mg microsomal protein; n=29) and kidney cortex (3.9+/-3.8 pmol/mg; n=10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r> or =0.63; p<0.05) with leukotriene B4 and arachidonate omega-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate omega-hydroxylase in human liver.
Article
The process of intestinal absorption and chylomicron resecretion of dietary cholesterol in humans is poorly understood. The present study aimed to test the hypothesis that dietary cholesterol ingested during a given meal is resecreted into chylomicrons (and plasma) during several subsequent postprandial periods. Seven healthy subjects ingested 3 comparable mixed test meals (at 0, 8, and 24 h) containing a given amount of fat (49 g) and cholesterol (157 mg); blood samples were taken 3 and 6 h after each test meal and 48 and 72 h after the beginning of the experiment. Heptadeuterated dietary cholesterol was present in the first test meal only, enabling its specific determination with use of gas chromatography-mass spectrometry. Chylomicrons, LDL, and HDL were isolated and lipids were quantified. In apolipoprotein B-48-containing chylomicrons, deuterated cholesterol concentrations were moderate after the first meal (1.3 x 10(-4) mmol/L), reached a maximum after the second meal (2.4 x 10(-4) mmol/L), and were still elevated after the third meal (1.7 x 10(-4) mmol/L). In plasma, LDL and HDL cholesterol enrichment in deuterated cholesterol was lower than in chylomicrons and plateaued after 24--48 h. Estimates of newly secreted exogenous deuterated cholesterol in chylomicrons indicate that 30.7%, 55.2%, and 14.1% of the total was secreted after the first, second, and third meals, respectively. Ingested dietary cholesterol is secreted by the small intestine in chylomicrons into the circulation during > or =3 subsequent postprandial periods in healthy humans. This likely results from a complex multistep intestinal processing of cholesterol with dietary fat as a driving force.
Article
Experimental and epidemiological data suggest that vitamin E supplementation may prevent cancer and cardiovascular events. Clinical trials have generally failed to confirm benefits, possibly due to their relatively short duration. To evaluate whether long-term supplementation with vitamin E decreases the risk of cancer, cancer death, and major cardiovascular events. A randomized, double-blind, placebo-controlled international trial (the initial Heart Outcomes Prevention Evaluation [HOPE] trial conducted between December 21, 1993, and April 15, 1999) of patients at least 55 years old with vascular disease or diabetes mellitus was extended (HOPE-The Ongoing Outcomes [HOPE-TOO]) between April 16, 1999, and May 26, 2003. Of the initial 267 HOPE centers that had enrolled 9541 patients, 174 centers participated in the HOPE-TOO trial. Of 7030 patients enrolled at these centers, 916 were deceased at the beginning of the extension, 1382 refused participation, 3994 continued to take the study intervention, and 738 agreed to passive follow-up. Median duration of follow-up was 7.0 years. Daily dose of natural source vitamin E (400 IU) or matching placebo. Primary outcomes included cancer incidence, cancer deaths, and major cardiovascular events (myocardial infarction, stroke, and cardiovascular death). Secondary outcomes included heart failure, unstable angina, and revascularizations. Among all HOPE patients, there were no significant differences in the primary analysis: for cancer incidence, there were 552 patients (11.6%) in the vitamin E group vs 586 (12.3%) in the placebo group (relative risk [RR], 0.94; 95% confidence interval [CI], 0.84-1.06; P = .30); for cancer deaths, 156 (3.3%) vs 178 (3.7%), respectively (RR, 0.88; 95% CI, 0.71-1.09; P = .24); and for major cardiovascular events, 1022 (21.5%) vs 985 (20.6%), respectively (RR, 1.04; 95% CI, 0.96-1.14; P = .34). Patients in the vitamin E group had a higher risk of heart failure (RR, 1.13; 95% CI, 1.01-1.26; P = .03) and hospitalization for heart failure (RR, 1.21; 95% CI, 1.00-1.47; P = .045). Similarly, among patients enrolled at the centers participating in the HOPE-TOO trial, there were no differences in cancer incidence, cancer deaths, and major cardiovascular events, but higher rates of heart failure and hospitalizations for heart failure. In patients with vascular disease or diabetes mellitus, long-term vitamin E supplementation does not prevent cancer or major cardiovascular events and may increase the risk for heart failure.
Article
Basic research provides plausible mechanisms and observational studies suggest that apparently healthy persons, who self-select for high intakes of vitamin E through diet or supplements, have decreased risks of cardiovascular disease and cancer. Randomized trials do not generally support benefits of vitamin E, but there are few trials of long duration among initially healthy persons. To test whether vitamin E supplementation decreases risks of cardiovascular disease and cancer among healthy women. In the Women's Health Study conducted between 1992 and 2004, 39 876 apparently healthy US women aged at least 45 years were randomly assigned to receive vitamin E or placebo and aspirin or placebo, using a 2 x 2 factorial design, and were followed up for an average of 10.1 years. Administration of 600 IU of natural-source vitamin E on alternate days. Primary outcomes were a composite end point of first major cardiovascular event (nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death) and total invasive cancer. During follow-up, there were 482 major cardiovascular events in the vitamin E group and 517 in the placebo group, a nonsignificant 7% risk reduction (relative risk [RR], 0.93; 95% confidence interval [CI], 0.82-1.05; P = .26). There were no significant effects on the incidences of myocardial infarction (RR, 1.01; 95% CI, 0.82-1.23; P = .96) or stroke (RR, 0.98; 95% CI, 0.82-1.17; P = .82), as well as ischemic or hemorrhagic stroke. For cardiovascular death, there was a significant 24% reduction (RR, 0.76; 95% CI, 0.59-0.98; P = .03). There was no significant effect on the incidences of total cancer (1437 cases in the vitamin E group and 1428 in the placebo group; RR, 1.01; 95% CI, 0.94-1.08; P = .87) or breast (RR, 1.00; 95% CI, 0.90-1.12; P = .95), lung (RR, 1.09; 95% CI, 0.83-1.44; P = .52), or colon cancers (RR, 1.00; 95% CI, 0.77-1.31; P = .99). Cancer deaths also did not differ significantly between groups. There was no significant effect of vitamin E on total mortality (636 in the vitamin E group and 615 in the placebo group; RR, 1.04; 95% CI, 0.93-1.16; P = .53). The data from this large trial indicated that 600 IU of natural-source vitamin E taken every other day provided no overall benefit for major cardiovascular events or cancer, did not affect total mortality, and decreased cardiovascular mortality in healthy women. These data do not support recommending vitamin E supplementation for cardiovascular disease or cancer prevention among healthy women.
Article
Global gene expression profiles of livers from mice, fed diets differing in alpha-tocopherol content, were compared using DNA microarray technology. Three hundred and eighty nine genes were found to significantly differ in their expression level by a factor of 2 or higher between the high and the low alpha-tocopherol group. Functional clustering using the EASE software identified 121 genes involved in transport processes. Twenty-one thereof were involved in (synaptic) vesicular trafficking. Up-regulation of syntaxin 1C (Stx1c), vesicle-associated membrane protein 1 (Vamp1), N-ethylmaleimide-sensitive factor (Nsf) and syntaxin binding protein 1 (Stxbp1, Munc18-1) was verified by real time PCR. At a functional level, alpha-tocopherol increased the secretory response in RBL and PC12 cells. Although here detected in liver, the alpha-tocopherol-responsive pathways are also relevant to neurotransmission. A role of alpha-tocopherol in the vesicular transport might not only affect its own absorption and transport but also explain the neural dysfunctions observed in severe alpha-tocopherol deficiency.
Article
Supplementation with vitamin E may antagonize vitamin K in healthy adults, but it is unclear whether intake of vitamin E decreases the risk of venous thromboembolism (VTE). The Women's Health Study randomized 39,876 women > or = 45 years of age to receive 600 IU of natural source vitamin E or placebo on alternate days. Before randomization, 26,779 participants gave blood samples, which were used to determine factor V Leiden, G20210A prothrombin, and 677C>T MTHFR polymorphisms. Documented VTE (including deep vein thrombosis or pulmonary embolism) and unprovoked VTE (no recent surgery, trauma, or cancer diagnosis) were prospectively evaluated, secondary end points of the trial. During a median follow-up period of 10.2 years, VTE occurred in 482 women: 213 in the vitamin E group and 269 in the placebo group, a significant 21% hazard reduction (relative hazard, 0.79; 95% CI, 0.66 to 0.94; P=0.010). For unprovoked VTE, the hazard reduction was 27% (relative hazard, 0.73; 95% CI, 0.57 to 0.94; P=0.016). In subgroup analyses, the 3% of participants who reported VTE before randomization had a 44% hazard reduction (relative hazard, 0.56; 95% CI, 0.31 to 1.00; P=0.048), whereas women without prior VTE had an 18% hazard reduction (relative hazard 0.82; 95% CI, 0.68 to 0.99; P=0.040). Women with either factor V Leiden or the prothrombin mutation had a 49% hazard reduction associated with vitamin E treatment (relative hazard, 0.51; 95% CI, 0.30 to 0.87; P=0.014). These data suggest that supplementation with vitamin E may reduce the risk of VTE in women, and those with a prior history or genetic predisposition may particularly benefit.