ArticlePDF Available

Abstract and Figures

Competition from invasive species is an increasing threat to biodiversity. In Southern California, the western gray squirrel (Sciurus griseus, WGS) is facing competition from the fox squirrel (Sciurus niger, FS), an invasive congener. We used spectral methods to analyze 140 consecutive monthly censuses of WGS and FS within a 11.3 ha section of the California Botanic Garden. Variation in the numbers for both species and their synchrony was distributed across long timescales (>15 months). After filtering out annual changes, concurrent mean monthly temperatures from nearby Ontario Airport yielded a spectrum with a large semi‐annual peak and significant spectral power at long timescales (>28 months). The cospectrum between WGS numbers and temperature revealed a significant negative correlation at long timescales (>35 months). Cospectra also revealed significant negative correlations with temperature at a six‐month timescale for both WGS and FS. Simulations from a model of two competing species indicate that the risk of extinction for the weaker competitor increases quickly as environmental noise shifts from short to long timescales. We analyzed the timescales of fluctuations in detrended mean annual temperatures for the time period 1915–2014 from 1218 locations across the continental USA. In the last two decades, significant shifts from short to long timescales have occurred, from <3 years to 4–6 years. Our results indicate that (i) population fluctuations in co‐occurring native and invasive tree squirrels are synchronous, occur over long timescales, and may be driven by fluctuations in environmental conditions; (ii) long timescale population fluctuations increase the risk of extinction in competing species, especially for the inferior competitor; and (iii) the timescales of interannual environmental fluctuations may be increasing from recent historical values. These results have broad implications for the impact of climate change on the maintenance of biodiversity.
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2022;12:e8779. 
|
1 of 23
https://doi.org/10.1002/ece3.8779
www.ecolevol.org
Received:12Novemb er2021 
|
Revised:4M arch202 2 
|
Accepted :15March20 22
DOI: 10.1002/ece3.8779
RESEARCH ARTICLE
Timescale analyses of fluctuations in coexisting populations of
a native and invasive tree squirrel
Robert A. Desharnais1| Alan E. Muchlinski1| Janel L. Ortiz2| Ruby I. Alvidrez1|
Brian P. Gatza1
Thisisanop enaccessarti cleundertheter msoftheCreativeCommonsAttributionL icense,whichpe rmitsuse,dis tribu tionandreprod uctioninanymed ium,
provide dtheoriginalwor kisproperlycited.
©2022TheAuthor s.Ecolog y and EvolutionpublishedbyJohnWiley&S onsLtd.
1Depar tmentofBiologi calSci ences,
Califo rniaStateUniver sityatLosAngeles,
LosAngeles,California,USA
2CenterforExcellenceinMathematics
andScienceTeaching ,CaliforniaSt ate
PolytechnicUniversityatPomona,
Pomona,California,USA
Correspondence
Rober tA.Desharnais,Dep artm entof
Biologi calSci ences,Califo rniaState
UniversityatLosAngeles,5151State
UniversityDr ive,LosA ngeles,California ,
90032 ,USA.
Email:rdeshar@calstatela.edu
Funding information
Nationa lScienceFoundation,Grant/
AwardNumber:DMS-1225529
Abstract
1. Competition from invasive species is an increasing threat to biodiversity. In
Souther n California, t he western gray squi rrel (Sciurus griseus, WGS) is facing
competitionfromthefoxsquirrel(Sciurus niger,FS),aninvasivecongener.
2. We used spect ral methods to analyze 140 consecutive monthly censuse s of
WGSandFSwithina11.3hasectionoftheCaliforniaBotanicGarden.Variation
inthenumbersforbothspeciesandtheirsynchronywasdistributedacrosslong
timescales(>15months).
3. Afterfilteringoutannualchanges,concurrentmeanmonthlytemperaturesfrom
nearby Ontario Airport yielded a spectrumwith a largesemi-annual peak and
significant spectral power at long timescales (>28 months). The cospectrum
between WG S numbers and temp erature revealed a sig nificant negati ve cor-
relation at lon g timescales (>35 months). Cosp ectra also revealed sig nificant
negativecorrelationswithtemperatureatasix-monthtimescalefor bothWGS
andFS.
4. Simulations f rom a model of two compe ting species indic ate that the risk of
extinctionfortheweakercompetitor increasesquickly asenvironmentalnoise
shiftsfromshorttolongtimescales.
5. Weanalyzedthetimescalesoffluctuationsindetrendedmeanannualtempera-
turesforthetimeperiod1915–2014from1218locationsacrossthecontinental
USA. In the last two decades, significant shifts from short tolong timescales
haveoccurred,from<3yearsto4–6years.
6. Ourresults indicate that (i) population fluctuations inco-occurringnativeand
invasivetreesquirrelsaresynchronous,occuroverlongtimescales,andmaybe
drivenby fluctuationsin environmental conditions;(ii)longtimescale popula-
tionfluctuationsincreasetheriskofextinctionincompetingspecies,especially
fortheinferiorcompetitor;and(iii) the timescalesof interannual environmen-
tal fluctuationsmay be increasing from recenthistorical values. These results
2 of 23 
|
   DESHARNAIS E t Al.
1  | INTRODUCTIO N
Competitionfromnon-native,invasivespeciesisanincreasingthreat
tothe biodiversityofnative species in aglobalized world.Invasive
species areof ten considered one of the mostimportant threats to
ecologicalfunctionandatopdriverofspecies extinctions(Dueñas
etal.,2021;Flory&Lockwood,2020).Thepresenceofinvasivespe-
ciescanalteranimalcommunities,triggertrophiccascades,displace
nativespecies,andevenleadtohybridizationswithsimilarorrelated
species ( Doody et al., 2017; Huxel, 1999). The a bility to be mor e
competitiveoverlimitedresourcesisoneofthecharac teristicsthat
enablesinvasivespeciestobesuccessful.Inaddition,theyareoften
characterizedbyhavinglifehistorytraitswithcolonizercharacteris-
ticsasfollows:shortgenerationtimes,highreproductionrates,and
fast grow th rates (Sa kai et al., 20 01). With this comp etitive edge ,
theycaninvadeanddisplacenativespecies.
Anexamplewhere a nativespeciesisthreatened in somehab-
itats by co mpetition fro m an invasive species o ccurs in Southe rn
California, where the westerngray squirrel (Sciurus griseus, WGS,
Figure 1a) is facing increasing competition from the fox squirrel
(Sciurus niger,FS,Figure1b),anon-native,invasivecongener.WGSs
arenative to thewesterncoast of Nor th America withahistoric al
distrib ution exte nding from cent ral Washingto n to Baja Califor nia
(Carraway & Verts, 1994; Escobar-Flores et al., 2011). Populations
ofWGSshave beendeclining in areasof Washing ton, Oregon,and
Califor nia (Cooper, 2013; Cooper & M uchlinski, 2015; Muc hlinski
etal.,2009;Stuart,2012).InWashington,theyarelistedasastate-
threatenedspecies (Linders& Stinson,2007),while inOregonthey
areanOregon ConservationStrategySpecies(OregonDepartment
ofFish &Wildlife, 2016).Whiletherehavebeenonlyafewstudies
regardin g populatio ns of WGSs in Calif ornia, the re is a noticeabl e
trendinthedeclineofthesesquirrelsinareasbelowanelevationof
457m (Cooper,2013;Cooper & Muchlinski,2015).As of now,the
WGSdoesnothavespecialconservationstatusinCalifornia.
The FS has a historical native range inthe eastern and central
United Statesand the southern prairie provinces of Canada, south
ofapproximately 48ºN latitude (Koprowski,1994),where theyare
known to live in forests, woodlands, agricultural landscapes, and
urbanareas(Kleimanetal.,2004).Throughbothnaturalandhuman-
assistedrangeexpansion,theFSisnowcommoninmanyareaswest
of its hist orical range (i Naturalist acce ssed 24 July 2021, htt ps://
www.inaturalist.org/taxa/46020-Sciurus-niger). Fox squirrels
have been int roduced or have ex panded thei r range into Arizo na,
California,Colorado,Idaho, Montana, New Mexico,Oregon,Utah,
havebroadimplicationsfortheimpactofclimatechangeonthemaintenanceof
biodiversity.
KEYWORDS
climatechange,foxsquirrel,invasivespecies,populationtimescales,spectralanalysis,Western
graysquirrel
TAXONOMY CLASSIFICATION
Conservationecology;Globalchangeecology;Invasionecology;Populationecology;
Theorecticalecology
FIGURE 1 Photographsofthetwo
diurnallyactivetreesquirrelsthatare
presentinSouthernCalifornia:(a)the
nativeWesternGraySquirrel,Sciurus
griseusand(b)thenon-nativeFoxSquirrel,
Sciurus niger.TheFoxSquirrelhasreplaced
theWesternGraySquirrelinsome
habitat s,whilethetwospeciescoexist
inotherhabitats.PhotographsbyAlan
Muchlinski
(a) (b)
   
|
3 of 23
DESHA RNAIS E t Al.
Washington,andWyoming(Bradyetal.,2017;Flyger&Gates,1982;
Jordan&Hammerson,1996;Koprowski,1994;Steele&Koprowski,
2001;Wolf&Roest,1971).
Foxsquirrelshavedispersedfromoriginalpointsofintroduction
through naturaldispersalandthrough intentionalmovement ofan-
imalsbyhumans(Frey &Campbell,1997;Geluso,2004;Kinget al.,
2010).SincetheoriginalintroductiontoLosAngelesCount y(Becker
&Kimball,1947),theFS hasexpandeditsrangeata rateof1.60to
3.00 km/year in heavilysuburbanized areasofSouthern California
(Garcia&Muchlinski,2017).AlthoughtheFShasgenerallyremained
restri cted to areas of h uman habit ation, with co ntinued ran ge ex-
pansion th e FS has become sym patric in some isol ated suburban
habitat fragmentsandincertainfoothillareaswiththenativeWGS
(Hoefler&Harris,1990).
FSsmaycompete with native WGSsforresources suchasnest-
ing sites an d food, and the FS ha s replaced the WGS w ithin cer-
tain habitats in Southern California (Cooper & Muchlinski, 2015;
Muchlinskietal., 2009).LosAngelesCounty canbeconsideredan
ideal location forinvasion by theFSgiven the mild Mediterranean
climateandyear-roundfoodsupplyof feredbyexoticplantspecies,
accompaniedbytheabsenceofthenativeWGSthroughoutmuchof
theLosAngelesBasin.TheFSisbothmorphologically,ecologically,
andbehaviorally similartothis native species; thus,these overlaps
inform, function, activity,andpresence provideasituation where
interactionsbetweenthetwospeciescanbestudied(Ortiz,2021).
Manyfactorscaninfluencepopulationpersistence,butonethat
has received comparatively less attention is the timescale of envi-
ronmentalandpopulationfluctuations. In the currentstudy,we in-
vestigatedtheeffectsoftimescalesusingthree approaches.First,
weapplied spectralanalysestoexaminethe timescale distribution
of the varia nce and covari ance of WGS, FS , and weather t ime se-
ries. Se cond, we cond ucted mod el simulati ons to examine t he im-
plicationsofchangesinthetimescaleofenvironmentalfluctuations
on the coexistenceof a native species facing competition from an
invasive spe cies. Third , we used spec tral and wavel et methods to
examine thelong-termchanges in thetimescale distributionofcli-
matedata.
By analog y with the s pectru m of visible lig ht, time ser ies fluc-
tuations t hat occur over lo ng timesca les are refer red to as having
ared spectrum and thoseoccurringovershort timescales as having
ablue spectrum(Lawton,1988). Thesearedistinguishedfromwhite
noiserandomfluctuations,whichhavenoserialautocorrelations.In
general, theoretical analysesfromsingle-species discrete-time un-
structured populationmodelssuggestthattheresponsetocolored
environmental noisedependson the type of population dynamics.
Deterministic models with stable equilibria can exhibit undercom-
pensatory dynamics, where thepopulation approaches equilibrium
monotonically,orovercompensatorydynamics,wheretheapproach
to equilibrium exhibits damped oscillations. Many studies have
shown that reddened environmental spectra increase extinction
risk for undercompensator y populations and blue spectraincrease
extinctionriskforovercompensatorypopulations(Danielian,2016;
García-Carreras&Reuman,2011;Mustinetal.,2013;Petcheyetal.,
1997; Ripa & Heino, 1999; Ripa & Lundberg, 1996; Ruokolainen
et al., 20 09; Schwager et al., 20 06). While some s tudies reached
differ ent conclusions ( Heino, 1998; Heino et al ., 2000), S chwager
et al. (20 06) showed that these contrasting results depend onthe
modeling details and a consideration of the likelihood of cata-
strophic events. In their simulations of three competing species,
RuokolainenandFowler(20 08)foundthatextinctionriskincreased
with reddened environmental noise when species responded in-
dependentlyto the environmentbutdecreasedwhen there was a
strongcorrelationbetweenspecies-specificresponses.Ontheem-
pirica l side, Pimm and Redfe arn (1988) looked at 100 time s eries
frominsects,birds,andmammalsandfoundthatthevarianceofthe
populationfluctuations increased withthewindow of timeusedin
thecalculation,suggestingthatthesepopulationshaveredspectra.
García-Carreras and Reuman (2011)analyzed the dynamics of 147
animalpopulationsandclimatedataforthepopulationlocationsand
found a pos itive correl ation bet ween the biot ic and climati c spec-
tralexponents(ameasureofspectralcolor),withmostspectrabeing
red-shifted. Inchaustiand Halley (2003) directly examined the re-
lationshipbetweenpopulationvariabilityandquasi-extinctiontime
(measuredasthetimerequiredtoobservea90%declineofpopula-
tionabundance)foralargesetofdatacomprisedof554populations
for123 animalspeciesthatwerecensusedfor more than 30 years.
The results showed that the quasi-extinction time was shorter for
populationshavinghighertemporalvariabilityandredderdynamics.
Inalaboratory microcosm experiment, Fey and Wieczynski (2017)
lookedathow the autocorrelationin thermalwarming affectedthe
abilityofanon-nativecladoceran,Daphnia lumholtzi,toestablishit-
selfinthepresence ofa nativecongener,D. pulex. The non-native
specieswasabletoattainsignificantlyhigherpopulationdensitiesin
thetreatmentwithanautocorrelatedwarmingregimerelativetothe
treatmentwithuncorrelatedwarmingbutthe same meantempera-
ture andthe unwarmed control. Although, in all three treatments,
D. lumholtziwentextinctbytheendoftheexperiment,theirresults
demonstratedthatthetimescaleofenvironmentalfluctuationscan
impact t he ability of an inv asive species to est ablish itsel f in the
presenceofanativecompetitor.
Spect ral methods ar e a powerful too l for character izing the
timescales of fluctuations in a time series (Brillinger, 2001). A
univariatetime seriescan be transformedintoapower spectrum,
whichdescribesthedistributionofthevarianceofthetimeseries
at diffe rent freque ncies. Th e sum of the spec tral powe rs across
freque ncies is prop ortiona l to the total va riance of the ti me se-
ries. If the time series is multivariate, in additionto the spectra,
therearealsocross-spectraforeachpairoftimeseriesvariables.
The cross-spect rum is a complex-valu ed function of fre quency.
Therealpartisthecospectrum,whichdescribesthedistributionof
thein-phasecovariancebetweenthetimeseriesatdif ferentfre-
quencies,andtheimaginar ypartisthequadrature spectrum,which
isaphase-shiftedcovariance.The sum of the cospectral powers
across frequencies is proportional tothe total covariance of the
two time series. The cospectrum can also be viewed as the dis-
tributionofthecorrelationcoefficient across frequencies. Since
4 of 23 
|
   DESHARNAIS E t Al.
frequency,f,istheinverseoftheperiod,thespectralandcospec-
tral powe r provide inform ation on the vari ance and correl ation,
respectively,atthetimescale1/f.
Thecolorofapowerspectrumcanbecharacterizedusingaspec-
tral exponent (Gar cía-C arreras & Re uman, 2011; Vasseur & Yodzis,
2004).IfSfisthe powerofthe spectrumatfrequency f,thespec-
tral exponent canbecomputedasthe slopeofaleast-squares lin-
ear regression of log(Sf) versuslog(f). Negativespectralexponents
arecharacteristicofspectradominated by long timescale variation
(red spec tra), and posi tive values a re indicati ve of short ti mescale
variation(bluespectra).Whitenoisespectrawillhaveaspectralex-
ponentofzero.Whenappliedtoenvironmentalandpopulationtime
series,spectralcolor allowsone tobetterassess the riskofecolog-
icalextinction.
Wavelet analyses have been used in ecology to identify
changes in t he spect ral distri butions of po pulation an d environ-
mental fluctuations over time (Cazelles et al., 2008). Whereas
spec tra la na lysesassu me th at thest at is tic alprope rti es ofth et im e
series do not vary with time, wavelet analysis can be applied to
non-s tationar y time serie s. A filteri ng functio n is applied to th e
timeseriessignaltoallowalocalestimationofspectralcharac ter-
isticsofthesignalatapointintime.Thefilteringfunctioncanbe
adjustedto lookatdifferenttimes and frequencies.The result is
atwo-dimensionalpictureof thewaveletpower as afunction of
frequencyandtime.Waveletscanbeused,forexample,toinvesti-
gateth eim pactone cologicalp opula tionsofclimatereg imeshif ts ,
such as the North Atlantic Oscillation(Sheppardet al., 2016), or
changesinthetimescaleofenvironmentalfluctuationsduetocli-
matechange.
Global c limate is undergoi ng rapid change s (Masson-D elmotte
etal.,2021).Whilethethreats tobiodiversity havefocusedmostly
onincreasingtemperatures,itisfeasiblethatdisruptionstoclimate
patternsmayalsoaffectthetimescaleofenvironmentalfluctuations,
and,ifso,thismayhaveecologicalimplicationsforpopulationper-
sistence.Forexample,García-CarrerasandReuman(2011)analyzed
detrendedmeansummertemperaturetimeseriesfromweathersta-
tionsonsixcontinentsandfoundsignificantshiftstoshortertimes-
cales(blueshif ts)inthespectralexponentsfortheyear s1951–1990
comparedwith1911–1950.WangandDillon(2014)analyzedannual
global temperature cyclesfrom1975to2013and foundsignificant
increas es in the autoco rrelation of te mperature v alues (red shif ts)
intropicalandtemperateregions.DiCeccoand Gouhier(2018) ex-
amined air temperature values predicted by 21 global circulation
modelsunderthebusiness-as-usualscenarioandfoundthatspectral
expone nts were pre dicted to shi ft negati vely to longer t imescal es
fromtheyears1870through2090.Forconservationpurposes,it is
importanttogainabetterunderstandingofhowchangesinclimate
maybeassociated with changes in the timescaleofenvironmental
fluct uations and how this m ay impact ext inction risks f or natural
populations.
The objec tives of thepresentstudy were(1)to evaluate, using
spectralmethods,thetimescaleofpopulationfluctuationsinalong
time ser ies (14 0 months) where the WG S and FS have coexisted
together,(2)to determine the extenttowhichthetimescaleofthe
squirrel population fluctuationsare determined by environmental
factor s, (3) to infer, using model si mulations, how cha nges in the
timescaleofenvironmentalfluctuationscouldimpactthetimescale
ofpopulationfluctuations and theriskofextinction in a systemof
two comp eting specie s, and (4) to assess t he extent to whi ch the
timescale of year-to-year environmental fluctuations aroundt heir
trendsischanging,possiblyasaresultofhumanimpactsonclimate,
andto assesstheimplicationsof theseresultsonthepotentialloss
ofnativebiodiversit y.
2  | MATERIALS AND METHODS
2.1  | Collection of census data
Weestablishedthree transect lineswithina11.3 ha sectionofthe
CaliforniaBotanicGarden (CBG) inClaremont,CA,during October
of2009.Wedefinedsamplingpo in tsal on gt ra ns ec tl in es at40 -mi n-
tervalspr ov iding35view point sw ith in thest ud yarea .Twores ear ch -
ersconductedacensusalongthetransectlinesoncepermonthfrom
October2009throughMay2021.Theresearchersspent3minutes
ateach samplingpoint,witheachresearcherresponsible forcount-
inganimalswithinaseparate180-degreearcfromtheviewpoint.We
began each monthlycensus at080 0handendedatapproximately
1030h.Weswitchedthestartingtransectlineforthemonthlycen-
susbetweenLine1andLine3onalternatemonths.
Researchersconductingeachcensuswereconservativeincount-
ingthe numberofsquirrelsobser ved,therebygivinganestimateof
observablepopulationsizeatapointintime.Iftherewasanychance
thatasquirrel observedat a samplingpoint had beencountedata
previous samplingpoint, that individual wasnot countedasanew
observationunlessthe animalwas obviouslydifferentfromthe an-
imal previ ously obser ved (a juvenile in stead of an adul t or a male
insteadofafemale,whengendercouldbeassessed).Numbersmay
vary due to fac tors such as natality, mortality,dispersal,andactiv-
ity level s, which could cha nge due to seasona lity or repro ductive
activity.
The four corners of the 11.3 ha study area were defined by
the follow ing GPS coord inates: SE 34 .110262 & −117.714651, SW
34.110258 & −117.715921, NE 34.115883 & −117.714419, NW
34.115684&−117.715891.CBGisanativeCaliforn iagard en,mean-
ingall plant s are nativetoCalifornia, but notspecifically Southern
California.Atthebeginningofthestudyin20 09,thehabitatwithin
thestudyareaincluded1048treesalongwithnumerousshrubsand
bushes.Ofthetrees,31%ofthespeciesweredeciduous,with69%
beingnon-deciduous.Seventeenpercentofthetotaltreeswereco-
niferous (8 3% not conifero us); 42% of all trees wer e in the genus
Quercus;and 6%ofall treeswereinthe genusPinus. The composi-
tion of the study area did change over the timeperiodof thecen-
suses with the death and removalof several trees. Death of trees
in the stu dy area was due mainl y to a prolonged drought within
SouthernCaliforniafrom2011through2016.
   
|
5 of 23
DESHA RNAIS E t Al.
2.2  | Spectral analyses of census data
We used spectral methods to analyze the monthly census data.
We used fast Fo urier tra nsforms to com pute the raw sp ectra an d
cross-spectrum of the bivariate time series. Computations were
conducted using thespec.pgram algorithm fromRmodified to run
inMATLAB.Notrendswereremovedfromthedataprior toanaly-
sis.Since raw spectraandcross-spectra are usuallyjagged,weap-
pliedtwoiterationsofawindow-averagingsmoothingDaniellkernel
with spansof5and 7 datapoints,modified with clipped windows
attheendpointstopreser vethenumberofdatavalues.Wedivided
thespectralpowersby their sumacrossfrequencies. Thisyieldeda
normalized spectral power plot for each species,which shows the
distributionofvariationacrosstimescales.Weusedtherealpartof
thecross-spectrumtoobtainasmoothedcospectralpowerplotfor
thecovariancebetweenthetwospecies.Wenormalizedthecospec-
trumsothatitssumequalsthecorrelationcoefficient.
Weco nd uc tedc om pu tationstodete ctsign if ic ant( p <.05)peaks
orvalleysintheobservedspectraforthenullhypothesisthatthere
isnofrequency dependencein the variance andcovarianceofthe
timeseriesfluctuations(i.e.,independent“whitenoise”timeseries).
Weshuffledthetemporalorderofthebivariatetimeseriesbygen-
erating a r andom per mutation of th e integers 1 thro ugh n, where
n =140 isthe numberof monthly obser vations.Wethenusedthe
permutation to reorder the bivariate monthly censuses of the two
species.Next,we computedtwosmoothednormalizedspec traand
asmoothednormalizedcospectruminthesamewayasthecorrectly
ordered d ata. We repeate d this random re shufflin g process 20 00
times.Forthespectra,whichmustbenonzero,weusedthe95thper-
centileateachfrequencytodefineone-sidedupper95%confidence
limitsforthenullhypothesisthattherearenotimescalecomponents
tothevariance.Forthecospectra,whichcanbepositiveand/orneg-
ative,we usedthe2.5thand97.5thpercentileat eachfrequencyto
definetwo-sided95%confidencelimitsforthenullhypothesisthat
therearenotimescale components tothecorrelation.Thismethod
ofgeneratingthespectra preserves thetime-independentstatisti-
calpropertiesofthetwotimeseries(means,variances,distribution,
total corr elation, et c.), while var ying only t he time-depend ence of
thebivariatedatavalues.
2.3  | Analyses of weather data
We obtained weather data for Ontario Airport (ONT) from the
Climate Data Online website of NOA A’s National Centers for
EnvironmentalInformation(https://www.ncdc.noaa.gov/cdo-web/).
ONTislocatedabout12kmfromtheCBGandshouldbeanaccurate
representationof the temperature profileofthestudy site. Wefo-
cusedonthereported“averagemonthlytemperature,”whichiscom-
putedbyaveraging the dailymaximum and minimumtemperatures
for each mo nth. We avoided rainf all totals be cause many mont hs
havezeros,whichisaproblemforspectralanalyses,andmuchofthe
vegetationintheCBGisirrigated. Weobtaineda temperaturetime
seriesforthesamemonthsasthecensusdataandappliedthesame
spectralmethodstoobtainasmoothednormalizedpowerspectrum.
Sinceannualseasonalchangesdominatedthetemperaturetime
series, we used the MATLAB “band-stop” function to attenuate
cyclic component s with periodicities inthe range of 9–15months.
This prod uced a filtere d time serie s with annual ef fects remove d.
Wethenproducedasmoothednormalizedspec trumforthefiltered
temperaturetime series. Wealso generated smoothednormalized
cospectra betweenthe filtered temperaturetime series and both
the WGS andFS census time series. Usingthe methods described
above,weobtained95%confidenceinter valsforthesespectraand
cospectra.
2.4  | Model simulations
Weconducted modelsimulationstoobtain a betterunderstanding
of the implications of timescale-specific environmental variation
onthedynamic softwocompetingspecies. Weused the following
discrete-timeversionoftheLotka–Volterracompetitionequation:
where r1 and r2are the intrinsic rates ofpopulationincrease,K1and
K2arethecarryingcapacities,andαandβarethecompetitioncoeffi-
cients for thet wospecies.The variables ε1(t)and ε2(t)representran-
domenvironmentalnoise with ameanofzero and varianceof .5. We
usedthecoefficient sσ1andσ2tosc al ethemagnit udeofthenoise .Fo r
the purposes ofdiscussion, species 1 will represent a native species
andspecies2willrepresentaninvasivespecies.
Weintroducedfrequency-specific biases into thenoise variables
us ing ana lgo r ith mde v ise dby Cha m ber s (19 95) .T h ism etho dge n era tes
amultivariate random time series based on any specifiedtheoretical
spectralmatrixthatisafunctionoffrequency.Thediagonalelements
ofthatmatrixare thetheoreticalspectra(frequencydecompositions
ofthe variances),andthe off-diagonalelementsaretheoreticalcross-
spectra(complexnumbers).Therealpartsofthecross-spectraarethe
theoreticalcospectra(frequencydecompositionsofthecovariances),
andthecomplexpartsarethequadraturespectra(frequency-specific
phase shifts). For the model (1), we used identical spectra that were
linear fu nctions of freque ncy for the two species. High-frequenc y-
biased blue noisewas representedwitha linearspectrumthatvaried
froma power of0.0for afrequenc yoff =0.0toapowerof1.0fora
frequencyof f =0.5 (maximumpossible frequency).Low-frequency-
biased rednoise wasrepresented with a linear spectrum that varied
froma power of1.0forafrequencyoff =0.0toapowerof0.0fora
frequencyoff =0.5.Unbiasedwhitenoisehadaconstantpowerof
0.5 acro ss all freque ncies. A gra dual shif t from blue to whi te to red
noisewasaccomplishedbyvaryingtheslopeofthenoisespectrumin
101incrementswhilekeepingtheaverageofthespectrumconstantat
0.5. This produced aconstanttotal varianceofε1(t)and ε2(t)equal to
0.5 while changing only its frequency-specificity. For the covariance
(1)
N
1(t+1) =N1(t)exp
(
r1
(
K1N1(t)𝛼N2(t)
)
K1+𝜎1𝜀1(t)
),
N2
(t+1) =N
2
(t)exp
(
r
2(
K
2
N
2
(t)𝛽N
1
(t)
)
K
2
+𝜎
2
𝜀
2
(t)
),
6 of 23 
|
   DESHARNAIS E t Al.
betweenthe random variables ε1(t) and ε2(t),w e used a cospec trum
function that was equal toa constant fraction, 0.9,of the spec trum.
Thisresulted in afrequency-specificcorrelationof 0.9acrossall fre-
quencies. A high correlation was usedsince it wasassumedthat the
native and invasive species are ecologically similar and occupy the
samehabitat.Thequa draturesp ec trumwassettozero(nofrequen cy-
specificphaseshifts).Tosummarize,thetimescalesoftherandomen-
vironmentalnoise were variedfromshort (blue)to uniform(white)to
long (red) witha frequenc y-independent correlation in the ef fect sof
thenoiseonthegrowthofthetwospecies.
Inadditiontothespectralfrequencyoftheenvironmentalnoise,
thesimulationprotocolalsoinvolvedvaryingthecompetition coef-
ficient α, which represent sthe intensityofthecompetitive effects
ofthe invasive species on the native species. Weset the value of
the αto.25(weakcompetition),.50(moderatecompetition),and.75
(strong competition).Wekeptthecompetitiveeffectsofthenative
speciesontheinvasivespeciesatavalueofβ =.25whileincreasing
αbecauseweareinterestedinsituationsofconcerntoconserva-
tionist swhere an invasive species outcompetes the nativespecies.
Wechosevaluesfortheintrinsicrateofincreaser1 = r2 =.3t hatare
appropriatefortreesquirrelsofthegenusSciurus(AppendixA).The
remainingmodel parameters had constant values of K1 = K2 = 50,
andσ1 = σ2 =0.75.Fortheassessmentofextinctionrisk,whenthe
populationdensityofaspeciesfellbelow5%ofitscarryingcapacity,
weset it to zero. For simulations not involving extinctionrisk, the
th res h old wa sse tto ze ro. Weran eac hs i mul at i onf or 10 0 tim est eps .
Forevery set ofparametervalues andenvironmentalnoise color,
weconducted2000replicatesimulations.Forblue,white,andreden-
vironmentalnoise,wecomputedsmoothednormalizedpowerspectra
andcospectrum ofthespeciesandaveraged theseoverreplicatesto
see how the timescale for population fluctuations is affected by dif-
ferent col ors of noise. To investi gate gradua l shifts i n the effec ts of
frequency-biasedenvironmental noiseon the population spectraand
probabilityofextinction,wechoseaslopefortheenvironmentalspec-
tra, var ying the s lopes in 101 gradu al incremen ts, beginn ing at blue
noise(slope=2)andendingatrednoise(slope=−2).Foreachchoice
oftheenvironmentalspectra,wesimulatedthepopulationtrajectories
ofthetwospecies,estimatedtheunsmoothednormalizedpopulation
spect ra, compute d the two sp ectral ex ponents , and averaged t hem.
In the sam e way,we co mputed average sp ectral exp onents for the
environmental noise realizations. We repeated these computations
for each of th e 2000 re plicate simu lations and co mputed an overa ll
average forthe spectral exponents ofthe populations and noise. To
investig ate the effect s of frequency-biase d environmenta l noise on
ec ol ogi c al per sis ten ce,th enu mbe ro finsta nce sw h er eea chp opu la tio n
wentextinctwasdividedby200 0toyieldestimatesoftheextinction
risksforboththenativeandtheinvasivespecies.
2.5  | Analyses of climate data
We obtained climate data from the U.S. Historical Climatology
Network (USHCN), which is freely available online (https://ww w.
ncei.noaa.gov/products/land-based-station/us-historical-clima
tology-net work).We usedversion 2.5ofthemonthlytemperature
records ,w hich contai ns long-term da ta from 1218 stat ions across
thecontinentalUnitedStates.Menne etal.(20 09)describethe ad-
justments used to removebiases duetofactorssuch as relocation
of recording stations, changes in instrumentation, and urbaniza-
tion.USHCNmonthly average temperatureswerecomputedasthe
average overthe month of the dailymaximum and daily minimum
temper atures. The mea n annual temper ature for each yea r is the
average ofthe12meanmonthly temperatures.Weusedthemean
temperatures for the 100-yearrange from 1915through 2014,the
latterbeingthelatestyearavailable.
Welookedat changesinthedistribution of spectral exponents
forthefluctuationsinthemeanannualtemperatures.First,webroke
the100-yearrangeintofour25-yearspans.Next,wedetrendedthe
temperaturetimeseriesforeach25-yearspanbyfittingaquadratic
polynomialusing least-squaresregressionand computedthestan-
dardized re siduals. Then , we computed an unsm oothed spect rum
foreachresidualtimeseriesandestimatedthespectralexponentas
theslopeofalinearregressionoflog(spectralpower)versuslog(fre-
quency).Histogramswerecreatedwiththe1218spectralexponents
(oneperstation)foreachofthe25-yeartimespans.
Althou gh it would be temptin g to analyze the cha nges in the
spect ral exponent s using a repeate d measures ANOVA, w ith sta-
tions as thesubjects, spatial autocorrelations existamong stations
thatareinthesamegeographicalproximity,inflatingtheTypeIerror
rates. A so lution to this pro blem was sugges ted by Cliffor d et al.
(1989)and modified by Dutilleul (1993), which yields an “effective
samplesize”basedonthespatialstruc tureofthedata.Itisappropri-
ateforpaired observationsdistributed in space. Weused the soft-
warepackageSAM(SpatialAnalysisinMacroecology;Rangeletal.,
2006)tocomputeeffectivesamplesizesforthefollowingthreeset s
ofpaireddata:[1915–1939]vs.[1940–1964],[1940–1964]vs.[1965–
1989], and [1965–1989] vs. [1990–2014]. We conducted paired
samplet-testsforthespectralexponents from thesethreepaired
datasetsandadjustedthestandarderrorsfortheteststatisticsand
degrees of freedom for thestatistical significancevalues usingthe
effective samplesizes. Wethen appliedaBonferronicorrection to
accountforthemultiplecomparisons.
Wealsoconductedameanfieldwaveletanalysisonthe100-year
timeseriesof meanannual temperatures.Foreach station, we de-
trendedthetimeseriesusingaquadraticpolynomialandcomputed
thestandardizedresiduals.Next, weusedtheMATLABcontinuous
wavelet tr ansform fun ction “cwt ” to compute wavel et powers for
the resid ual time serie s using the analy tic Morse f ilter (Olhede &
Walden, 20 02) with the d efault valu es of 3 for the sy mmetry pa -
rameter a nd 60 for the time -bandwidt h product. L astly, we aver-
agedthewaveletpowersacrossallstationsforeachtime–frequency
combination. Wechose theMorse wavelet because it is useful for
analyz ing signals with tim e-varyin g amplitude and fr equency. We
investigatedvaryingthesymmetr yandtime-bandwidthproductpa-
ra met er s ,b u tt her esu lt s we ren ot muc hd iffe ren tf rom wh atw as ob-
tainedusingthedefaultvalues.WealsousedaMorletwaveletwhich
   
|
7 of 23
DESHA RNAIS E t Al.
hasequalvarianceintimeandfrequency,but,again,theresultswere
liketheMorse waveletwith defaultparameters. We experimented
with cubic and quarticpolynomials for detrending, but these gave
mean fie ld wavelets t hat were much like t he one obtain ed with a
quadraticfunction.Ourmeanfieldwaveletdiffersfromthe“wavelet
meanfield”definedbySheppardetal.(2016),whichwasdesignedas
anaverage measureofthetime-andtimescalesynchronyfortime
seriesfromdifferentlocations.
To identify wavelet powers that were statistically significant,
weused the surrogate timeseries approach (Schreiber & Schmitz,
2000).Wetookara ndompermut ationofthemeanannualtem pera-
turetimeseriesforallstationsintandemandcomputedameanfield
wavelet as described above.Werepeated thisprocess 2000 times
andcomputedtheupper95thpercentile ofthewaveletpowersfor
eachcombinatio noftimeandf req uen cy.Thisp rovidedasetofcriti-
calvaluesforidentifying“hotspots”onthemeanfieldwaveletunder
thenullhypothesisofnotimescaledependenceinthefluctuations
ofthemeanannualtemperatureresidualsaroundthetrends.
3  |RESULTS
3.1  | Census data
Figure2showsthetimeseriesofmonthlycensusvaluesfortheWGS
andtheFS. The large increase in census numbers during2013and
2014corresponded with theproduction of a large acorn crop dur-
ingthefallof2013(mean±SEof608.3± 120.1 g/m 2ina1m2 plot
under each of six treesused toassess acornproduc tion, Appendix
B).Meanacornproductionmeasuredin thesame1m2plotsduring
otheryearsrangedfromalowof5.7± 2.7 g/m 2in2014toahighof
67. 5 +35.5g/m2in2012. Availabilityofacorns appearstohave a
majorimpactonthenumberofWGSsandFSsintheCBG.
The fluc tuations in census n umbers show signs of s ynchrony.
TheestimatedPearson correlation coefficientin animalnumbers is
R =.581whichisst at istica ll ysign if ic an tfromzero(p =5. 20× 10−1 4).
The total variation in the numbers for each species andtheir syn-
chrony see ms to be distribute d across differe nt timescales . Long
intervals can be seenwhere the numbers of both species areele-
vatedanddepressed(Figure2).Superimposedonthislongtimescale
variationarerandomshorttimescalefluctuations.Wequantifythis
timescalecomponentofvariationwiththe spectral analyses in the
nextsection.
3.2  | Population spectra and cospectrum
Figure 3a ,b show the smoot hed normalized sp ectra for the WG S
andtheFS. ForboththeWGS andtheFS,thespectra suggestthat
thelargestvariationinnumbersoccursatfrequenciesbelow0.0833
whichcorrespondstoatimescaleofmorethan12months.TheWGS
spect rum crosse st he upper sig nificance t hreshold a t timescal e of
around15months.TheFSspectrumcrossestheuppersignificance
thresholdattimescale ofaround 18 months.The spectrum forthe
FSshowsasmallpeakat6months,butthatpeakisnot statistically
significant. Since the total variation remains constant across fre-
quenciesfortheconfidencebandsfromtherandomlyordereddata,
thelargervariationinWGSandFSatlongtimescalesiscompensated
forbysmallervariationattimescalesofabout4monthsorless.
The smoot hed normalized cos pectrum (Figu re 3c) shows how
the totalcorrelation in populationnumbers between the two spe-
cies is distributed across timescales. Covariance between WGS
andFSissignificantlybiasedtowardlongtimescales,withasmaller
nonsignificant peak at a timescale of around 6 months. The co-
spect rum crosse st he upper sig nificance t hreshold a t timescal e of
about18months.Thetot alcorrelationbetweenthenumbersofthe
WGSandFSisR =.581.Usingtheunsmoothedcospec trum,wecan
partition this totalcorrelation by timescale intervals:R1 =.409 for
>12months,R2 =.162fo r 4–12m o nth s ,a n dR3 =.010f o r≤ 4mon ths ,
where R = R1 + R2 + R3.Thus,70%ofthetotalcorrelationoccursat
timesc ales exceedi ng one year. We can infer tha t population s yn-
chronyforthesetwospeciesoccursmostlyatlongtimescales.
FIGURE 2 MonthlytimeseriesfornumbersofWGSandFSatourstudysitefromOctober2009throughMay2021
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
0
10
20
30
40
50
WGS
FS
Number of Animals
Month
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
8 of 23 
|
   DESHARNAIS E t Al.
3.3  | Spectral analyses of weather data
Figure 4ashowsthetimeseries ofmeanmonthly temperaturesfor
OntarioAirport(ONT), whichis 12 km fromthestudy site.Asone
wouldexpect,thereisastrongseasonalcomponenttothesetem-
peratures.Figure 4bshows thesmoothednormalizedspectrumfor
the mean m onthly temper atures, which is d ominated by a stro ng
peak for theannual cycle. Since thesquirrelspectra show no indi-
cation of an a nnual cycle (F igure 3), we appli ed a band-s top filter
to remove the a nnual cycle and plo tted the resulti ng time series
(Figure4a,dashedline).Thesmoothednormalizedspectrumforthe
filteredmeanmonthlytemperaturesappearsinFigure4c.Thereisa
peakatlow frequencies whichcrossestheupperthresholdforsta-
tisticalsignificance at a timescale of approximately28 months and
reachesaminimumatatimescaleof12months.Thereisalsoalarge
spectralpeakat6months.
Thereisanegativecorrelationbetweenthefilteredtemperature
timeseries and the squirrelcensus data.For the WGS, the correla-
tionis statisticallysignificant(R = −.194 , p =.022)and,asindicated
bythe smoothed normalized cospectrum(Figure 5a),isdistributed
atlongtimescales(>35months)andatatimescaleof6months.The
correlationbetweenthefilteredtemperaturetimeseriesandtheFS
census dataisalso negative, but not statistically significant overall
(R =−.146,p =.085) .Thec ospe ct rumb et we enth efilteredtemper a-
ture time series andFScensus data shows a large significant peak
ata 6-month timescale(Figure 5b).These resultssuggest that the
distributionofvariationinthesquirrels’populationfluctuationsmay
bedriven,inpart,byfluctuationsinweatherandclimateoutsideof
theannualseasonalcycle.
3.4  | Simulation results
Our analyses of thesimulations of the Lotka–Volterra competition
model(1)aresummarizedinFigure6.Ourfocuswasontheef fects
ofthetimescaleofenvironmentalfluctuationsonthespectralprop-
erties of population numbers and the probability of extinction for
thenativespecies.
Figure 6a shows the protocolweusedforthe randomenviron-
mentalnoise.Weassumedalinearspectrumwhichvariedfromshort
timescale fluctuations (slope = 2, blu e noise), to fluc tuations wit h
noautocorrelation (slope=0,whitenoise),tolongtimescalefluc-
tuations(slope= −2,rednoise).Therandomtimeseriesgenerated
by these sp ectra have t he same mea n of zero and same v ariance,
thelatterbeingproportionaltothetotal areaunder the spectrum;
theydifferonlyintheirtimescaleproperties.Forthesimulationsin-
volvingthecomputationofspectr alexponent sandextinctionprob-
abilitie s, we varied the sp ectral slop e of the environmen tal noise
in101small increments from+2to −2, as indic ated by the curved
arrowinFigure6a.
Figure 6b s hows the popu lation spec trum and cos pectru m for
the simulations involving blue noise, white noise, and red noise
(Figure 6a).Sincetheparametervaluesforthetwocompeting spe-
cies are id entical, an d the prope rties of the ir environme ntal noise
inputsarethesame,themeancurvesshownapplytobothpopula-
tions. As described in section2.4, we used a cospectrumfunction
that was equal to a constant fraction, 0.9,of thespectrum, so, for
eachcolorofenvironmentalnoise,thepopulationspectrumandco-
spect rum are simil ar.For b lue environm ental noise , the smooth ed
normalizedspectrumandcospectrumhavelowpoweratlongtimes-
caleswhichincreasesandlevelsoffatfrequenciesexceeding.1.This
reflects the factthat, for theintrinsic ratesofincrease usedinthe
FIGURE 3 Smoothednormalizedspectrafor(a)theWGSand(b)
theFSandthe(c)smoothednormalizedcospectrumbetweenthe
twospecies.Dashedlinesare95%significancethresholdsforthe
nullhypothesisofnotimescaledependenceoftheWGS-FSpaired
observations
120 12 64
32
Timescale (months)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Normalized spectral power
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Normalized spectral power
0.0 0.1 0.2 0.30.4 0.5
Frequency (cycles/month)
-0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Normalized cospectral power
(a)
(b)
(c)
   
|
9 of 23
DESHA RNAIS E t Al.
simulations(r1 = r2 =.3),populationgrowth is undercompensating,
thatis,per turbationsfromastableequilibriumdonotshowdamped
oscillationsinthedeterministicversionofthemodel.Previouswork
forsingle-speciespopulationmodelshasshownthatundercompen-
sating populations are sensitive to long timescale environmental
noise,whereasovercompensatingpopulationsaresensitivetoshort
timescalenoise(e.g.,Danielian,2016).Ineffect,theslowerresponse
times of populations with small intrinsic rates of increase filter
out” the short timescale components of the environment alnoise
(Desharnaisetal.,2018). Thisphenomenoncanalsobeseenin the
smoothednormalizedspectrumandcospectrumforthepopulations
subjectedtowhiteenvironmentalnoise.Thepopulationfluctuations
are le sssensitivetotheshortertimesc al ecomponent softh ef laten-
vironmentalspectrumproducingapopulationspectrumandcospec-
trumthatisbiasedtowardlongtimescales(Figure6b).Lastly,when
thepopulationsaresubjectedtoenvironmentalnoisebiasedtoward
long timescales,the longertimescale componentsofthe noiseare
enhanced and the shorter timescale components are suppressed,
producingasmoothednormalizedspec trumandcospectrumthatis
morestronglybiasedtowardlongtimescalesthantheenvironmental
noise(Figure6b).
Figure6cshowshowthespectralexponentsfortherealizations
of the popu lation fluc tuations an d environment al noise chan ge as
theenvironmental noise isshiftedgraduallyfromblue,towhite,to
red(arrowinFigure6a).Positivespectralexponentsindicatespectra
whicharebiasedtowardshorttimescales,andnegativespectralex-
po ne ntsare in dic ati ve of lon gt ime sca lef lu c tua ti ons .B oth thepo pu-
lationandenvironmentalspectralexponentsdecreasemonotonic ally
as the spectra for theenvironmental noise redden. However, the
populationspectralexponentstartsoutnegativewhiletheenviron-
mentalspectrumisstillstronglyblue.Asmentionedabove,withthe
modelparametervaluesusedinoursimulations,thedynamicsofthe
twocompetingspeciesact sasa“reddeningfilter,”producingpopu-
lationspectrathataremorebiasedtowardlongtimescales.
Of interest for conservation purposes is how the timescale
of the fluctuations in the environmental noise influences the
FIGURE 4 (a)MeanmonthlytemperaturefortheOntarioAirport(ONT )timeseriesfromOctober2009throughMay2021.Thesolidline
isfortherecordedtemperaturesandthedashedlineisthetimeseriesobtainedafterfilteringouttheannualcycle.Smoothednormalized
spectraareshownforthe(b)unfilteredand(c)filteredONTtemperaturetimeseries.Dashedlinesin(b)and(c)are95%significance
thresholdsforthenullhypothesisofnotimescaledependenceintheorderingofthefilteredandunfiltereddata
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
10
15
20
25
30
Mean monthly temperature (°C)
Unfiltered
Filtered
Month
120126 43 2
Timescale (months)
0 0.1 0.2 0.3 0.4 0.5
Frequency (cycles/month)
0.00
0.03
0.06
0.09
0.12
0.15
Normalized spectral power
12012643 2
TImescale (months)
00.1 0.20.3 0.
40
.5
Frequency (cycles/month)
0.00
0.02
0.04
0.06
0.08
Normalized spectral power
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(a)
(b) (c)
10 of 23 
|
   DESHARNAIS E t Al.
persistenceofthen ativesp ecies.Fig ure6disbas edonsim ulations
whereanex tinctionthresholdhasbeensetarbitrarilyto5%ofthe
carr yingc ap acit y.Allothermodelp ar amete rvaluesareidentic alto
theonesusedforthesimulationsinFigure6b,c.Whenthecompe-
titioncoefficient sareequal(α = β =. 25),thee xtinctionpro bability
forbothspeciesremainssmalluntilthecoloroftheenvironmental
noisebeginstoredden(Figure6d).For thereddestenvironmental
spectrum,bothspecieshaveabouta55%probabilityofextinc tion.
If the non-native sp ecies has a comp etitive adv antage, the i nflu-
enceofreddenedenvironmentalspectraonthepersistenceofthe
native spe cies becom es more pron ounced. Fi gure 6d shows h ow
increasingthe competition coefficient for the invading species to
α =.50 and α =.75increasesthelikelihoodthatthenativespe-
cieswill be lost,whileslightlylowering the extinctionrisk for the
invasive spe cies. For, α = .75, a reddening of the environmental
spectrumquicklyelevatestheprobabilityofextinctionforthena-
tivespeciesfromavalueofabout3%forthebluestenvironmental
noise to avalue which asymptotesat about 94% for the reddest
environm ental noise (Fig ure 6d). This sugge sts the possi bility of
asynergybetween theeffects ofreddening environmentalnoise
andcompetitionfrominvasivespeciesfortheriskofextinctionfor
nativepopulations.
3.5  | Climate data
Weknowthathumanimpactontheclimatesystemhasresultedinan
increasingtrendofwarmingtemperatures(Masson-Delmotteetal.,
2021).Giventheobservationsandresults oftheprevious sections,
animport antrelated question is whetherthere havebeen changes
inthetimescaleofrandomenvironmentalfluctuationsaroundthese
trends.Ouranalysesmakeuseofa100 -yearrecord(1915–2014)of
mean annu al temperatures f rom 1218 weather statio ns obtained
fromtheU.S.HistoricalClimatology Network(Menne etal.,2009).
Figure7showsthelocationsoftheweatherstations.Althoughnot
uniformintheirdistribution,theycovereverystateandregioninthe
continentalUnitedStates.
Toinvestigateevidenceforchangeinthecolorofthemeanan-
nualtemperaturespectraovertime,wedividedthe100-yearrecord
from each station into four 25-year inter vals and computed the
spectralexponentsforeachtimeinterval(seesection2.5).Figure8
shows the histograms of spectral exponentsforthe1218stations.
Thedashedlinerepresentsthezerovalue(whitenoiseenvironmen-
talfluctuations); spectral exponentsto the leftindicate arednoise
bias and those to the right represent a blue noise bias. The arrow
atthe topof each histogramshowsthemean.Themeanvaluesare
0.500,0.313,0.432,and−0.160fortherangeof years1915–1939,
1940–1964, 1965–1989, and 1990–2015, respectively. It appears
thattherewasashiftfrom1990to2014fromblue-shiftedspectra
tored-shifted spectra. The significancevalues forthechangesbe-
tweenadjacenttimeintervalsarep =.046for1915–1939vs.1940–
1964 ,p =.654for1940–1964vs.1965–1989,andp =1. 676 × 10 −10
for1965–1989vs.1990–2015.
The spec tral anal yses conduc ted for Figu re 8 assume that t he
residualdeviationsfromthefittedquadratictrendsforeach25-year
time period are stationary,that is,the probability distribution and
timescaleproper tiesoftheresidualtimeseriesareinvariant .Amean
field wave let analysis w hich relaxe s the stati onarity as sumption is
presentedin Figure9for the entire 100 -yeartime period. There-
gionsofstatisticallysignificantwaveletpowerareoutlinedinblack.
Theyindicate that thetimescaleofthe fluc tuationsin mean annual
temperature, whenaveragedoverall weather stations, has shifted
tolongtimescalevaluesofapproximately3.5–7yearsfortheperiod
after1980,againsuggestingthattherehasbeenarecentreddening
ofthe timescale forrandomfluctuations inmean annual tempera-
turesaroundtheirchangingtrends.
FIGURE 5 Smoothednormalizedcospectrabet weenthefilteredOntarioAirporttemperaturetimeseriesandthecensusnumbersfor(a)
theWGSand(b)theFS.Dashedlinesin(a)and(b)are95%significancethresholdsforthenullhypothesisofnotimescaledependenceinthe
orderingofthetemperature,WGS,andFSdatatriplets
120 12 643 2
Timescale (months)
0 0.1 0.2 0.3 0.4 0.5
Frequency (cycles/month)
-0.04
-0.03
-0.02
-0.01
-0.01
0.00
0.01
Normalized cospectral power
120 12 64
32
Timescale (months)
00.1 0.20.3 0.
40
.5
Frequency (cycles/month)
-0.04
-0.03
-0.02
-0.01
-0.01
0.00
0.01
Normalized cospectral power
(a) (b)
   
|
11 of 23
DESHA RNAIS E t Al.
4  |DISCUSSION
Ourcospectralcorrelationanalysisdoesnotimplyadirectcausal
linkbet wee npopulationnu mbersofthetwospe cie softreesquir-
relsandambienttemperature.Therearemanyenvironmentaland
biotic fa ctors which inte ract to impac t the dynamics of n atural
populations. Although we used temperature asaproxy forenvi-
ronmentalfluctuations,thismetricisoftenassociatedwithother
environmentalvariables.Forexample,ZhaoandKhalil(1993)have
shownthatmeanmonthlytemperatureandtotalmonthlyprecipi-
tation are negatively correlated insummer months over most of
thecontiguous UnitedStates.Excellent timeseriesontempera-
tures are av ailable and the d ata lend thems elves to analysis by
spectralmethods.Timeseriesoftotalmonthlyprecipitationdata,
whileavailableforthesouthwestUniteStates,arenotwell-suited
foranalysisusingspectralmethods,astheycontainmanyconsec-
utivevaluesofzero.
Our spectralanalyses of the WGS and FS census datasuggest
that most ofthe variation in animal numbers occurson timescales
thatexceed15months.InthecaseoftheFS,thereisalsoevidence
forvariationon asix-monthtimescale.Thistimesc ale-specificvari-
ationmaybeduetochangesinresourceabundance,thetimingand
frequencyofreproduction,andreproductiveoutput.
Changesinpopulationnumbersonalongtimescalecouldbedue
tova ria tio ni nth esu ppl yoffo odr eso urc eso nm ult i-ye a r,h igh lyv ari -
able time scales. Fo r example, a corns provide a v aluable sou rce of
foodfortreesquirrels(Steele&Yi,2020),butaverylarge(>600g/
m2)mastcropwas onlyproducedinoneof the nine yearsin which
wemeasuredrelativeacornproduction(AppendixB).Weobserved
the prod uction of a ver y large mas t crop within o ur study ar ea in
the fall of 2013 (TableA2). Census counts for both species began
to increas e in the late sprin g and summer of 2013 an d continued
toincreasethrough thespringof2014(Figure2).Aprecipitous de-
creaseinabundancewasobservedthroughoutthesummerof2014
FIGURE 6 (a)Linearenvironmentalspectrausedforthemodelsimulations.Eachspectrumhasthesamevariance,butadifferent
distributionofvariationovertimescales.Thearrowindicateshowthespectraweregraduallychangedfrombluenoise,towhitenoise,to
rednoiseforthesimulationsinpanels(c)and(d).(b)Meansmoothednormalizedspectraandcospectraforthepopulationswiththeblue,
red,andwhiteenvironmentalnoiseshowninpanel(a).Bothcompetingpopulationshadthesameparametervalues,sotheirspectrawere
identical.(c)Meanspectralexponentsforthepopulations(solidline)andenvironmentalnoise(dashedline)withenvironmentalnoisecolor
variedcontinuouslyfrombluetowhitetoredasshowninpanel(a).Morenegativeslopesindicatelongertimescalefluctuationsinpopulation
numbers.(d)Probabilitiesofextinctionforthenativespecies(solidlines)andinvadingspecies(dashedlines)for2000simulationsofthe
modelwithenvironmentalnoisecolorvariedcontinuouslyfrombluetowhitetoredasshowninpanel(a).Largervaluesofαrepresent
higherintensitiesofcompetitionfromtheinvadingspecies
(a)
(c)
(b)
(d)
12 of 23 
|
   DESHARNAIS E t Al.
which mayhavebeenbroughtaboutbydispersalofanimalsout of
our studysite. A ver y small acorn crop (<6 g/m2) wasproducedin
thefallof2014.Amodest-sizedcropofacorns(~35g/m2)produced
inthefallof2015wasfollowedbyanincreasein censuscountsfor
both spe cies throug h the summer of 2016. A corn produ ction was
verylowinthefallof2016,2017,2018,and2019,andthislongtime
FIGURE 7 Geographiclocationsof
the1218weatherstationsfromwhich
a100-yearrecord(1915–2014)ofmean
annualtemperatureswereobtained.Data
arefromtheU.S.HistoricalClimatology
Network
FIGURE 8 Spectralexponentsforthe1218timeseriesofmeanannualtemperatures.Each100-yearrecordwasbrokenintofour25-
yearinter vals(a–d).Thearrowsindicatethelocationsofthemeanvalues.Thedashedlinesrepresentaspectralexponentofzero.Positive
spectralexponentsindicatespectrabiasedtowardsshorttimescales(blue-tingednoise)andnegativevaluesindicateabiastowardslong
timescales(red-tingednoise)
-2 02
0
50
100
150
200
250
Frequency
-2
02
0
50
100
150
200
250
-2 02
Spectral exponents
0
50
100
150
200
250
Frequency
-2
02
Spectral exponents
0
50
100
150
200
250
1915-1939 1940-1964
1965-1989 1990-2014
(a)
(c)
(b)
(d)
   
|
13 of 23
DESHA RNAIS E t Al.
periodwithoutamodest tolarge-sizedacorncropcorrespondedto
relativelylowcensuscountsforbothspecies(≤20animals).Amod-
est acorn cropproducedinthefall of 2020 againcorrespondedto
anincreaseincensuscountsforbothspeciesduringthesummerand
fallof2020.Acornsarepresentinthe treesfor aprolongedperiod
before they appear in significant quantities on the ground, so this
foodresource isalsoavailabletotheanimalspriortothe fall ofthe
yearwhichmayaccount forthehighcensuscount sinthesummers
priortoouracorncropsamplingperiods.
Acornproductionbycoastalliveoaks(Quercus agrifolia),acom-
montreespecieswithinourstudyarea,isinfluencedbytheamount
of rain in th e one or two years p rior to the year in w hich acorns
areproduced (Koeniget al., 1996).MannandGleick(2015),aswell
as Diffe nbaugh et al. (2015 ), documented t hat an increase i n am-
bienttemperatures has beenaccompaniedby adecreasein rainfall
within C alifornia. A pl ot of temperatu re and precipit ation anoma-
lies over the period of 1895 through November 2014showed the
3-year period ending in 2014 was by far the hot test anddrieston
recordinCalifornia(Mann&Gleick,2015).Diffenbaughetal.(2015)
documentedthatalthoughtherehasnotbeenalargechangeinthe
probabilityofeithernegative ormoderatelynegativeprecipitation
anomalies in recent decades, the occurrence of drought years has
beengreaterinthetwodecadespriortotheirstudythaninthepre-
cedingcentur y.Inaddition,theprobabilitythatprecipitationdeficits
co-oc cur with warm co nditions an d the probabil ity that pre cipita-
tion defi cits prod uce drought have b oth increase d. Climate mo del
experiments by Diffenbaugh et al. (2015) revealed an increased
probability thatdry precipitation years are alsowarm years. Many
regions ofCaliforniawereinmoderate,severe,orextremedrought
conditionsformuchof2015through2021,exceptformostof2019
(NCEI website,accessed2Februar y 2022). So,the droughtislong
termandpersistedformuchofourstudy.
Theyearlyrecordofobservationsofjuvenileandsubadultindi-
viduals for bothspecies shown in Appendix C illustrates the effect
thatlong-termvariabilit yoffoodresources may haveonreproduc-
tionbythe WGSandtheFSoverlongtimescales.As statedabove,
productionofacornsvaried widelybetweenyearsandtheproduc-
tionofotherfoodsupplyitemscouldcertainlyvarywidelybetween
years. Vari ability in the av ailability of fo od items each year a long
withchangesin the numberofjuvenile and subadult animalscould
leadtopopulationvariabilityonlongtimescales,asobservedinthe
spectralanalysisofourdat a(Figure3).
The availa bility of food in ou r study site also va ried on a six-
month timescale.Itemssuchascatkinsfromoak and walnuttrees,
flowers on Fremontodendronspp.andArctostaphylosspp., andmale
cones on pin e trees bec ame availab le in the sprin g. Items such as
acorns, walnuts, and fruit bodies from the C alifornia Bay Laurel
(Umbellularia californica)andCaliforniaBuckeye( Aesculus californica)
becameavailable in thefall ofthe year (Or tiz & Muchlinski, 2015).
The timin gs (spring and fa ll) of the first av ailability of t hese food
itemsonayearlybasisfitwellwiththepotentialtimingofreproduc-
tiononayearlybasisbyboththeFSandWGS.
FIGURE 9 Meanfieldwaveletfor100-yeartimeseriesofmeanannualtemperatures.Thewaveletisavisualizationofhowthe
timescaledistributionofvariationinmeanannualtemperatureshasvariedfrom1915to2014.Each100-yeartimeserieswasquadratically
detrendedandaMorsewaveletwasobtainedusingtheMATLABdefaultvaluesof3and60forthesymmetr yandtime-bandwidthproduct,
respectively.Thewaveletsforthe1218stationswerethenaveraged.Thewhitedashedcurveistheconeofinfluencewhereedgeef fect s
canaffectthewaveletpower.Thedarkcurvesindicateareaswherethewaveletpowerisstatisticallysignificantatthe5%level,basedon
theupper95thpercentilesof2000surrogatedatasetswherethetimeseriesforallstationswerereorderedrandomlyintandem.Achange
tolongertimescalefluctuationsisindicatedbythesignificantshiftinwaveletpowertolowerfrequencies
20
10
6
5
4
3
2.5
Timescale (yrs)
1915 1939 1964 1989 2014
Year
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
Frequency (cycles/year)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Wavelet power
14 of 23 
|
   DESHARNAIS E t Al.
Two distinct periods of potential reproduction for the FS in
Southern California were documented by King’s (2004) study of
135Lsubmittedtothreewildliferehabilitationcentersduring20 02.
Approximately,60%oflitterproductiondocumentedbyKing(2004)
wasassociatedwiththemonthsofFebruary,March,andApril,with
the largest number of littersborn inMarch.A second pulse of lit-
ter production occurred during the months of August, September,
and October with thelargestnumber of litters borninSeptember,
sixmonths after the largest pulseoflittersborn duringthe spring.
Although production of litters by the FS on a semi-annual basis is
possible,thusleadingtoanincreaseinobservedpopulationsizeon
a semi-annual basis,t henumber of juvenile/subadult animals ob-
servedduringcensuscount sinthisstudyvariedwidelyamongyears
(FigureA1).
TheWGSappearstoe xhibitayearlypatternofr eproduc tiondif-
ferent th an the FS. Mos t research d ocument s breeding ac tivit y in
latefallandearlywinter monthswithbirth ofmostlittersin spring
and earl y summer months (C arraway & Verts , 1994; K ing, 2004).
A few pregna nt females wer e observe d in June, July, Augu st, and
Septemb er (Fletcher, 1963), and lactating females have been o b-
servedas late asOctoberinCalifornian(Swift, 1977). However,no
definite records of multiple pregnancies not attributable to intra-
uterine l oss of the first lit ter are availabl e (Bailey, 1936; Fletcher,
1963;Jameson& Peeters,1988; Swift,1977).The difference inre-
productivepatternsbetweentheFSandtheWGScouldbringabout
the pres ence of a 6-mon th cycle in abun dance of the FS and t he
absence of a si milar 6-month cycl e in the WGS. Th e differe nce in
reprodu ctive patte rns could also give a co mpetitive adv antage to
the FS in certain habitats through higher natalityin yearsof good
resourceproduction.
Muchlins ki et al. (2012) produce d a Habitat Suita bility Model
(HSM)fortheWGSandtheFSwhichallowedshort-termandlonger-
term coex istence habi tats to be id entified usi ng a linear com bina-
tion of three habitat variables: percent canopy cover, percent of
deciduoustrees,andaverageheightofground cover.Habitatswith
alowpercentageofcanopy cover,a high percentage of deciduous
trees,andalowheightofgroundcoverwereclassifiedasshort-term
coexiste nce habitat s. Location s with a high perce ntage of canopy
coverage, alowpercentage ofdeciduoustrees,andalow height of
groundcoverwereclassifiedaslonger-termcoexistencesites.(Sites
withahighheightofgroundcover,ahighpercentagecanopycover,
andalowpercentagedeciduous treeswere identifiedas“exclusion
habitat s” where on ly the WGS is foun d, but the FS e xists in ad ja-
cent habit ats.) For example, Muchlinski etal. (20 09) reported that
theFSreplaced the WGS in four yearsat a short-termcoexistence
habitat, California State Polytechnic University, Pomona, which
contain ed manicured an d more natural a reas on the cam pus with
paved pathwaysand buildings surroundedby a mixture of Juglans,
Eucalyptus,Washingtonia,Pinus,andothertreespecies.Incontrast,
thetwospecieshavecoexistedwithinlonger-termcoexistencehab-
itats of G riffith P ark in Los Ange les, CA , for more than 6 0 years,
whichweremorenaturalinappearanceconsistingofPinus,Quercus,
Umbellularia,Sequoia,andUlmusspecies,butwithhuman-influenced
aspectssuchaspicnictables,aplayground,andrestrooms(DeMarco
etal.,2020;King,200 4;Kingetal.,2010).ThestudyareaatCBGhas
been classified asa longer-term coexistence habitat by Muchlinski
etal. (2012).Howlongcoexistence cancontinueinlonger-termco-
existencehabitatsis unknown.Manylonger-term coexistence sites
arefragments of habitat wherethe FS, butnotthe WGS, exists in
surroundinghabitats.TheWGS isalsosubjecttolossofgenetic di-
versit y in these hab itat frag ments as des cribed by De Marco et al.
(2020).
The predictions of the competition model presented in sec-
tion 3.4 can be interpreted in terms of the HSM developed by
Muchlinskietal.(2012).TheHSMimpliesthat thecompetitiveef-
fe ctsofthe FS ont he WG Sar eh ighin as hor t-t erm co e xi s te ncesi te
suchasC aliforniaStatePolytechnicUniversity,Pomona,andother
former lowland coexistence sites(Cooper & Muchlinski,2015).In
terms of the c ompetitio n model pre sented in Fig ure 6, the val ue
of the competition coefficient αwouldbelargerelativetothe
coefficient β, an d extinc tion of the WGS c ould occur un der con-
ditions of b lue and red env ironment al noise. Conve rsely, a lower
level of competitionin a longer-term coexistence site implies the
valuesofαandβaremoresimilarandahigherlevelofreddened
environmentalnoisewouldbeneededtobringaboutextinctionof
theWGS(Figure6d).Ourresultsfromsection3.5suggestthatcli-
matechangesareincreasingthetimescaleofyearlyenvironmental
fluctuations.Ourspectrala nalysesofmonthlycensusdatasu gge st
that mostofthe variation in numbers of the WGS and FSoccurs
over times cales of more than 15 m onths (Figure 2). Thu s, aside
fromt heef fec tsof awar mi ngclimate,a nychangesinthet im esc al e
oftemperaturefluctuationsaroundtheincreasingtrendcouldrep-
resent an additional riskfactor for thepersistenceoftheWGSin
someofitsnativerange.
After the annualchanges in meanmonthly temperaturewere
removedfromtheONTdat ausingaband-stopfilter,theremain-
ing variation in temperature fluctuations was composed of a
strongsix-monthcycleandsignificantvariationontimescalesthat
exceeded 28 months(Figure 4c). Meteorologists andclimatesci-
entistshaveusedharmonicanalysistodocumentsemi-annualcy-
clesinrainfallandtemperatureswhoseamplitudeandphaseshift
vary by geographical location, withmoderateamplitudes for the
southwestUnitedStates(Hsu&Wallace,1976;White&Wallace,
1978).AnalyzingNorthAmericantemperaturedatafrom1979to
2018, Nor th et al. (2021) used Baye sian analysis to f it a model
withannualandsemi-annualharmonicsthatvaryoverspaceand
time.Theyidentifygeographicalregionswithsignificantchanges
in the contributions of the two harmonics to seasonal cycles.In
Appendix D, we used le ast squares to fit a model with annual
andsemi-annual harmonics to the unfiltered meanmonthlytem-
peratu re data in Figu re 4a and show th at a model that i ncludes
both annual and semi-annual c ycles provides a significantly bet-
terfittothedata than a modelbasedontheannual cyclealone.
Figure4cshowsthat thefilteredtemperature timeseries hasthe
sameperiod,phase,andapproximateamplitudeasthetheoretical
semi-annualcycle.Onecanalsoseetheeffectsoflongtimescale
   
|
15 of 23
DESHA RNAIS E t Al.
variabilityinthewaythefiltereddatameandersaboveandbelow
thesemi-annualcycle.ThecospectraofFigure5indicateasignif-
icantnegative correlation between thesquirrel census data and
theONTfilteredweatherdataatatimescaleofsixmonths.While
weca nno td emo nst r at ea dir ect cau sal me c ha nis mf ort hi scorr ela -
tion,thisobservationcouldmotivatefurtherresearch.
It was not pos sible to speci fy an est imated peak va lue for the
timescale of low-frequency variation in the squirrel numbers or
mean mont hly temperature s. The 140 months of the time series
representlessthan12years.Inspectralanalyses,estimatesoflong-
period,low-frequencyc ycles areless precise since theycannot be
asreadilyobserved asshort-period, high-frequencyoscillations. In
the estimated spectraofFigures3and 4, thespectral powercon-
tinuestoincreaseasthefrequenc ydecreases.However,therecord
ofmean annual temperatures forOntario Airport extendsback to
1999,providinga 22-year timeseries.InAppendixD,weshow that
asignificantpeakinthespectrumofannualtemperaturesoccurson
atimescale of about 7 years, which isconsistentwith thewavelet
analysis inFigure 9. If annual changesin environmentalconditions
aredrivingthelong-termvariationinsquirrelnumbers,whichseems
tobethec asefortheWGS(Figure5a),thisestimatecouldalsorep-
resentthetimescaleofthosefluctuations.
We presented s imulation resu lts in sect ion 3.4 that were de -
signedtoexploretheeffectsofchangesinthetimescaleofenviron-
mental noise ontheoutcomeofcompetitionbet weenecologically
similarnativeandnon-nativespecies.Weshowed thatanincrease
inthe timescale of environmental noisereddensthespectrumof
population fluctuations and decreases the likelihood of coexis-
tence, especially whenthe non-native is a better competitor.This
result dif fers fromone of the findingsofRuokolainenand Fowler
(2008), who concludedthat extinction risk decreased with a red-
deningofenvironmentalnoisewhen,likeinour model,therewas
astrong correlationin the species response to theenvironmental
fl u ctua tio n s.H owe ver,t hei r si m ula t ion pro t oco lsd iffe r edf r omo urs
inseveralways.First,theylookedatacommunit yofthreecompet-
ingspecies.Second,theirenvironmentalnoisewasgeneratedusing
an autoreg ressive proces s and was added to t he carryi ng capac-
ity for each species. Third, and most importantly, in their models
the intrinsic rate of increase for eachspecies was set to ri = 1 .8,
whereasinourmodelwechoser1 = r2 =.3,whichismoreconsis-
tentwiththereproductivecapabilitiesoftreesquirrels(Appendix
A).Indeterministic modelsofthetypeusedinoursimulationsand
those of Ruokolainen andFowler (20 08), values of 1 > r > 2lead
toovercompensatingdynamics,wheretheapproachtoequilibrium
exhibits damped oscillations. Although Ruokolainen and Fowler
(2008)claimedthattheirresultsarequalitativelysimilarforvalues
ofr <1,previousworkwithsingle-speciesmodels(e.g.,Danielian,
2016)hasshownthatextinctionriskincreaseswithareddeningof
environmentalnoise when thedeterministicmodel, like ours, has
undercompensating dynamics (ri <1),butdecreaseswithared-
deningof environmental noisewhenthedeterministicmodel has
overcompensatingdynamics(1< ri <2).Sincetheapparentcontra-
dictionbetweenourresultsandthose of Ruokolainen and Fowler
(200 8) occurred when th ere was a strong sy nchrony among th e
threespeciesduetothehighcorrelationoftheeffectsofenviron-
mentalnoise,theirresultisconsistentwithwhatonewouldexpect
from a singl e-species m odel. When we rep eated our simulat ions
usingvalues ofr1 = r2 =1.8,weobservedaresultconsistentwith
RuokolainenandFowler(2008).
Our simulation results were limited in their scope. They were
motivatedbyouranalysesoftimescaledifferencesinthevariability
ofpopulation fluctuations for two sympatric species of tree squir-
rels. Simulation analysesofthetypeconductedinthispaper could
beexpanded toincludea broaderexaminationof parameterspace,
other ecological interactions suchaspredatorand prey, and larger
communities of interacting species. Our approach could also be
adaptedtoappliedconservationmodelswhereenvironmentalvari-
abilityisapartofthesimulationprotocols.Theinferenceinsection
3.5 that timescale shifts in environmental fluctuations may be oc-
curring duetoclimatechange wouldbeamotivationtoexplorethe
impact s for populations of interest to conservationists and natural
resourcemanagers.
Our anal yses of spec tral expo nents for me an annual te mpera-
tures suggest that there has been a reddeningof the timescale of
climate fluctuations for the continental United States during the
time per iod 1990–2014. García-Carrer as and Reuman (2011) con-
ducted aglobal analysis ofspectral exponentsfor the time period
1911–1990.Theysplitthetimeseriesintotwohalvesandconcluded
that,whilemostofthespectralexponentswerered-shifted,thered
shiftwassmallerin1951–1990comparedwith1911–1950.Thiswas
trueforallcontinent sexceptA sia, which was redderin 1951–1990
than it was i n 1911–195 0. Thus, in gene ral, they obs erved a shif t
toshortertimescales in more recenttimes, whileweobservedthe
opposite.Thisinconsistencymaybeduetodif ferencesinour anal-
yses. García-Carrerasand Reuman(2011)useda linear func tion to
detrendtheirdata,whileweusedaquadraticfunction.Theydivided
their timeseries into twosegment sof40 yearseach, whilewedi-
vided oursintofoursegments of25years each.Most importantly,
our last timeseries segment covered 1990–2014 whichwent be-
yondthelatest yearthattheyexamined. Itwasinthislast 25-year
periodthatwesawastronglysignificantshiftfromblue-tingedfluc-
tuations tored-tinged fluctuations (Figure 8). Thisagrees with the
resultsofWangandDillon(2014)whoalsofoundanincreaseinthe
autocorrelation (timescale) ofannual temperaturesfromtheperiod
of1975through 2013.It may bethe case that the lengthening of
thetimescaleofmeanannualtemperaturefluctuationsisarelatively
recentphenomenon.
Our analyses of changes in climate fluctuations could be ex-
tendedinseveralways.ThedistributionsinFigure8showthatthere
isvariation inthevalues ofthespectral exponents amongweather
st ation s.The sam pl inglo cat io ns, wh ichar es c at ter edacr os sth ec on -
tinentalUnitedStates(Figure7),couldbesubdividedbyregion(e.g.,
northeastandsouthwest)toseewhethertherearesignificantdiffer-
encesinthevaluesofthespectralexponentsduetogeographiclo-
cation.FollowingGarcía-Carreras and Reuman (2011),ouranalyses
couldbeexpandedtoincludesamplingstationsonothercontinents
16 of 23 
|
   DESHARNAIS E t Al.
andothermeasures,suchasmeanseasonaltemperatures,couldbe
analyze d. To tal annual pre cipitation coul d also be include d in the
analyses.Furtherresearchisneededtosee whetherourinference
thatclimatechangesarelengtheningthetimescalesforenvironmen-
talfluctuations is robust.This could have implications,notonlyfor
conservationbiologyandresourcemanagement,butalsoforother
areassuchasforestfiremanagementandagriculture.
5  |CONCLUSIONS
Using spec tral analyses, we have shown that the variations in
monthly fluctuations of population numbers for native and non-
native tree squirrels coexistingin the same habitat aredistributed
mostly ove r long timescal es (>15 mont hs) and their numbe rs are
synchronous over long timescales. After annual cycles are filtered
from the time series for mean monthly temperatures from nearby
OntarioAirport,thereremainsastrong six-monthcycleandsignifi-
cantfluctuationsattimescalesthatexceed15months.Therewasa
significant negativecorrelation between the temperaturedata and
squirrelnumbersforbothWGSandFSatasix-monthtimescaleand
a signific ant amount of long t imescale corr elation betwee n mean
monthly temperatures and WGSnumbers.Weused modelsimula-
tionstoshowthatenvironmentallyinducedlongtimescalevariation
in popula tion numbers fo r two competing s pecies with mod erate
rates of reproduction greatly increases the probability of extinc-
tion of the inferior competitor. Finally,we conducted spectraland
wavelet analyses for 100 yearsofmeanannualtemperatures from
1218weatherstationsacrossthecontinentalUnitedStates.Ourre-
sults suggest that thetimescale of fluctuations around the chang-
ingclimatetrendshas increased inthelast fewdecades,providing
anotherenvironmentalaspectofclimatechangethatcouldthreaten
themaintenanceofbiodiversit y.
Thisstudy documentslongtimescale variationinnatural popu-
lationsofconservationinterest,showsthatlongtimescalevariation
can accelerate theloss of species diversity, and provides evidence
thatthetimescalesofenvironmentalfluctuationshaveincreasedin
recenttimes.Wehopethisservesasacautionarymessageforcon-
servationist sandnaturalresourcemanagersthatanexaminationof
timescales for environmental andpop ulationfluctuations are fac-
torsworthyofconsideration.
ACKNOWLEDGMENTS
WethankadministrationandstaffattheCaliforniaBotanicGarden
forallowing our studytobeconductedattheirlocation.Wethank
Ka t y aEr k abae v aa n dAar o nOc a r izf o rth e ira s sis t a nce with t hef i eld-
work.R.A.D.thanksRichardM.MurrayattheCaliforniaInstituteof
Technologyforhisho spi talit ywh ilepor ti onsofth isworkwerecom-
pleted there. This research was supported in partbyU. S. National
ScienceFoundationgrantDMS-1225529toR.A.D.
CONFLICT OF INTEREST
Nonedeclared.
AUTHOR CONTRIBUTIONS
Robert A. Desharnais: Conceptualization (equal); Formal analysis
(lead); Methodology (equal); Software (lead); Visualization (lead);
Writing – original d raft (lead); Wri ting – review & e diting (equal).
Alan E. Muchlinski:Conceptualization(equal); Datacuration (lead);
Investigation (equa l); Methodolog y (equal); Project administration
(lead); Supervision (lead);Writing – original draf t(equal); Writing–
review&editing(equal).Janel L. Or tiz:Investigation(equal);Writing
– orig inal draf t (equal); Writin g – review & e diting (equal ). Ruby I.
Alvidrez: Investigation (equal); Writing – original draft (equal);
Writing – review & editing (equal). Brian P. Gatza: Investigation
(equal);Writing–review&editing(equal).
DATA AVA ILAB ILITY STATE MEN T
Squirrelcensusdat aarearchivedonDr yad(https://doi.org/10.5 061/
dryad.w6m905qqv). Weather and climate data are accessible at
the Climat e Data Online web site of NOAA’s National Ce nters for
EnvironmentalInformation(https://www.ncdc.noaa.gov/cdo-web/).
MATLAB code usedforcomputingand smoothing the spectraand
cospectraandgeneratingunivariateormultivariatetimeserieswith
the asymptotic spectral properties of a supplied spectral matrix is
availableonlineat:https://doi.org/10.5281/zenodo.5753478 .
ORCID
Robert A. Desharnais https://orcid.org/0000-0003-2874-6835
Janel L. Ortiz https://orcid.org/0000-0001-5912-1366
REFERENCES
Bailey,V.(1936).ThemammalsandlifezonesofOregon.Nor th American
Fauna,55,1–416.https://doi.org/10.3996/nafa.55.0001
Becker, E. M., & K imball, M. H. (1947). Walnut g rowers turn squi rrel
catchers.Diamond Walnut News,29,4–6.
Brady,M.J.,Koprowski, J.L., Gwinn,R.N.,Yeong-Seok, J.,&Young, K.
(2017).Easternfoxsquirrel(Sciurus niger,Linnaeus1758)introduc-
tion tothe Sonoran Desert .Mammalia, 83, 221–223. https://doi.
org/10.1515/mammalia-2015-0162
Brillinger, D. R. (2001). Time series: Data analysis and theor y.
Societ y for Industrial and Applied Mathematics. https://doi.
org /10.1137/1.978 089871924 6
Carraway,L.N.,&Verts,B.J.(1994).Sciurusgriseus.Mammalian Species,
474,1–7.https://doi.org/10.2307/3504097
Cazelle s,B.,Chavez,M.,Berteaux,D.,Ménard,F.,V ik,J.O.,Jenouvrier,
S., & Stens eth, N. C. (20 08). Wavelet an alysis of ecolo gical time
series. Oecologia, 156, 287–304. https://doi.org/10.1007/s004 4
2 - 0 0 8 - 0 9 9 3 - 2
Chambe rs, M. J. (1995). The simulat ion of random vec tor time serie s
withgivenspectrum.Mathematical and Computer Modelling,22,1–
6 . h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / 0 8 9 5 - 7 1 7 7 ( 9 5 ) 0 0 1 0 6 - C
Cliffo rd, P.,R ichardson , S., & Hemon, D. (1989). Ass essing the sig nifi-
canceofthecorrelationbetweentwospatialprocesses.Biometrics,
45,123–134.https://doi.org/10.2307/2532039
Cooper, D. S. (2 013). The distribution of the WGS (Sciurus griseus) in the
Los Angeles basin, California(31pp.). California.CooperEcological
Monitoring,Inc.
Cooper,D.S.,&Muchlinski,A.E.(2015).Recentdeclineoflowlandpop-
ulation s of the Western gr ay squirrel i n the Los Angel es area of
SouthernCalifornia.Bulletin of the Southern California Academy of
Sciences,114, 4 2 5 3 . h t t p s : / / d o i . o r g / 1 0 . 3 1 6 0 / 0 0 3 8 - 3 8 7 2 - 1 1 4 . 1 . 4 2
   
|
17 of 23
DESHA RNAIS E t Al.
Danielia n, S. (2016). The effects of environmental noise and dispersal on
ecological extinction and the spectral properties of metapopulations.
CaliforniaStateUniversity.
DeMarco , C., Coop er,D. S ., Torres, E., Mu chlinski, A . E., & Ag uilar, A.
(2020). Effe cts of urbanizationonpopulationgeneticstructure of
Western gray squirrels.Conservation Genetics, 22, 67–81. https://
d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 9 2 - 0 2 0 - 0 1 3 1 8 - x
Desharnais, R . A., Reuman, D. C ., Cost antino, R. F., & Cohen, J. E.
(2018).Temporalscaleofenvironmentalcorrelationsaffectseco-
logical synchrony. Ecology Letters, 21, 1800–1811. https://doi.
org /10.1111/el e.13155
Di Cecco, G . J., & Gouhie r,T. C. (2018). I ncreased s patial and tem po-
ralautocorrelation oftemperatureunderclimate change.Scientific
Reports,8, 1 9 . h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 1 8 - 3 3 2 1 7 - 0
Diffe nbaugh, N. S., Swa in, D. L., & Touma, D. (2015). An thropogenic
warming has incre ased drought risk i n California. Proceedings of
the National Academy of Sciences, 112, 3931–3936. https://doi.
org /10.1073/p nas.142 238 5112
Do o d y, J. S ., R h in d ,D . ,G r ee n , B. , C as t e ll a no , C ., M cH e n r y,C . , &C l ul o w,
S. (2017). Ch ronic effec ts of an invasive spe cies on an anima l
community. Ecology, 98, 20 93–2101. ht tp s://doi.org /10.10 02/
ec y.18 89
Dueñas, M. A., Hemming, D. J., Rober ts, A., & Diaz-Soltero, H.(2021).
ThethreatofinvasivespeciestoIUCN-listedcriticallyendangered
species:Asystematic review.Global Ecology and Conservation,26,
e01476.ht tp s://doi .org/10.1016/j. gecco.2021.e01476
Dutilleul, P.,Clifford, P.,Richardson,S .,&Hemon, D.(1993).Modifying
the t-tes t for assessin g the correla tion betwe en two spati al pro-
cesses. Biometrics,49,305–314.https://doi.org/10.2307/2532625
Escobar-Flores, J. G., Ruiz-Campos, G., Guevara-Carrizales, A . A., &
Martínez-Gallardo, R. (2011). Specimens of the Western gray
squirrel, Sciurus griseus Anthonyi (Mammalia: Sciuridae), in Baja
California,México.Western Nor th American Natu ralist,71,119–120.
https://doi.org/10.3398/064.071.0117
Fey,S.B.,&Wieczynski,D.J.(2017).Thetemporalstructureoftheen-
vironment mayinfluence range expansions during climatewar m-
ing. Global Change Biology, 23, 63 5–645 . ht tps: //doi .or g/10.1111 /
gcb.13 46 8
Fletcher,R.A.(1963).The ovarian cycle of the gray squirrel, Sciurus griseus
Nigripes.MSThesis,Univer sityofC alifornia.
Flory,L.S.,&Lockwood,J.L.(2020).Advancingtowardageneraltheor y
ofinvasivespeciesimpacts:Howdoecologicaleffectsvary across
timeandspace?Bulletin of the Ecological Society of America,101,1–
4.https://www.jstor.org/stable/26920136
Flyger,V.,&Gates,J.E.(1982).Foxand graysquirrels.InJ.A .Chapman
&G.A.Feldhamer(Eds .),Wild mammals of North America(pp.209–
229).JohnsHopkinsUniversityPress.
Frey,J.K .,&C ampbell,M.L .(1997).Introducedpopu lati onsoffoxsquir-
rel(Sciurus niger)intheTrans-PecosandLlanoEstacadoregionsof
NewMexicoandTexas.The Southwestern Naturalist,42,356–358.
Garcia,R.B.,&Muchlinski,A.E.(2017).RangeexpansionoftheEastern
fox squirrel within the greater Los Angeles metropolitan area
(2005–2014) and projec tions for continued range expansion.
Bulletin of the Southern California Academy of Sciences,116,33–45.
h t t p s : / / d o i . o r g / 1 0 . 3 1 6 0 / s o c a - 1 1 6 - 0 1 - 3 3 - 4 5 . 1
García-Carreras,B., &Reuman, D.C. (2011).Anempiricallinkbetween
thes p e c t r al c o l o u r ofc l i m a t e a n dthes p e c t ra l c o l o u r off ie l d p o p u l a -
tionsinthecontextofclimatechange.Journal of Animal Ecology,80,
1042–104 8.ht tp s://doi.o rg /10.1111 /j.1365-2656 .2 011.01833 .x
Geluso, K. (20 04). West ward expansion of the Eas tern fox squirrel
(Sciurus niger) in northeastern New Mexico and southeastern
Colorado.The Southwestern Naturalist,49,111–116 .
Heino, M. (1998). Noise colour, synchrony and extinctions in spa-
tially structured populations. Oikos, 83, 368–375. https://doi.
org/10.2307/3546851
Heino, M., Ripa, J., & Kaitala, V. (200 0). Ex tinction risk under co-
loured environmental noise.Ecography, 23, 177–184. ht tps://doi .
org/10.1111/j.1600-0587.2000.tb00273.x
Hoefler,G.,&Harris,J.(1990).MO78foxsquirrel.In D.C .Zeiner,W.F.
Laude nslayer, K. E. Mayer & M . White (Eds.), California’s wildlife.
Volume III Mammals (pp. 148–149). California Statewide Wildlife
HabitatRelationshipsSystem.
Hsu,C.F.,&Wallace,J. M. (1976).Theglobaldistribution oft heannual
and semiannual c ycles in precipit ation. Monthly Weather Review,
104,1093–1101.
Huxe l,G. R.(19 99).R api dd is pl ac ementofn at ives pec ie sb yinvasivespe -
cies:Effectsofhybridization. Biological Conservation,89,143–152.
h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / S 0 0 0 6 - 3 2 0 7 ( 9 8 ) 0 0 1 5 3 - 0
Inchaus ti, P., & Halley, J. (2003). On the relation between tem-
poral variability and p ersistence time in animal popula-
tions. Journal of Animal Ecology, 72, 899–908. https://doi.
org /10.10 46/j.1365-2656. 20 03 .0 0767.x
Jameson, E. W., & Peeters, H. J. (1988). California mammals. Vol. 52.
California natural history guides.UniversityofC alifor niaPress.
Jordan , R. A., & Hamm erson, G. (1996). Comprehensive report: Sciurus
niger- Linnaeus 1758. Heritage Identifier. AMAFB07040. http://
www.natureserve.org
King, J. L . (2004). The current distribution of the introduced fox squirrel
(Sciurus niger) in the greater Los Angeles metropolitan area and its be-
havioral interaction with the native Western gray squirrel (Sciurus gri-
seus).MSThesis,CaliforniaStateUniversity.http://fishandwildlife.
lacounty.gov/Portals/FWC/PDF/Fox_Squirrel_Study.pdf
King, J. L ., Sue, M. C ., & Muchlinsk i, A. E. (2010). Dis tribution o f the
Eastern fox squirrel (Sciurus niger) in Southern California. The
Southwestern Naturalist, 55, 42–49. https://doi.org/10.1894/
R T S - 0 3 . 1
Kleiman,D.,Geist, V.,McDade, M.,Trumpet, J.,&Hutchins,M.(2004).
Mammals.Gale.
Koenig,W.D.,Knops,J.M.H.,Carmen ,W.J.,Stanback,M.T.,&Mumme,
R.L.(1996).AcornproductionbyoaksinCentralCoastalCalifornia:
Influence of weather at three levels. Canadian Journal of Forest
Research,26,1677–1683.https://doi.org/10.1139/x 26-189
Koprowski, J. L. (1994). Sciurus niger. Mammalian Species, 479, 1–9.
https://doi.org/10.2307/3504263
Lawton,J.H.(1988).Moretimemeansmorevariation.Nature,334,563.
https://doi.org/10.1038/334563a0
Linder s, M. J., & Stin son, D. W. (2007) . Washington state recovery plan
for the Western gray squirrel. Washington Department of Fish and
Wildlife.
Mann,M.E.,&G leick,P.H.(2015).ClimatechangeandCaliforniadrought
inthe21stcentur y.Proceedings of the National Academy of Sciences,
112,3858–3859.https://doi.org/10.1073/pnas.1503667112
Masson-Delmotte,V.,Zhai,P.,Pirani,A .,Connors,S.L.,Péan,C.,Berger,
S.,Caud,N.,Chen,Y.,Goldfarb,L.,Gomis,M.I.,Huang,M.,Leitzell,
K., Lon noy,E ., Matth ews, J. B. R ., Maycock, T. K. , Waterfie ld, T.,
Yelekçi,O., Yu,R .,Zhou,B.(Eds.)(2021).Climate change 2021: The
physical science basis. Contribution of Working Group I to the sixth
assessment repor t of the intergovernmental panel on climate change.
CambridgeUniversityPress.
Menne, M. J., Williams, C. N. Jr, &Vose,R .S.(2009). TheUS historical
climatologynetworkmonthlytemperaturedat a,version2 .Bulletin
of the American Meteorological Society, 90, 993–100 8. https ://doi.
o r g / 1 0 . 1 1 7 5 / 2 0 0 8 B A M S 2 6 1 3 . 1
Muchlin ski, A. E ., Gatz a, B., Lewi s, S., & Erkeb aeva, K. (2012). Eas tern
fox squirrels and Wes tern gray squirrels in Southern C alifornia.
Proceedings of the Vertebrate Pest Conference,25,7–12.ht tps://doi.
org /10.5070/ V425110358
Muchlinski, A. E., Stewart, G . R., King, J. L., & Lewis, S. A. (2009).
Documentation of replacement of native western gray squir-
rels by introduced eastern fox squirrels. Bulletin of Southern
18 of 23 
|
   DESHARNAIS E t Al.
California Academy of Sciences, 108, 160–162. ht tps ://doi.
org/10.3160/0038-3872-108.3.160
Mustin,K.,D ytham,C.,Benton,T.G.,&Travis,J.M.J.(2013).Rednoise
increasesextinctionriskduringrapidclimatechange.Diversity and
Distributions,19,815–824.https://doi.org/10.1111/ddi.12038
NationalCentersforEnvironmentalInformation(NCEI),HistoricalPalmer
Dro ug htI nd ices.Ac cesse do n2Februar y2022 .htt ps://ww w. ncdc.
n o a a . g o v / t e m p - a n d - p r e c i p / d r o u g h t / h i s t o r i c a l - p a l m e r s /
North,J.S.,S chliep,E.M.,&W ikle,C .K.(2021).Onthespatialandtem-
poral shif tinthe archet ypal seasonal temperaturecycle as driven
byannual and semi-annual harmonics. Environmetrics, 32, e2665.
https://doi.org/10.1002/env.2665
Olhede, S. C., & Walden, A . T. (2002). Generalized Morse wavelets.
IEEE Transactions on Signal Processing, 50, 2661–2670.https://doi.
org/10.1109/TSP.2002.804066
Oregon D epartm ent of Fish and W ildlife (20 16).O regon conse rvation
strategy.https://www.dfw.state.or.us/conservationstrategy
Orti z, J. L. (2021). Tempora l and spatial ove rlap in the be haviors of a
native an d invasive tree sq uirrel in sout hern Califor nia. Ethology
Ecology & Evolution, 34, 1–17. https://doi.org/10.1080/03949
370.2021.1936651
Ortiz, J. L., & Muchlinski, A. E. (2015). Food selec tion of coexist-
ing Wester n gray squirrels a nd Eastern fox sq uirrels in a native
California botanicgarden in Claremont, California. Bulletin of the
Southern California Academy of Sciences, 114 , 98–103. htt ps://do i.
o r g / 1 0 . 3 1 6 0 / 0 0 3 8 - 3 8 7 2 - 1 1 4 . 2 . 9 8
Petchey,O.L.,Gonzalez,A.,&Wilson,H.B.(1997).Effectsonpopulation
persistence:Theinteractionbetweenenvironmentalnoisecolour,
intraspecificcompetitionandspace.Pr oceedings of the Royal S ociety
of London Series B: Biological Science s,26 4, 1841–1847.https://doi.
org /10.1098/rspb.1997.0254
Pimm,S.L.,&Redfearn,A.(1988).Thevariabilityofpopulationdensities.
Nature,334,613–614.https://doi.org/10.1038/334613a0
Rangel,T.F.,Diniz-Filho,J.A.,&Bini,L.M.(2006).Towardsanintegrated
computationaltoolforspatialanalysis inmacroecologyandbioge-
ogr aphy.Global Ecology and Biogeography,15,321–327.https://doi.
org /10.1111/j .146 6- 822 X.200 6. 00237.x
Ripa, J., & Heino, M. (1999). Linearanalysissolves t wo puzzles in pop-
ulation dynamic s: The route to extinction and ex tinction in co-
loured environments. Ecology Letters, 2, 219–222. https://doi.
org /10.10 46/j.1461-024 8.199 9.00 073 .x
Ripa, J., & Lundbe rg, P. (1996). Noise col our and the risk of popula-
tion extinctions. Proceedings of the Royal Society of London Series
B: Biological Sciences, 263, 1751–1753. https://doi. org /10.1098/
rspb.19 96.02 56
Ruokolainen, L., & Fowler, M. S. (2008). Community ex tinction pat-
terns in colouredenvironments. Proceedings of the Royal Society
B: Biological Sciences, 275, 1775–1783. https://doi.org/10.1098/
rspb. 20 0 8. 0193
Ruokolainen,L.,Lindén,A.,Kaitala,V.,&Fowler,M.S.(2009).Ecological
and evolutionary dynamics under coloured environmental vari-
ation. Trends in Ecology & Evolution, 24, 555–563. https://doi.
org/10.1016/j.tree.2009.04.009
Sakai, A . K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J.,
With, K . A., Baughman, S., Cabin, R. J.,Cohen, J. E., Ellstrand, N.
C., McC auley, D. E., O'Ne il, P. , Parker, I. M., Tho mpson, J. N., &
Weller, S. G. (20 01). The popul ation biolog y of invasive speci es.
Annual Review of Ecology and Systematics,32,305–332.ht tps://doi.
org/10.1146/annurev.ecolsys.32.081501.114037
Schreib er, T., & Schmitz, A. (20 00). Surrogate time series. Physica D
Nonlinear Phenomena, 142, 346–382. http s://doi.org /10.1016/
S 0 1 6 7 - 2 7 8 9 ( 0 0 ) 0 0 0 4 3 - 9
Schwager, M., J ohst, K. , & Jeltsch, F. (20 06). Does red no ise increase
or decre ase extinc tion risk? Singl e extreme eve nts versus ser ies
ofunfavorableconditions.The American Naturalist,167,879–888.
htt ps://doi.org/10.10 86/5036 09
Sheppard, L. W., Bell, J. R., Harrington, R., & Reuman, D. C. (2016).
Changes in large-scale climate alter spatial synchrony of aphid
pests. Nature Climate Change,6,610–613.https://doi.org/10.10 38/
nclimate2881
Steele, M.A., &Koprowski,J.L.(2001). North American tree squirrels (p.
201).SmithsonianInstitutionPress.
Steele, M.A.,&Yi,X. (2020).Squirrel-seedinter actions:Theevolution-
ary strategiesand impac t ofsquirrels as both se ed predators and
seed dispersers. Frontiers in Ecology and Evolution, 8, 259.https://
doi.org/10.3389/fevo.2020.00259
Stuart,K.D.(2012).Ecolog y and conservation of the Western gray squirrel
(Sciurus griseus) in the North Cascades. Disser tation , Universit y of
Washington,Seattle,USA.
Swift,R.(1977).The reproductive cycle of the Western gray squirrel in But te
County, California.MSThesis,C alifor niaStateUniversity.
Vasseur, D. A., & Yodzis , P. (2 004). The co lor of environm ental noise .
Ecology,85,1146–1152.https://doi.org/10.1890/02-3122
Wang, G., &Dillon,M.E.(2014).Recentgeographicconvergenceindi-
urnalandannualtemperaturecyclingflattensglobal thermalpro-
files.Nature Climate Change,4,988–992.https://doi.org/10.1038/
NCLIMATE2378
White, G . H., & Wallace, J. M. (1978). The global distributi on of the
annual and semi-annual cycles in surface temperature. Monthly
Weather Review, 106, 901–906. https://doi.org/10.1175/1520-
0493(1978)106%3C0901:TGDOTA%3E2.0.CO;2
Wolf,T.F.,&Roest,A.I .(1971).Thefoxsquir rel(Sciurus niger)inVentura
County.California Fish and Game,57,219–220.
Wood, D. J. A ., Koprowski, J. L ., & Lurz, P. W. W.( 2007). Tree squir-
rel introduction: A theoretical approach with population viabil-
ity analysis”. Journal of Mammalogy, 88, 1271–1279. https://doi.
o r g / 1 0 . 1 6 4 4 / 0 6 - M A M M - A - 3 0 3 . 1
Zhao, W., & Khalil, M. A . K. (1993). The relationship bet ween pre-
cipitation and temperature over the contiguous united states.
Journal of Climate, 6, 1232–1236. htt ps: //doi.o rg /10.1175/1 520 -
0442(1993)006<1232:TRBPAT>2.0.CO;2
How to cite this article:Desharnais,R.A.,Muchlinski,A.E.,
Ortiz,J.L.,Alvidrez,R.I.,&Gatza,B.P.(2022).Timescale
analysesoffluctuationsincoexistingpopulationsofanative
andinvasivetreesquirrel.Ecology and Evolution,12,e8779.
https://doi.org/10.1002/ece3.8779
   
|
19 of 23
DESHA RNAIS E t Al.
APPENDIX A
INTRINSIC RATES OF INCREASE FOR SQUIRREL S
WeusedtheEuler-Lotkaequationtocomputetheintrinsicrateofincrease,r,fortheSciurusspeciesintable1ofWoodetal.(20 07).Forthis
equation,risthesolutionto
where lxisthesurvivalprobabilitytoagexandbxisthenumberofof fspringborntoanindividualof agex.Intheirpopulationviabilityanalysisof
treesquirrels,Woodetal.(2007)givevaluesforthepercentageoffemalesbreedingperseason,P,thenumberofbreedingsperyear,β,thelitter
sizeperfemale,L,andthemor talit yratesforagezero,m0,andindividualsoneyearandolder,m(TableA1).Foreachspecie s,bre edingbeginsatage
one.Giventhisinformation,wecomputedannualsurvivalratesasl1 =1–m0andlx =(1–m0) ( 1–m)x 1 forx≥2.(Bydefinition,l0 =1.)Thenumberof
offspringperindividualwascomputedasb0 =0andbx = PβL/2forx≥1.Wedivideby2becauseonlyfemalesproduceoffspringandonlyhalfthe
litterarefemale.TheEuler-Lotkaequationbecomes
Takinglogarithms,weget.
Aroot-findingalgorithmwasusedtonumeric allysolveequationA2forr.
Woodetal.(2007)providedthreesetsofthelifehistor yvaluesdescribedforthefollowingspecies:Sciurus aberti,S. carolinensis,S. granat-
ensis,S. niger(FS),andS. vulgaris.Thethreesetsofparametersarelabeledas“optimistic,”“average,”and“pessimistic.”Usingthevalueslabeled
asaverage,wecomputedthevaluesofr,respectively,forthefivespecies(TableA1).Theaverageofthesefivevaluesis0.32.Therefore,we
usedavalueofr1 = r2 =.3inoursimulations.Thisisclosetothevalueof0.29obtainedforFS(TableA1).
APPENDIX B
NUMBERS OF ACORNS
Estimatesofacornproductionweremadeinyears2012through2020bymeasuringduringthemiddleofOctoberthemassofacornsinaone
squaremeterplotundereachofsixoaktreeswithinthestudyarea.Thesametreesandthesameplot swereusedeachyearforestimationof
aco rnpr od uctiontoas se ss va ri ab ilit ya mo ng year sandrelationshi ptochangesi nabu nd an ceoft he tr ee sq ui rr el s. Th edat aapp ea rinTab leA2 .
(A1)
x=0
erxlxbx=
1
x
=1
(P𝛽L2)(1m0)(1m)x1erx =(P𝛽L2)(1m0)er
x=0[(1m)er]
x
=(P𝛽L2)
(
1m
0)
er
(
1(1m)er
)
1=1.
(A2)
ln [
(P𝛽L2)
(
1m
0)]
rln
[
1(1m)e
r]
=
0
TABLE A1 ParameterestimatesfromWoodetal.(2007,table1,“average”)forfivespeciesoftreesquirrelsfromthegenusSciurus
Parameter Description Sciurus aberti Sciurus carolinensis Sciurus granatensis Sciurus niger Sciurus vulgaris
P%femalesbreeding 62 70 70 55 90
βbreedingsperyear 2 2 2 2 2
Llittersize(perfemale) 3.4 2.8 2.2 2.2 2.2
m0mortality(1styear) 0.60 0.60 0.60 0.60 0.62
mmortality(≥1year) 0.28 0.338 0.48 0. 28 0.32
rrateofincrease(year–1 )0.45 0. 37 0.13 0.29 0.36
20 of 23 
|
   DESHARNAIS E t Al.
APPENDIX C
NUMBERS OF JUVENILE AND SUBADULT SQUIRRELS
StartinginJanuary2015,observersatourfieldsitestarteddistinguishingamongadults,subadults,andjuveniles.Thelattertwocategoriescan
serveasaproxyforreproduction.FigureA1showsthenumbersofjuvenilesandsubadultsfortheWGSandtheFS.Forbothspecies,juveniles
andsubadultsareseenmoreofteninspringandfall(FigureA1,shadedareas),especiallyinthecaseoftheFS.However,thereisagreatdeal
ofyear-to-yearvariation(longtimescales)inthenumbers.
APPENDIX D
ANNUAL AND SEMI- ANNUAL TEMPERATURE CYCLES
Meteorologists and climatologists haveused harmonicanalysis to identify seasonalcyclesin atmospherictemperature ( White &Wallace,
1978).Inadditionto astrongannualcycle,asemi-annualcycle, whichcanvarybyyearandlocation,hasbeen identified(Northetal.,2021;
White&Wallace,1978).Intheirequation(1),Northetal.(2021)usedthefirsttwotermsofaFourierrepresentationofanannualtemperature
timeseries.Theirequation,usingmonthsasthetimeunit,isgivenby
where xtisthetemperature(in°C),tisthetime(inmonths),a0isthecentervalueforthetemperatureoscillations(in°C),Aiistheamplitude(in°C)
andϕiisthephaseshift(inmonths)oftheannual(i =1)andsemi-annual(i =2)componentcycles.
Wefit equation(A3)tothemeanmonthlytemperaturedatafromOntarioAirport(ONT)(Figure4a) using themethodofnonlinearleast
squares.TheparameterestimatesandtheirstandarderrorsappearinTableA3.Thephaseshift sarerelativetothemonthofSeptember.The
temperature data andthe fittedfunction appearinpanel A of FigureA2. Thefitted functionprovidesa gooddescription of the observed
temperaturetimeseries.
ThetwocomponentcyclesareshownseparatelyinpanelBofFigureA2.Theannualcycleisthelargerofthetwoandisobtainedbysetting
A2 =0inequation (A3). Itpeaksin July–Augustandhasitstrough inJanuar y–February.Thesmaller semi-annualcycle,obtainedby setting
A1 =0 in equation (A3),peaks twice per year in February–March andAugust–September and has it stroughsinNovember–December and
May–June.Theamplitudeofthesemi-annualcycleis21%thesizeoftheamplitudeoftheannualcycle.
Inpanel(c)ofFigureA2,weplottedthetemperaturetimeseriesobtainedafterfilteringouttheannualcycle(Figure4a,dashedline)withthe
semi-annualcyclefrompanel(b)ofFigureA2.Thetheoreticalandfilteredcycleshavethesameperiodicity,phase,andapproximateamplitude.
Moreover,onecanseetheeffectsoflongtimescalevariabilit yinthewaythefiltereddatameandersaboveandbelowthesemi-annualcycle.
Thisgivesusconfidencethattheband-stopfilterusedtoattenuatetheannualcycleworkedwell.
Wefitequation(A3)to theobservedtemperaturetime serieswithA2 =0,sothatonlytheannualcyclewaspresent.Theparameteresti-
matesandtheirstandarderrorsarealsopresentedinTableA3.WecomputedthefollowingAkaikeInformationCriterion(AIC)forbothfitted
models:
(A3)
xt=a0+A1cos
2𝜋
t+𝜙1
12
+A2cos
4𝜋
t+𝜙2
12
,
AIC =nln
(
SSE
n
)
+2k
,
TAB LE A 2  Massofacorns(g)ina1m2plotundereachtreeinthestudyarea
Tre e
Year
2012 2013 2014 2015 2016 2 017 2018 2 019 2020
Blueoak 0250 683 0 7 12 098
Canyonoak 230 960 053 54 19 27 84 68
Coastliveoak 18 290 18 29 353 0 5
Coastliveoak 75 880 60 2 40 1 16
Coastliveoak 69 590 234 39 40 0 24
Coastliveoak 2680 210 14 0 0 0 136
Mean±SE 65.7±35.5 608.3± 120.1 5.7± 2.7 34.8± 12.3 18 .7 ± 9. 2 6.5± 2.7 7. 0 ±4.4 14. 2± 14.0 57. 8 ± 21.2
   
|
21 of 23
DESHA RNAIS E t Al.
where n =140ist hesam plesize,SSEistheresid ualsumofs quare sfo rth ere gression,andkisthenumbe roffit te dpa ra meter s(k =3forth ean nual
modelandk =5forthemodelwithbothannualandsemi-annualcycles).TheannualmodelhadanAICof165.02andthemodelwithbothannual
andsemi-annualcycleshadanAICof114.82.ThesmallerAICsuggeststhatthemodelwithbothcycliccomponentsisabetterdescriptionofthe
seasonaltemperaturechanges.Themagnitudeofthedifference,ΔAIC=50.20,suggeststhattheannualmodelhaslittlesupportrelativetothe
fullmodel.
APPENDIX E
MEAN ANNUAL TEMPERATURE DATA FOR ONTARIO AIRPORT
Weconductedaspectralanalysisofmeanannualtemperatures forOntarioAirport(ONT).Thedatavaluesaretheaveragesofthe12 mean
monthly temperaturesfor eachyear.The firstyearofcomplete data isfor1999,sothetimeseriesspans22yearsfrom1999through2021
(Figure A3, panel (a)).We used the same methodsasdescribedin section2.5forclimatedata: wedetrendedthedataby fit ting aquadratic
poly no mialusingl eas tsqu ar es,computedth es tan da rd iz ed re si duals ,andcomp ut edas mo ot hedno rm al iz ed sp ect rumfortheresidu alti me se -
ries.Becausethetimeseriesisrelativelyshort,weusedsmallerspansof3and3datapointsforthetwoiterationsofthesmoothingalgorithm.
Parameter Description
Estimate (±SE)
for full model
Estimate (±SE) for
annual model
a0centervalueofcycles(°C) 19. 5 0 ± 0 .12 19.4 9±0 .15
A1amplitudeofannualcycle(°C) 6.82± 0 .18 6.80± 0.21
ϕ1phaseofannualcycle(mo.) 1. 52±0.05 1.53±0.06
A2amplitudeofsemi-annualcycle(°C) 1.42± 0 .18
ϕ2phaseshiftofsemi-annualcycle(mo.) 0.48± 0 .12
TAB LE A 3 Parameterestimatesand
standarderrorsforfullandannualmodels
FIGURE A1 Monthlytimeseriesfornumbersofjuvenilesandsubadultsfor(a)theWGSand(b)theFSfromJanuar y2015throughMay
2021.Theshadedregionsrepresentspring(March–May)andfall(September–November)
JMMJ SN JMMJ SN JMMJ SNJMMJ SNJMMJ SNJMMJ SNJMM
0
2
4
6
8
Juveniles and subadults
Month
JMMJ SN JMMJ SN JMMJ SNJMMJ SNJMMJ SNJMMJ SNJMM
0
2
4
6
8
10
12
Juveniles and subadults
Month
2015 2016 2017 2018 2019 2020
2015 2016 2017 2018 2019 2020
(a)
(b)
22 of 23 
|
   DESHARNAIS E t Al.
Wecomputed95%significancethresholdbygenerating2000randompermutationsoftheresiduals,obtainingasmoothednormalizedspec-
trumforeach,andusingthe95thpercentilesofthesesurrogatespectraforthe95%limits.FigureA3showstheONTtemperaturedataand
spectrum.Thefittedquadraticpolynomial(dashedlineinFigureA3,panel(a))isnearlylinearandsuggestsatrendofincreasingtemperatures.
Althoughthesignificancebandiswideduetotheshortlengthofthetimeseries,thespectrumfortheresidualsshowsasignificantpeakata
timescaleofabout7years(FigureA3,panel(b)).Thiscorrespondstothetimescalerangeofthelocalpeakinmeanwaveletpowerinthelower
rightcornerofFigure9.
FIGURE A2 (a)TimeseriesforobservedandfittedmeanmonthlytemperaturesfromOntarioAirport.(b)Plotsofthecomponentannual
andsemi-annualcyclesfromthefullmodel(equationA1).(c)Comparisonplotsofthefilteredtemperaturetimeseriesandthetheoretical
semi-annualcycle
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
10
15
20
25
30
Monthly mean temperature (°C)
Observed
Fied
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
10
15
20
25
30
Monthly mean temperature (°C)
Annual
Semiannual
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
15
20
25
Monthly mean temperature (°C)
Filtered
Semiannual
Month
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(a)
(b)
(c)
   
|
23 of 23
DESHA RNAIS E t Al.
FIGURE A3 (a)Timeseriesforobser vedmeanannualtemperaturesfromOntarioAirport.Thedashedlineisthefittedquadratictrend
curvewhichisnearlylinear.(b)Smoothednormalizedspectrumforthestandardizedresidualsfromthetemperaturetimeseriesinpanel(a).
Dashedlineisthe95%significancethresholdforthenullhypothesisofnotimescaledependenceintheorderingoftheresiduals
2000 2005 2010 2015 2020
Year
17
18
19
20
21
Mean annual temperature (°C)
20 10 54
32
Timescale (years)
0.00.1 0.20.3 0.
40
.5
Frequency (cycles/year)
0.00
0.05
0.10
0.15
0.20
0.25
Normalized spectral power
(a) (b)
... Although quantitative data are lacking, available evidence suggests that populations of western gray squirrels have declined in human-dominated areas (Muchlinski et al. 2009;Cooper and Muchlinski 2015). This decline is generally attributed to competition with introduced congeneric species native to eastern North America, eastern gray squirrels (Sciurus carolinensis) and eastern fox squirrels (Sciurus niger;Jessen et al. 2018; Desharnais et al. 2022;Tran et al. 2022). At the northern edge of their range in Washington state, for instance, Western . ...
... Furthermore, this range expansion coincided with an increase in climatic suitability, as measured by the climate present in the species historical range, in the area of expansion along the eastern Sierra Nevada and western Great Basin. Colonization of a tree squirrel into a community that previously lacked arboreal species exemplifies earlier predictions regarding the formation of nonanalog ecological communities in response to climate change (Williams and Jackson 2007) and represents a possible refugium for the species that faces pressures from introduced species elsewhere in its range (Desharnais et al. 2022;Tran et al. 2022). ...
Article
Full-text available
Globally, animals that are range-restricted are frequently becoming species of conservation concern, in part due to competitive exclusion by phylogenetically and ecologically similar species that are more tolerant of human disturbance. However, climate and land use changes to natural landscapes can create pockets of refugia for range-restricted species. Western gray squirrels (Sciurus griseus) are native to the west coast of North America, principally California and western Oregon. Over the past several decades, Western Gray Squirrel populations have declined in human-dominated areas, with increased competition from introduced congeneric species native to eastern North America cited as a primary driver. Despite declines in their established range west of the Pacific Crest in western North America, western gray squirrels are extending their range into the Great Basin, where they were not historically found. Using a network of remote camera traps deployed across the Sierra Nevada–Great Basin ecotone in northwestern Nevada, we detected western gray squirrels across 16 of 100 camera-trapping sites. The majority of detections were located in piñon–juniper woodland, a land cover type not previously occupied by this species. Occupancy modeling revealed that western gray squirrels were equally likely to occur in piñon–juniper woodland compared to mature pine forest that they occupy elsewhere in their range. A species distribution model parameterized with historical gray squirrel observations (pre-1950), indicated increased climatic suitability for the species on the eastern side of the Sierra Nevada in recent decades, which may have facilitated this range expansion. Our findings reveal the potential for species declining in their historical range to colonize novel habitats that become increasingly suitable as a result of human-driven changes to ecosystems.
Article
Full-text available
We conducted a comprehensive review of the research literature on the impacts of invasive species on critically endangered species that are included in the International Union for Conservation of Nature (IUCN) Red List. This review reveals that, globally, invasive species threaten 14% (28% on islands) of all critically endangered terrestrial vertebrate species (birds, mammals and reptiles), threatened predominantly by a few invasive mammal predators (mainly rodents and feral cat). The chytrid fungal pathogen is the main threat for amphibians. The control and management of the invasive species identified in this study should be a high priority for global biological conservation, thereby contributing towards the achievement of the goals of the Post-2020 Framework of the Convention on Biological Diversity. Further research on the impacts of invasive species and interactions with other drivers will be essential for the conservation of highly threatened species.
Article
Full-text available
Habitat loss and fragmentation due to urbanization are key contributors to the decline of biodiversity. The consequence of these factors is small, isolated populations that are more susceptible to deterministic and stochastic threats of extinction. There is an increasing trend in population reductions of the western gray squirrel (Sciurus griseus) in urban areas of Southern California, USA. Griffith Park (GP) contains one of the last urban populations of western gray squirrels (WGS) present in Los Angeles. We used hairtubes to collect hair of WGS at 3 sites within GP and at 5 sites outside of GP. Twelve microsatellite loci and a 550 bp segment of the mitochondrial control region were used to examine the genetic diversity within GP and among all sample sites, and to determine gene flow within GP. Results revealed subpopulations within GP have low levels of allelic richness at microsatellite loci (AR = 2.28–2.53) and low mitochondrial haplotype diversity (HD = 0.000–0.271). We found significant genetic differentiation (FST = 0.109–0.156, p < 0.001), high levels of relatedness within each GP subpopulation (0.399–0.633), and a lack of private alleles (AP = 0.09–0.27) at microsatellite loci. Mode shifts in microsatellite allele frequencies and positive M-ratio tests provide evidence of bottlenecks within a GP subpopulation. The effective population size for GP (Ne = 9.1) highlights the effects of genetic drift on this isolated population. We suggest conservation efforts that could maintain these last extant populations of a native species in urban Los Angeles.
Article
Full-text available
For many squirrel species, their intense – arguably coevolutionary – interactions with seed and nut producing trees have significantly shaped their biology and diversity. Here we provide an overview of this relationship in a range of forest types worldwide. We first review the evidence for how forest composition (conifer, hardwood, mixed hardwood and overall diversity of tree species) influences interactions between squirrels and seed trees and, ultimately, the role of squirrels as either seed predators or seed dispersers. We review, for example, the intense selective pressure squirrels exert on conifer trees as seed predators and the diversity of morphological traits and behavioral strategies that allow them to efficiently exploit this critical resource. In contrast, we show how the squirrel’s role shifts to one of seed disperser in hardwood forests and how the specifics of this interaction varies further with forest structure, forest composition and climatic conditions. We then review the growing evidence for the tight ecological and evolutionary dance between the squirrels and the oaks that has shaped the biology of both across the globe. We show how a suite of seed (acorn) characteristics (e.g., chemical gradients, germination schedules, seedling morphology and tolerance-resistance strategies) are all intimately tied to the scatter-hoarding decisions of several squirrel species. And, based on studies in oak forests in Central America, Mexico, North America, and Eurasia, we also highlight the behavioral strategy of embryo excision now reported for six species across at least four genera of squirrels. This behavior, glaringly absent in other scatter-hoarding rodents worldwide, is now known be an innate trait in at least two species, one in Asia and another in North America. We review extensive recent research on one species of squirrel, the Siberian chipmunk (Tamias sibiricus), which exhibits a suite of behavioral strategies unique to that of other squirrels that independently contributes to seed dispersal and establishment. Finally, we outline numerous remaining questions concerning plants and other taxa of squirrels still open to investigation.
Article
Full-text available
Understanding spatiotemporal variation in environmental conditions is important to determine how climate change will impact ecological communities. The spatial and temporal autocorrelation of temperature can have strong impacts on community structure and persistence by increasing the duration and the magnitude of unfavorable conditions in sink populations and disrupting spatial rescue effects by synchronizing spatially segregated populations. Although increases in spatial and temporal autocorrelation of temperature have been documented in historical data, little is known about how climate change will impact these trends. We examined daily air temperature data from 21 General Circulation Models under the business-as-usual carbon emission scenario to quantify patterns of spatial and temporal autocorrelation between 1871 and 2099. Although both spatial and temporal autocorrelation increased over time, there was significant regional variation in the temporal autocorrelation trends. Additionally, we found a consistent breakpoint in the relationship between spatial autocorrelation and time around the year 2030, indicating an acceleration in the rate of increase of the spatial autocorrelation over the second half of the 21st century. Overall, our results suggest that ecological populations might experience elevated extinction risk under climate change because increased spatial and temporal autocorrelation of temperature is expected to erode both spatial and temporal refugia.
Article
Full-text available
Population densities of a species measured in different locations are often correlated over time, a phenomenon referred to as synchrony. Synchrony results from dispersal of individuals among locations and spatially correlated environmental variation, among other causes. Synchrony is often measured by a correlation coefficient. However, synchrony can vary with timescale. We demonstrate theoretically and experimentally that the timescale‐specificity of environmental correlation affects the overall magnitude and timescale‐specificity of synchrony, and that these effects are modified by population dispersal. Our laboratory experiments linked populations of flour beetles by changes in habitat size and dispersal. Linear filter theory, applied to a metapopulation model for the experimental system, predicted the observed timescale‐specific effects. The timescales at which environmental covariation occurs can affect the population dynamics of species in fragmented habitats.
Article
The native western gray squirrel (Sciurus griseus) and introduced fox squirrel (Sciurus niger) can be found occupying various locales in southern California (USA) either coexisting or living separately. Since the introduction of the fox squirrel in 1904, there have been local extinctions of gray squirrels in parks and natural areas in urban and suburban locations. Little research has focused on the coexistence of these two species with no work with an in-depth focus on their behavior. The objective of this study was to observe the daily activity of gray and fox squirrels in areas where they coexist and those they occupy alone to determine if the presence of the fox squirrel is negatively impacting the behavior of the gray squirrel. Focal animal observations were conducted using the instantaneous sampling method in three habitat types: coexistence, gray squirrel only, and fox squirrel only. Daily activity related to self-maintenance, communication, feeding, and the location in which the animals were observed were recorded within 15-min observations of individual squirrels. There was no negative impact from the fox squirrels; however, there were behavioral similarities among the species when coexisting which suggests niche overlap. An overlap in the use of space and time in shared habitats can be detrimental to the already declining population of gray squirrels in urban and suburban habitats, particularly in times when environmental conditions are less than ideal and resources are less abundant.
Article
Statistical methods are required to evaluate and quantify the uncertainty in environmental processes, such as land and sea surface temperature, in a changing climate. Typically, annual harmonics are used to characterize the variation in the seasonal temperature cycle. However, an often overlooked feature of the climate seasonal cycle is the semi‐annual harmonic, which can account for a significant portion of the variance of the seasonal cycle and varies in amplitude and phase across space. Together, the spatial variation in the annual and semi‐annual harmonics can play an important role in driving processes that are tied to seasonality (e.g., ecological and agricultural processes). We propose a multivariate spatiotemporal model to quantify the spatial and temporal change in minimum and maximum temperature seasonal cycles as a function of the annual and semi‐annual harmonics. Our approach captures spatial dependence, temporal dynamics, and multivariate dependence of these harmonics through spatially and temporally varying coefficients. We apply the model to minimum and maximum temperature over North American for the years 1979–2018. Formal model inference within the Bayesian paradigm enables the identification of regions experiencing significant changes in minimum and maximum temperature seasonal cycles due to the relative effects of changes in the two harmonics.
Article
Invasive species can trigger trophic cascades in animal communities, but published cases involving their removal of top predators are extremely rare. An exception is the invasive cane toad (Rhinella marina) in Australia, which has caused severe population declines in monitor lizards, triggering trophic cascades that facilitated dramatic and sometimes unexpected increases in several prey of the predators, including smaller lizards, snakes, turtles, crocodiles, and birds. Persistence of isolated populations of these predators with a decades-long sympatry with toads suggests the possibility of recovery, but alternative explanations are possible. Confirming predator recovery requires longer-term study of populations with both baseline and immediate post-invasion densities. Previously, we quantified short-term impacts of invasive cane toads on animal communities over seven years at two sites in tropical Australia. Herein, we test the hypothesis that predators have begun to recover by repeating the study 12 yr after the initial toad invasion. The three predatory lizards that experienced 71–97% declines in the short-term study showed no sign of recovery, and indeed a worse fate: two of the three species were no longer detectable in 630 km of river surveys, suggesting local extirpation. Two mesopredators that had increased markedly in the short term due to these predator losses showed diverse responses in the medium term; a small lizard species increased by ~500%, while populations of a snake species showed little change. Our results indicate a system still in ecological turmoil, having not yet reached a " new equilibrium " more than a decade after the initial invasion; predator losses due to this toxic invasive species, and thus downstream effects, were not transient. Given that cane toads have proven too prolific to eradicate or control, we suggest that recovery of impacted predators must occur unassisted by evolutionary means: dispersal into extinction sites from surviving populations with alleles for toxin resistance or toad avoidance. Evolution and subsequent dispersal may be the only solution for a number of species or communities affected by invasive species for which control is either prohibitively expensive, or not possible.