Access to this full-text is provided by Wiley.
Content available from Ecology and Evolution
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2022;12:e8779.
|
1 of 23
https://doi.org/10.1002/ece3.8779
www.ecolevol.org
Received:12Novemb er2021
|
Revised:4M arch202 2
|
Accepted :15March20 22
DOI: 10.1002/ece3.8779
RESEARCH ARTICLE
Timescale analyses of fluctuations in coexisting populations of
a native and invasive tree squirrel
Robert A. Desharnais1 | Alan E. Muchlinski1 | Janel L. Ortiz2 | Ruby I. Alvidrez1 |
Brian P. Gatza1
Thisisanop enaccessarti cleundertheter msoftheCreativeCommonsAttributionL icense,whichpe rmitsuse,dis tribu tionandreprod uctioninanymed ium,
provide dtheoriginalwor kisproperlycited.
©2022TheAuthor s.Ecolog y and EvolutionpublishedbyJohnWiley&S onsLtd.
1Depar tmentofBiologi calSci ences,
Califo rniaStateUniver sityatLosAngeles,
LosAngeles,California,USA
2CenterforExcellenceinMathematics
andScienceTeaching ,CaliforniaSt ate
PolytechnicUniversityatPomona,
Pomona,California,USA
Correspondence
Rober tA.Desharnais,Dep artm entof
Biologi calSci ences,Califo rniaState
UniversityatLosAngeles,5151State
UniversityDr ive,LosA ngeles,California ,
90032 ,USA.
Email:rdeshar@calstatela.edu
Funding information
Nationa lScienceFoundation,Grant/
AwardNumber:DMS-1225529
Abstract
1. Competition from invasive species is an increasing threat to biodiversity. In
Souther n California, t he western gray squi rrel (Sciurus griseus, WGS) is facing
competitionfromthefoxsquirrel(Sciurus niger,FS),aninvasivecongener.
2. We used spect ral methods to analyze 140 consecutive monthly censuse s of
WGSandFSwithina11.3hasectionoftheCaliforniaBotanicGarden.Variation
inthenumbersforbothspeciesandtheirsynchronywasdistributedacrosslong
timescales(>15months).
3. Afterfilteringoutannualchanges,concurrentmeanmonthlytemperaturesfrom
nearby Ontario Airport yielded a spectrumwith a largesemi-annual peak and
significant spectral power at long timescales (>28 months). The cospectrum
between WG S numbers and temp erature revealed a sig nificant negati ve cor-
relation at lon g timescales (>35 months). Cosp ectra also revealed sig nificant
negativecorrelationswithtemperatureatasix-monthtimescalefor bothWGS
andFS.
4. Simulations f rom a model of two compe ting species indic ate that the risk of
extinctionfortheweakercompetitor increasesquickly asenvironmentalnoise
shiftsfromshorttolongtimescales.
5. Weanalyzedthetimescalesoffluctuationsindetrendedmeanannualtempera-
turesforthetimeperiod1915–2014from1218locationsacrossthecontinental
USA. In the last two decades, significant shifts from short tolong timescales
haveoccurred,from<3yearsto4–6years.
6. Ourresults indicate that (i) population fluctuations inco-occurringnativeand
invasivetreesquirrelsaresynchronous,occuroverlongtimescales,andmaybe
drivenby fluctuationsin environmental conditions;(ii)longtimescale popula-
tionfluctuationsincreasetheriskofextinctionincompetingspecies,especially
fortheinferiorcompetitor;and(iii) the timescalesof interannual environmen-
tal fluctuationsmay be increasing from recenthistorical values. These results
2 of 23
|
DESHARNAIS E t Al.
1 | INTRODUCTIO N
Competitionfromnon-native,invasivespeciesisanincreasingthreat
tothe biodiversityofnative species in aglobalized world.Invasive
species areof ten considered one of the mostimportant threats to
ecologicalfunctionandatopdriverofspecies extinctions(Dueñas
etal.,2021;Flory&Lockwood,2020).Thepresenceofinvasivespe-
ciescanalteranimalcommunities,triggertrophiccascades,displace
nativespecies,andevenleadtohybridizationswithsimilarorrelated
species ( Doody et al., 2017; Huxel, 1999). The a bility to be mor e
competitiveoverlimitedresourcesisoneofthecharac teristicsthat
enablesinvasivespeciestobesuccessful.Inaddition,theyareoften
characterizedbyhavinglifehistorytraitswithcolonizercharacteris-
ticsasfollows:shortgenerationtimes,highreproductionrates,and
fast grow th rates (Sa kai et al., 20 01). With this comp etitive edge ,
theycaninvadeanddisplacenativespecies.
Anexamplewhere a nativespeciesisthreatened in somehab-
itats by co mpetition fro m an invasive species o ccurs in Southe rn
California, where the westerngray squirrel (Sciurus griseus, WGS,
Figure 1a) is facing increasing competition from the fox squirrel
(Sciurus niger,FS,Figure1b),anon-native,invasivecongener.WGSs
arenative to thewesterncoast of Nor th America withahistoric al
distrib ution exte nding from cent ral Washingto n to Baja Califor nia
(Carraway & Verts, 1994; Escobar-Flores et al., 2011). Populations
ofWGSshave beendeclining in areasof Washing ton, Oregon,and
Califor nia (Cooper, 2013; Cooper & M uchlinski, 2015; Muc hlinski
etal.,2009;Stuart,2012).InWashington,theyarelistedasastate-
threatenedspecies (Linders& Stinson,2007),while inOregonthey
areanOregon ConservationStrategySpecies(OregonDepartment
ofFish &Wildlife, 2016).Whiletherehavebeenonlyafewstudies
regardin g populatio ns of WGSs in Calif ornia, the re is a noticeabl e
trendinthedeclineofthesesquirrelsinareasbelowanelevationof
457m (Cooper,2013;Cooper & Muchlinski,2015).As of now,the
WGSdoesnothavespecialconservationstatusinCalifornia.
The FS has a historical native range inthe eastern and central
United Statesand the southern prairie provinces of Canada, south
ofapproximately 48ºN latitude (Koprowski,1994),where theyare
known to live in forests, woodlands, agricultural landscapes, and
urbanareas(Kleimanetal.,2004).Throughbothnaturalandhuman-
assistedrangeexpansion,theFSisnowcommoninmanyareaswest
of its hist orical range (i Naturalist acce ssed 24 July 2021, htt ps://
www.inaturalist.org/taxa/46020-Sciurus-niger). Fox squirrels
have been int roduced or have ex panded thei r range into Arizo na,
California,Colorado,Idaho, Montana, New Mexico,Oregon,Utah,
havebroadimplicationsfortheimpactofclimatechangeonthemaintenanceof
biodiversity.
KEYWORDS
climatechange,foxsquirrel,invasivespecies,populationtimescales,spectralanalysis,Western
graysquirrel
TAXONOMY CLASSIFICATION
Conservationecology;Globalchangeecology;Invasionecology;Populationecology;
Theorecticalecology
FIGURE 1 Photographsofthetwo
diurnallyactivetreesquirrelsthatare
presentinSouthernCalifornia:(a)the
nativeWesternGraySquirrel,Sciurus
griseusand(b)thenon-nativeFoxSquirrel,
Sciurus niger.TheFoxSquirrelhasreplaced
theWesternGraySquirrelinsome
habitat s,whilethetwospeciescoexist
inotherhabitats.PhotographsbyAlan
Muchlinski
(a) (b)
|
3 of 23
DESHA RNAIS E t Al.
Washington,andWyoming(Bradyetal.,2017;Flyger&Gates,1982;
Jordan&Hammerson,1996;Koprowski,1994;Steele&Koprowski,
2001;Wolf&Roest,1971).
Foxsquirrelshavedispersedfromoriginalpointsofintroduction
through naturaldispersalandthrough intentionalmovement ofan-
imalsbyhumans(Frey &Campbell,1997;Geluso,2004;Kinget al.,
2010).SincetheoriginalintroductiontoLosAngelesCount y(Becker
&Kimball,1947),theFS hasexpandeditsrangeata rateof1.60to
3.00 km/year in heavilysuburbanized areasofSouthern California
(Garcia&Muchlinski,2017).AlthoughtheFShasgenerallyremained
restri cted to areas of h uman habit ation, with co ntinued ran ge ex-
pansion th e FS has become sym patric in some isol ated suburban
habitat fragmentsandincertainfoothillareaswiththenativeWGS
(Hoefler&Harris,1990).
FSsmaycompete with native WGSsforresources suchasnest-
ing sites an d food, and the FS ha s replaced the WGS w ithin cer-
tain habitats in Southern California (Cooper & Muchlinski, 2015;
Muchlinskietal., 2009).LosAngelesCounty canbeconsideredan
ideal location forinvasion by theFSgiven the mild Mediterranean
climateandyear-roundfoodsupplyof feredbyexoticplantspecies,
accompaniedbytheabsenceofthenativeWGSthroughoutmuchof
theLosAngelesBasin.TheFSisbothmorphologically,ecologically,
andbehaviorally similartothis native species; thus,these overlaps
inform, function, activity,andpresence provideasituation where
interactionsbetweenthetwospeciescanbestudied(Ortiz,2021).
Manyfactorscaninfluencepopulationpersistence,butonethat
has received comparatively less attention is the timescale of envi-
ronmentalandpopulationfluctuations. In the currentstudy,we in-
vestigatedtheeffectsoftimescalesusingthree approaches.First,
weapplied spectralanalysestoexaminethe timescale distribution
of the varia nce and covari ance of WGS, FS , and weather t ime se-
ries. Se cond, we cond ucted mod el simulati ons to examine t he im-
plicationsofchangesinthetimescaleofenvironmentalfluctuations
on the coexistenceof a native species facing competition from an
invasive spe cies. Third , we used spec tral and wavel et methods to
examine thelong-termchanges in thetimescale distributionofcli-
matedata.
By analog y with the s pectru m of visible lig ht, time ser ies fluc-
tuations t hat occur over lo ng timesca les are refer red to as having
ared spectrum and thoseoccurringovershort timescales as having
ablue spectrum(Lawton,1988). Thesearedistinguishedfromwhite
noiserandomfluctuations,whichhavenoserialautocorrelations.In
general, theoretical analysesfromsingle-species discrete-time un-
structured populationmodelssuggestthattheresponsetocolored
environmental noisedependson the type of population dynamics.
Deterministic models with stable equilibria can exhibit undercom-
pensatory dynamics, where thepopulation approaches equilibrium
monotonically,orovercompensatorydynamics,wheretheapproach
to equilibrium exhibits damped oscillations. Many studies have
shown that reddened environmental spectra increase extinction
risk for undercompensator y populations and blue spectraincrease
extinctionriskforovercompensatorypopulations(Danielian,2016;
García-Carreras&Reuman,2011;Mustinetal.,2013;Petcheyetal.,
1997; Ripa & Heino, 1999; Ripa & Lundberg, 1996; Ruokolainen
et al., 20 09; Schwager et al., 20 06). While some s tudies reached
differ ent conclusions ( Heino, 1998; Heino et al ., 2000), S chwager
et al. (20 06) showed that these contrasting results depend onthe
modeling details and a consideration of the likelihood of cata-
strophic events. In their simulations of three competing species,
RuokolainenandFowler(20 08)foundthatextinctionriskincreased
with reddened environmental noise when species responded in-
dependentlyto the environmentbutdecreasedwhen there was a
strongcorrelationbetweenspecies-specificresponses.Ontheem-
pirica l side, Pimm and Redfe arn (1988) looked at 100 time s eries
frominsects,birds,andmammalsandfoundthatthevarianceofthe
populationfluctuations increased withthewindow of timeusedin
thecalculation,suggestingthatthesepopulationshaveredspectra.
García-Carreras and Reuman (2011)analyzed the dynamics of 147
animalpopulationsandclimatedataforthepopulationlocationsand
found a pos itive correl ation bet ween the biot ic and climati c spec-
tralexponents(ameasureofspectralcolor),withmostspectrabeing
red-shifted. Inchaustiand Halley (2003) directly examined the re-
lationshipbetweenpopulationvariabilityandquasi-extinctiontime
(measuredasthetimerequiredtoobservea90%declineofpopula-
tionabundance)foralargesetofdatacomprisedof554populations
for123 animalspeciesthatwerecensusedfor more than 30 years.
The results showed that the quasi-extinction time was shorter for
populationshavinghighertemporalvariabilityandredderdynamics.
Inalaboratory microcosm experiment, Fey and Wieczynski (2017)
lookedathow the autocorrelationin thermalwarming affectedthe
abilityofanon-nativecladoceran,Daphnia lumholtzi,toestablishit-
selfinthepresence ofa nativecongener,D. pulex. The non-native
specieswasabletoattainsignificantlyhigherpopulationdensitiesin
thetreatmentwithanautocorrelatedwarmingregimerelativetothe
treatmentwithuncorrelatedwarmingbutthe same meantempera-
ture andthe unwarmed control. Although, in all three treatments,
D. lumholtziwentextinctbytheendoftheexperiment,theirresults
demonstratedthatthetimescaleofenvironmentalfluctuationscan
impact t he ability of an inv asive species to est ablish itsel f in the
presenceofanativecompetitor.
Spect ral methods ar e a powerful too l for character izing the
timescales of fluctuations in a time series (Brillinger, 2001). A
univariatetime seriescan be transformedintoapower spectrum,
whichdescribesthedistributionofthevarianceofthetimeseries
at diffe rent freque ncies. Th e sum of the spec tral powe rs across
freque ncies is prop ortiona l to the total va riance of the ti me se-
ries. If the time series is multivariate, in additionto the spectra,
therearealsocross-spectraforeachpairoftimeseriesvariables.
The cross-spect rum is a complex-valu ed function of fre quency.
Therealpartisthecospectrum,whichdescribesthedistributionof
thein-phasecovariancebetweenthetimeseriesatdif ferentfre-
quencies,andtheimaginar ypartisthequadrature spectrum,which
isaphase-shiftedcovariance.The sum of the cospectral powers
across frequencies is proportional tothe total covariance of the
two time series. The cospectrum can also be viewed as the dis-
tributionofthecorrelationcoefficient across frequencies. Since
4 of 23
|
DESHARNAIS E t Al.
frequency,f,istheinverseoftheperiod,thespectralandcospec-
tral powe r provide inform ation on the vari ance and correl ation,
respectively,atthetimescale1/f.
Thecolorofapowerspectrumcanbecharacterizedusingaspec-
tral exponent (Gar cía-C arreras & Re uman, 2011; Vasseur & Yodzis,
2004).IfSfisthe powerofthe spectrumatfrequency f,thespec-
tral exponent canbecomputedasthe slopeofaleast-squares lin-
ear regression of log(Sf) versuslog(f). Negativespectralexponents
arecharacteristicofspectradominated by long timescale variation
(red spec tra), and posi tive values a re indicati ve of short ti mescale
variation(bluespectra).Whitenoisespectrawillhaveaspectralex-
ponentofzero.Whenappliedtoenvironmentalandpopulationtime
series,spectralcolor allowsone tobetterassess the riskofecolog-
icalextinction.
Wavelet analyses have been used in ecology to identify
changes in t he spect ral distri butions of po pulation an d environ-
mental fluctuations over time (Cazelles et al., 2008). Whereas
spec tra la na lysesassu me th at thest at is tic alprope rti es ofth et im e
series do not vary with time, wavelet analysis can be applied to
non-s tationar y time serie s. A filteri ng functio n is applied to th e
timeseriessignaltoallowalocalestimationofspectralcharac ter-
isticsofthesignalatapointintime.Thefilteringfunctioncanbe
adjustedto lookatdifferenttimes and frequencies.The result is
atwo-dimensionalpictureof thewaveletpower as afunction of
frequencyandtime.Waveletscanbeused,forexample,toinvesti-
gateth eim pactone cologicalp opula tionsofclimatereg imeshif ts ,
such as the North Atlantic Oscillation(Sheppardet al., 2016), or
changesinthetimescaleofenvironmentalfluctuationsduetocli-
matechange.
Global c limate is undergoi ng rapid change s (Masson-D elmotte
etal.,2021).Whilethethreats tobiodiversity havefocusedmostly
onincreasingtemperatures,itisfeasiblethatdisruptionstoclimate
patternsmayalsoaffectthetimescaleofenvironmentalfluctuations,
and,ifso,thismayhaveecologicalimplicationsforpopulationper-
sistence.Forexample,García-CarrerasandReuman(2011)analyzed
detrendedmeansummertemperaturetimeseriesfromweathersta-
tionsonsixcontinentsandfoundsignificantshiftstoshortertimes-
cales(blueshif ts)inthespectralexponentsfortheyear s1951–1990
comparedwith1911–1950.WangandDillon(2014)analyzedannual
global temperature cyclesfrom1975to2013and foundsignificant
increas es in the autoco rrelation of te mperature v alues (red shif ts)
intropicalandtemperateregions.DiCeccoand Gouhier(2018) ex-
amined air temperature values predicted by 21 global circulation
modelsunderthebusiness-as-usualscenarioandfoundthatspectral
expone nts were pre dicted to shi ft negati vely to longer t imescal es
fromtheyears1870through2090.Forconservationpurposes,it is
importanttogainabetterunderstandingofhowchangesinclimate
maybeassociated with changes in the timescaleofenvironmental
fluct uations and how this m ay impact ext inction risks f or natural
populations.
The objec tives of thepresentstudy were(1)to evaluate, using
spectralmethods,thetimescaleofpopulationfluctuationsinalong
time ser ies (14 0 months) where the WG S and FS have coexisted
together,(2)to determine the extenttowhichthetimescaleofthe
squirrel population fluctuationsare determined by environmental
factor s, (3) to infer, using model si mulations, how cha nges in the
timescaleofenvironmentalfluctuationscouldimpactthetimescale
ofpopulationfluctuations and theriskofextinction in a systemof
two comp eting specie s, and (4) to assess t he extent to whi ch the
timescale of year-to-year environmental fluctuations aroundt heir
trendsischanging,possiblyasaresultofhumanimpactsonclimate,
andto assesstheimplicationsof theseresultsonthepotentialloss
ofnativebiodiversit y.
2 | MATERIALS AND METHODS
2.1 | Collection of census data
Weestablishedthree transect lineswithina11.3 ha sectionofthe
CaliforniaBotanicGarden (CBG) inClaremont,CA,during October
of2009.Wedefinedsamplingpo in tsal on gt ra ns ec tl in es at40 -mi n-
tervalspr ov iding35view point sw ith in thest ud yarea .Twores ear ch -
ersconductedacensusalongthetransectlinesoncepermonthfrom
October2009throughMay2021.Theresearchersspent3minutes
ateach samplingpoint,witheachresearcherresponsible forcount-
inganimalswithinaseparate180-degreearcfromtheviewpoint.We
began each monthlycensus at080 0handendedatapproximately
1030h.Weswitchedthestartingtransectlineforthemonthlycen-
susbetweenLine1andLine3onalternatemonths.
Researchersconductingeachcensuswereconservativeincount-
ingthe numberofsquirrelsobser ved,therebygivinganestimateof
observablepopulationsizeatapointintime.Iftherewasanychance
thatasquirrel observedat a samplingpoint had beencountedata
previous samplingpoint, that individual wasnot countedasanew
observationunlessthe animalwas obviouslydifferentfromthe an-
imal previ ously obser ved (a juvenile in stead of an adul t or a male
insteadofafemale,whengendercouldbeassessed).Numbersmay
vary due to fac tors such as natality, mortality,dispersal,andactiv-
ity level s, which could cha nge due to seasona lity or repro ductive
activity.
The four corners of the 11.3 ha study area were defined by
the follow ing GPS coord inates: SE 34 .110262 & −117.714651, SW
34.110258 & −117.715921, NE 34.115883 & −117.714419, NW
34.115684&−117.715891.CBGisanativeCaliforn iagard en,mean-
ingall plant s are nativetoCalifornia, but notspecifically Southern
California.Atthebeginningofthestudyin20 09,thehabitatwithin
thestudyareaincluded1048treesalongwithnumerousshrubsand
bushes.Ofthetrees,31%ofthespeciesweredeciduous,with69%
beingnon-deciduous.Seventeenpercentofthetotaltreeswereco-
niferous (8 3% not conifero us); 42% of all trees wer e in the genus
Quercus;and 6%ofall treeswereinthe genusPinus. The composi-
tion of the study area did change over the timeperiodof thecen-
suses with the death and removalof several trees. Death of trees
in the stu dy area was due mainl y to a prolonged drought within
SouthernCaliforniafrom2011through2016.
|
5 of 23
DESHA RNAIS E t Al.
2.2 | Spectral analyses of census data
We used spectral methods to analyze the monthly census data.
We used fast Fo urier tra nsforms to com pute the raw sp ectra an d
cross-spectrum of the bivariate time series. Computations were
conducted using thespec.pgram algorithm fromRmodified to run
inMATLAB.Notrendswereremovedfromthedataprior toanaly-
sis.Since raw spectraandcross-spectra are usuallyjagged,weap-
pliedtwoiterationsofawindow-averagingsmoothingDaniellkernel
with spansof5and 7 datapoints,modified with clipped windows
attheendpointstopreser vethenumberofdatavalues.Wedivided
thespectralpowersby their sumacrossfrequencies. Thisyieldeda
normalized spectral power plot for each species,which shows the
distributionofvariationacrosstimescales.Weusedtherealpartof
thecross-spectrumtoobtainasmoothedcospectralpowerplotfor
thecovariancebetweenthetwospecies.Wenormalizedthecospec-
trumsothatitssumequalsthecorrelationcoefficient.
Weco nd uc tedc om pu tationstodete ctsign if ic ant( p <.05)peaks
orvalleysintheobservedspectraforthenullhypothesisthatthere
isnofrequency dependencein the variance andcovarianceofthe
timeseriesfluctuations(i.e.,independent“whitenoise”timeseries).
Weshuffledthetemporalorderofthebivariatetimeseriesbygen-
erating a r andom per mutation of th e integers 1 thro ugh n, where
n =140 isthe numberof monthly obser vations.Wethenusedthe
permutation to reorder the bivariate monthly censuses of the two
species.Next,we computedtwosmoothednormalizedspec traand
asmoothednormalizedcospectruminthesamewayasthecorrectly
ordered d ata. We repeate d this random re shufflin g process 20 00
times.Forthespectra,whichmustbenonzero,weusedthe95thper-
centileateachfrequencytodefineone-sidedupper95%confidence
limitsforthenullhypothesisthattherearenotimescalecomponents
tothevariance.Forthecospectra,whichcanbepositiveand/orneg-
ative,we usedthe2.5thand97.5thpercentileat eachfrequencyto
definetwo-sided95%confidencelimitsforthenullhypothesisthat
therearenotimescale components tothecorrelation.Thismethod
ofgeneratingthespectra preserves thetime-independentstatisti-
calpropertiesofthetwotimeseries(means,variances,distribution,
total corr elation, et c.), while var ying only t he time-depend ence of
thebivariatedatavalues.
2.3 | Analyses of weather data
We obtained weather data for Ontario Airport (ONT) from the
Climate Data Online website of NOA A’s National Centers for
EnvironmentalInformation(https://www.ncdc.noaa.gov/cdo-web/).
ONTislocatedabout12kmfromtheCBGandshouldbeanaccurate
representationof the temperature profileofthestudy site. Wefo-
cusedonthereported“averagemonthlytemperature,”whichiscom-
putedbyaveraging the dailymaximum and minimumtemperatures
for each mo nth. We avoided rainf all totals be cause many mont hs
havezeros,whichisaproblemforspectralanalyses,andmuchofthe
vegetationintheCBGisirrigated. Weobtaineda temperaturetime
seriesforthesamemonthsasthecensusdataandappliedthesame
spectralmethodstoobtainasmoothednormalizedpowerspectrum.
Sinceannualseasonalchangesdominatedthetemperaturetime
series, we used the MATLAB “band-stop” function to attenuate
cyclic component s with periodicities inthe range of 9–15months.
This prod uced a filtere d time serie s with annual ef fects remove d.
Wethenproducedasmoothednormalizedspec trumforthefiltered
temperaturetime series. Wealso generated smoothednormalized
cospectra betweenthe filtered temperaturetime series and both
the WGS andFS census time series. Usingthe methods described
above,weobtained95%confidenceinter valsforthesespectraand
cospectra.
2.4 | Model simulations
Weconducted modelsimulationstoobtain a betterunderstanding
of the implications of timescale-specific environmental variation
onthedynamic softwocompetingspecies. Weused the following
discrete-timeversionoftheLotka–Volterracompetitionequation:
where r1 and r2are the intrinsic rates ofpopulationincrease,K1and
K2arethecarryingcapacities,andαandβarethecompetitioncoeffi-
cients for thet wospecies.The variables ε1(t)and ε2(t)representran-
domenvironmentalnoise with ameanofzero and varianceof .5. We
usedthecoefficient sσ1andσ2tosc al ethemagnit udeofthenoise .Fo r
the purposes ofdiscussion, species 1 will represent a native species
andspecies2willrepresentaninvasivespecies.
Weintroducedfrequency-specific biases into thenoise variables
us ing ana lgo r ith mde v ise dby Cha m ber s (19 95) .T h ism etho dge n era tes
amultivariate random time series based on any specifiedtheoretical
spectralmatrixthatisafunctionoffrequency.Thediagonalelements
ofthatmatrixare thetheoreticalspectra(frequencydecompositions
ofthe variances),andthe off-diagonalelementsaretheoreticalcross-
spectra(complexnumbers).Therealpartsofthecross-spectraarethe
theoreticalcospectra(frequencydecompositionsofthecovariances),
andthecomplexpartsarethequadraturespectra(frequency-specific
phase shifts). For the model (1), we used identical spectra that were
linear fu nctions of freque ncy for the two species. High-frequenc y-
biased blue noisewas representedwitha linearspectrumthatvaried
froma power of0.0for afrequenc yoff =0.0toapowerof1.0fora
frequencyof f =0.5 (maximumpossible frequency).Low-frequency-
biased rednoise wasrepresented with a linear spectrum that varied
froma power of1.0forafrequencyoff =0.0toapowerof0.0fora
frequencyoff =0.5.Unbiasedwhitenoisehadaconstantpowerof
0.5 acro ss all freque ncies. A gra dual shif t from blue to whi te to red
noisewasaccomplishedbyvaryingtheslopeofthenoisespectrumin
101incrementswhilekeepingtheaverageofthespectrumconstantat
0.5. This produced aconstanttotal varianceofε1(t)and ε2(t)equal to
0.5 while changing only its frequency-specificity. For the covariance
(1)
N
1(t+1) =N1(t)exp
(
r1
(
K1−N1(t)−𝛼N2(t)
)
∕K1+𝜎1𝜀1(t)
),
N2
(t+1) =N
2
(t)exp
(
r
2(
K
2
−N
2
(t)−𝛽N
1
(t)
)
∕K
2
+𝜎
2
𝜀
2
(t)
),
6 of 23
|
DESHARNAIS E t Al.
betweenthe random variables ε1(t) and ε2(t),w e used a cospec trum
function that was equal toa constant fraction, 0.9,of the spec trum.
Thisresulted in afrequency-specificcorrelationof 0.9acrossall fre-
quencies. A high correlation was usedsince it wasassumedthat the
native and invasive species are ecologically similar and occupy the
samehabitat.Thequa draturesp ec trumwassettozero(nofrequen cy-
specificphaseshifts).Tosummarize,thetimescalesoftherandomen-
vironmentalnoise were variedfromshort (blue)to uniform(white)to
long (red) witha frequenc y-independent correlation in the ef fect sof
thenoiseonthegrowthofthetwospecies.
Inadditiontothespectralfrequencyoftheenvironmentalnoise,
thesimulationprotocolalsoinvolvedvaryingthecompetition coef-
ficient α, which represent sthe intensityofthecompetitive effects
ofthe invasive species on the native species. Weset the value of
the αto.25(weakcompetition),.50(moderatecompetition),and.75
(strong competition).Wekeptthecompetitiveeffectsofthenative
speciesontheinvasivespeciesatavalueofβ =.25whileincreasing
αbecauseweareinterestedinsituationsofconcerntoconserva-
tionist swhere an invasive species outcompetes the nativespecies.
Wechosevaluesfortheintrinsicrateofincreaser1 = r2 =.3t hatare
appropriatefortreesquirrelsofthegenusSciurus(AppendixA).The
remainingmodel parameters had constant values of K1 = K2 = 50,
andσ1 = σ2 =0.75.Fortheassessmentofextinctionrisk,whenthe
populationdensityofaspeciesfellbelow5%ofitscarryingcapacity,
weset it to zero. For simulations not involving extinctionrisk, the
th res h old wa sse tto ze ro. Weran eac hs i mul at i onf or 10 0 tim est eps .
Forevery set ofparametervalues andenvironmentalnoise color,
weconducted2000replicatesimulations.Forblue,white,andreden-
vironmentalnoise,wecomputedsmoothednormalizedpowerspectra
andcospectrum ofthespeciesandaveraged theseoverreplicatesto
see how the timescale for population fluctuations is affected by dif-
ferent col ors of noise. To investi gate gradua l shifts i n the effec ts of
frequency-biasedenvironmental noiseon the population spectraand
probabilityofextinction,wechoseaslopefortheenvironmentalspec-
tra, var ying the s lopes in 101 gradu al incremen ts, beginn ing at blue
noise(slope=2)andendingatrednoise(slope=−2).Foreachchoice
oftheenvironmentalspectra,wesimulatedthepopulationtrajectories
ofthetwospecies,estimatedtheunsmoothednormalizedpopulation
spect ra, compute d the two sp ectral ex ponents , and averaged t hem.
In the sam e way,we co mputed average sp ectral exp onents for the
environmental noise realizations. We repeated these computations
for each of th e 2000 re plicate simu lations and co mputed an overa ll
average forthe spectral exponents ofthe populations and noise. To
investig ate the effect s of frequency-biase d environmenta l noise on
ec ol ogi c al per sis ten ce,th enu mbe ro finsta nce sw h er eea chp opu la tio n
wentextinctwasdividedby200 0toyieldestimatesoftheextinction
risksforboththenativeandtheinvasivespecies.
2.5 | Analyses of climate data
We obtained climate data from the U.S. Historical Climatology
Network (USHCN), which is freely available online (https://ww w.
ncei.noaa.gov/products/land-based-station/us-historical-clima
tology-net work).We usedversion 2.5ofthemonthlytemperature
records ,w hich contai ns long-term da ta from 1218 stat ions across
thecontinentalUnitedStates.Menne etal.(20 09)describethe ad-
justments used to removebiases duetofactorssuch as relocation
of recording stations, changes in instrumentation, and urbaniza-
tion.USHCNmonthly average temperatureswerecomputedasthe
average overthe month of the dailymaximum and daily minimum
temper atures. The mea n annual temper ature for each yea r is the
average ofthe12meanmonthly temperatures.Weusedthemean
temperatures for the 100-yearrange from 1915through 2014,the
latterbeingthelatestyearavailable.
Welookedat changesinthedistribution of spectral exponents
forthefluctuationsinthemeanannualtemperatures.First,webroke
the100-yearrangeintofour25-yearspans.Next,wedetrendedthe
temperaturetimeseriesforeach25-yearspanbyfittingaquadratic
polynomialusing least-squaresregressionand computedthestan-
dardized re siduals. Then , we computed an unsm oothed spect rum
foreachresidualtimeseriesandestimatedthespectralexponentas
theslopeofalinearregressionoflog(spectralpower)versuslog(fre-
quency).Histogramswerecreatedwiththe1218spectralexponents
(oneperstation)foreachofthe25-yeartimespans.
Althou gh it would be temptin g to analyze the cha nges in the
spect ral exponent s using a repeate d measures ANOVA, w ith sta-
tions as thesubjects, spatial autocorrelations existamong stations
thatareinthesamegeographicalproximity,inflatingtheTypeIerror
rates. A so lution to this pro blem was sugges ted by Cliffor d et al.
(1989)and modified by Dutilleul (1993), which yields an “effective
samplesize”basedonthespatialstruc tureofthedata.Itisappropri-
ateforpaired observationsdistributed in space. Weused the soft-
warepackageSAM(SpatialAnalysisinMacroecology;Rangeletal.,
2006)tocomputeeffectivesamplesizesforthefollowingthreeset s
ofpaireddata:[1915–1939]vs.[1940–1964],[1940–1964]vs.[1965–
1989], and [1965–1989] vs. [1990–2014]. We conducted paired
samplet-testsforthespectralexponents from thesethreepaired
datasetsandadjustedthestandarderrorsfortheteststatisticsand
degrees of freedom for thestatistical significancevalues usingthe
effective samplesizes. Wethen appliedaBonferronicorrection to
accountforthemultiplecomparisons.
Wealsoconductedameanfieldwaveletanalysisonthe100-year
timeseriesof meanannual temperatures.Foreach station, we de-
trendedthetimeseriesusingaquadraticpolynomialandcomputed
thestandardizedresiduals.Next, weusedtheMATLABcontinuous
wavelet tr ansform fun ction “cwt ” to compute wavel et powers for
the resid ual time serie s using the analy tic Morse f ilter (Olhede &
Walden, 20 02) with the d efault valu es of 3 for the sy mmetry pa -
rameter a nd 60 for the time -bandwidt h product. L astly, we aver-
agedthewaveletpowersacrossallstationsforeachtime–frequency
combination. Wechose theMorse wavelet because it is useful for
analyz ing signals with tim e-varyin g amplitude and fr equency. We
investigatedvaryingthesymmetr yandtime-bandwidthproductpa-
ra met er s ,b u tt her esu lt s we ren ot muc hd iffe ren tf rom wh atw as ob-
tainedusingthedefaultvalues.WealsousedaMorletwaveletwhich
|
7 of 23
DESHA RNAIS E t Al.
hasequalvarianceintimeandfrequency,but,again,theresultswere
liketheMorse waveletwith defaultparameters. We experimented
with cubic and quarticpolynomials for detrending, but these gave
mean fie ld wavelets t hat were much like t he one obtain ed with a
quadraticfunction.Ourmeanfieldwaveletdiffersfromthe“wavelet
meanfield”definedbySheppardetal.(2016),whichwasdesignedas
anaverage measureofthetime-andtimescalesynchronyfortime
seriesfromdifferentlocations.
To identify wavelet powers that were statistically significant,
weused the surrogate timeseries approach (Schreiber & Schmitz,
2000).Wetookara ndompermut ationofthemeanannualtem pera-
turetimeseriesforallstationsintandemandcomputedameanfield
wavelet as described above.Werepeated thisprocess 2000 times
andcomputedtheupper95thpercentile ofthewaveletpowersfor
eachcombinatio noftimeandf req uen cy.Thisp rovidedasetofcriti-
calvaluesforidentifying“hotspots”onthemeanfieldwaveletunder
thenullhypothesisofnotimescaledependenceinthefluctuations
ofthemeanannualtemperatureresidualsaroundthetrends.
3 | RESULTS
3.1 | Census data
Figure2showsthetimeseriesofmonthlycensusvaluesfortheWGS
andtheFS. The large increase in census numbers during2013and
2014corresponded with theproduction of a large acorn crop dur-
ingthefallof2013(mean±SEof608.3± 120.1 g/m 2ina1m2 plot
under each of six treesused toassess acornproduc tion, Appendix
B).Meanacornproductionmeasuredin thesame1m2plotsduring
otheryearsrangedfromalowof5.7± 2.7 g/m 2in2014toahighof
67. 5 +35.5g/m2in2012. Availabilityofacorns appearstohave a
majorimpactonthenumberofWGSsandFSsintheCBG.
The fluc tuations in census n umbers show signs of s ynchrony.
TheestimatedPearson correlation coefficientin animalnumbers is
R =.581whichisst at istica ll ysign if ic an tfromzero(p =5. 20× 10−1 4).
The total variation in the numbers for each species andtheir syn-
chrony see ms to be distribute d across differe nt timescales . Long
intervals can be seenwhere the numbers of both species areele-
vatedanddepressed(Figure2).Superimposedonthislongtimescale
variationarerandomshorttimescalefluctuations.Wequantifythis
timescalecomponentofvariationwiththe spectral analyses in the
nextsection.
3.2 | Population spectra and cospectrum
Figure 3a ,b show the smoot hed normalized sp ectra for the WG S
andtheFS. ForboththeWGS andtheFS,thespectra suggestthat
thelargestvariationinnumbersoccursatfrequenciesbelow0.0833
whichcorrespondstoatimescaleofmorethan12months.TheWGS
spect rum crosse st he upper sig nificance t hreshold a t timescal e of
around15months.TheFSspectrumcrossestheuppersignificance
thresholdattimescale ofaround 18 months.The spectrum forthe
FSshowsasmallpeakat6months,butthatpeakisnot statistically
significant. Since the total variation remains constant across fre-
quenciesfortheconfidencebandsfromtherandomlyordereddata,
thelargervariationinWGSandFSatlongtimescalesiscompensated
forbysmallervariationattimescalesofabout4monthsorless.
The smoot hed normalized cos pectrum (Figu re 3c) shows how
the totalcorrelation in populationnumbers between the two spe-
cies is distributed across timescales. Covariance between WGS
andFSissignificantlybiasedtowardlongtimescales,withasmaller
nonsignificant peak at a timescale of around 6 months. The co-
spect rum crosse st he upper sig nificance t hreshold a t timescal e of
about18months.Thetot alcorrelationbetweenthenumbersofthe
WGSandFSisR =.581.Usingtheunsmoothedcospec trum,wecan
partition this totalcorrelation by timescale intervals:R1 =.409 for
>12months,R2 =.162fo r 4–12m o nth s ,a n dR3 =.010f o r≤ 4mon ths ,
where R = R1 + R2 + R3.Thus,70%ofthetotalcorrelationoccursat
timesc ales exceedi ng one year. We can infer tha t population s yn-
chronyforthesetwospeciesoccursmostlyatlongtimescales.
FIGURE 2 MonthlytimeseriesfornumbersofWGSandFSatourstudysitefromOctober2009throughMay2021
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
0
10
20
30
40
50
WGS
FS
Number of Animals
Month
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
8 of 23
|
DESHARNAIS E t Al.
3.3 | Spectral analyses of weather data
Figure 4ashowsthetimeseries ofmeanmonthly temperaturesfor
OntarioAirport(ONT), whichis 12 km fromthestudy site.Asone
wouldexpect,thereisastrongseasonalcomponenttothesetem-
peratures.Figure 4bshows thesmoothednormalizedspectrumfor
the mean m onthly temper atures, which is d ominated by a stro ng
peak for theannual cycle. Since thesquirrelspectra show no indi-
cation of an a nnual cycle (F igure 3), we appli ed a band-s top filter
to remove the a nnual cycle and plo tted the resulti ng time series
(Figure4a,dashedline).Thesmoothednormalizedspectrumforthe
filteredmeanmonthlytemperaturesappearsinFigure4c.Thereisa
peakatlow frequencies whichcrossestheupperthresholdforsta-
tisticalsignificance at a timescale of approximately28 months and
reachesaminimumatatimescaleof12months.Thereisalsoalarge
spectralpeakat6months.
Thereisanegativecorrelationbetweenthefilteredtemperature
timeseries and the squirrelcensus data.For the WGS, the correla-
tionis statisticallysignificant(R = −.194 , p =.022)and,asindicated
bythe smoothed normalized cospectrum(Figure 5a),isdistributed
atlongtimescales(>35months)andatatimescaleof6months.The
correlationbetweenthefilteredtemperaturetimeseriesandtheFS
census dataisalso negative, but not statistically significant overall
(R =−.146,p =.085) .Thec ospe ct rumb et we enth efilteredtemper a-
ture time series andFScensus data shows a large significant peak
ata 6-month timescale(Figure 5b).These resultssuggest that the
distributionofvariationinthesquirrels’populationfluctuationsmay
bedriven,inpart,byfluctuationsinweatherandclimateoutsideof
theannualseasonalcycle.
3.4 | Simulation results
Our analyses of thesimulations of the Lotka–Volterra competition
model(1)aresummarizedinFigure6.Ourfocuswasontheef fects
ofthetimescaleofenvironmentalfluctuationsonthespectralprop-
erties of population numbers and the probability of extinction for
thenativespecies.
Figure 6a shows the protocolweusedforthe randomenviron-
mentalnoise.Weassumedalinearspectrumwhichvariedfromshort
timescale fluctuations (slope = 2, blu e noise), to fluc tuations wit h
noautocorrelation (slope=0,whitenoise),tolongtimescalefluc-
tuations(slope= −2,rednoise).Therandomtimeseriesgenerated
by these sp ectra have t he same mea n of zero and same v ariance,
thelatterbeingproportionaltothetotal areaunder the spectrum;
theydifferonlyintheirtimescaleproperties.Forthesimulationsin-
volvingthecomputationofspectr alexponent sandextinctionprob-
abilitie s, we varied the sp ectral slop e of the environmen tal noise
in101small increments from+2to −2, as indic ated by the curved
arrowinFigure6a.
Figure 6b s hows the popu lation spec trum and cos pectru m for
the simulations involving blue noise, white noise, and red noise
(Figure 6a).Sincetheparametervaluesforthetwocompeting spe-
cies are id entical, an d the prope rties of the ir environme ntal noise
inputsarethesame,themeancurvesshownapplytobothpopula-
tions. As described in section2.4, we used a cospectrumfunction
that was equal to a constant fraction, 0.9,of thespectrum, so, for
eachcolorofenvironmentalnoise,thepopulationspectrumandco-
spect rum are simil ar.For b lue environm ental noise , the smooth ed
normalizedspectrumandcospectrumhavelowpoweratlongtimes-
caleswhichincreasesandlevelsoffatfrequenciesexceeding.1.This
reflects the factthat, for theintrinsic ratesofincrease usedinthe
FIGURE 3 Smoothednormalizedspectrafor(a)theWGSand(b)
theFSandthe(c)smoothednormalizedcospectrumbetweenthe
twospecies.Dashedlinesare95%significancethresholdsforthe
nullhypothesisofnotimescaledependenceoftheWGS-FSpaired
observations
120 12 64
32
Timescale (months)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Normalized spectral power
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Normalized spectral power
0.0 0.1 0.2 0.30.4 0.5
Frequency (cycles/month)
-0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Normalized cospectral power
(a)
(b)
(c)
|
9 of 23
DESHA RNAIS E t Al.
simulations(r1 = r2 =.3),populationgrowth is undercompensating,
thatis,per turbationsfromastableequilibriumdonotshowdamped
oscillationsinthedeterministicversionofthemodel.Previouswork
forsingle-speciespopulationmodelshasshownthatundercompen-
sating populations are sensitive to long timescale environmental
noise,whereasovercompensatingpopulationsaresensitivetoshort
timescalenoise(e.g.,Danielian,2016).Ineffect,theslowerresponse
times of populations with small intrinsic rates of increase “filter
out” the short timescale components of the environment alnoise
(Desharnaisetal.,2018). Thisphenomenoncanalsobeseenin the
smoothednormalizedspectrumandcospectrumforthepopulations
subjectedtowhiteenvironmentalnoise.Thepopulationfluctuations
are le sssensitivetotheshortertimesc al ecomponent softh ef laten-
vironmentalspectrumproducingapopulationspectrumandcospec-
trumthatisbiasedtowardlongtimescales(Figure6b).Lastly,when
thepopulationsaresubjectedtoenvironmentalnoisebiasedtoward
long timescales,the longertimescale componentsofthe noiseare
enhanced and the shorter timescale components are suppressed,
producingasmoothednormalizedspec trumandcospectrumthatis
morestronglybiasedtowardlongtimescalesthantheenvironmental
noise(Figure6b).
Figure6cshowshowthespectralexponentsfortherealizations
of the popu lation fluc tuations an d environment al noise chan ge as
theenvironmental noise isshiftedgraduallyfromblue,towhite,to
red(arrowinFigure6a).Positivespectralexponentsindicatespectra
whicharebiasedtowardshorttimescales,andnegativespectralex-
po ne ntsare in dic ati ve of lon gt ime sca lef lu c tua ti ons .B oth thepo pu-
lationandenvironmentalspectralexponentsdecreasemonotonic ally
as the spectra for theenvironmental noise redden. However, the
populationspectralexponentstartsoutnegativewhiletheenviron-
mentalspectrumisstillstronglyblue.Asmentionedabove,withthe
modelparametervaluesusedinoursimulations,thedynamicsofthe
twocompetingspeciesact sasa“reddeningfilter,”producingpopu-
lationspectrathataremorebiasedtowardlongtimescales.
Of interest for conservation purposes is how the timescale
of the fluctuations in the environmental noise influences the
FIGURE 4 (a)MeanmonthlytemperaturefortheOntarioAirport(ONT )timeseriesfromOctober2009throughMay2021.Thesolidline
isfortherecordedtemperaturesandthedashedlineisthetimeseriesobtainedafterfilteringouttheannualcycle.Smoothednormalized
spectraareshownforthe(b)unfilteredand(c)filteredONTtemperaturetimeseries.Dashedlinesin(b)and(c)are95%significance
thresholdsforthenullhypothesisofnotimescaledependenceintheorderingofthefilteredandunfiltereddata
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
10
15
20
25
30
Mean monthly temperature (°C)
Unfiltered
Filtered
Month
120126 43 2
Timescale (months)
0 0.1 0.2 0.3 0.4 0.5
Frequency (cycles/month)
0.00
0.03
0.06
0.09
0.12
0.15
Normalized spectral power
12012643 2
TImescale (months)
00.1 0.20.3 0.
40
.5
Frequency (cycles/month)
0.00
0.02
0.04
0.06
0.08
Normalized spectral power
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(a)
(b) (c)
10 of 23
|
DESHARNAIS E t Al.
persistenceofthen ativesp ecies.Fig ure6disbas edonsim ulations
whereanex tinctionthresholdhasbeensetarbitrarilyto5%ofthe
carr yingc ap acit y.Allothermodelp ar amete rvaluesareidentic alto
theonesusedforthesimulationsinFigure6b,c.Whenthecompe-
titioncoefficient sareequal(α = β =. 25),thee xtinctionpro bability
forbothspeciesremainssmalluntilthecoloroftheenvironmental
noisebeginstoredden(Figure6d).For thereddestenvironmental
spectrum,bothspecieshaveabouta55%probabilityofextinc tion.
If the non-native sp ecies has a comp etitive adv antage, the i nflu-
enceofreddenedenvironmentalspectraonthepersistenceofthe
native spe cies becom es more pron ounced. Fi gure 6d shows h ow
increasingthe competition coefficient for the invading species to
α =.50 and α =.75increasesthelikelihoodthatthenativespe-
cieswill be lost,whileslightlylowering the extinctionrisk for the
invasive spe cies. For, α = .75, a reddening of the environmental
spectrumquicklyelevatestheprobabilityofextinctionforthena-
tivespeciesfromavalueofabout3%forthebluestenvironmental
noise to avalue which asymptotesat about 94% for the reddest
environm ental noise (Fig ure 6d). This sugge sts the possi bility of
asynergybetween theeffects ofreddening environmentalnoise
andcompetitionfrominvasivespeciesfortheriskofextinctionfor
nativepopulations.
3.5 | Climate data
Weknowthathumanimpactontheclimatesystemhasresultedinan
increasingtrendofwarmingtemperatures(Masson-Delmotteetal.,
2021).Giventheobservationsandresults oftheprevious sections,
animport antrelated question is whetherthere havebeen changes
inthetimescaleofrandomenvironmentalfluctuationsaroundthese
trends.Ouranalysesmakeuseofa100 -yearrecord(1915–2014)of
mean annu al temperatures f rom 1218 weather statio ns obtained
fromtheU.S.HistoricalClimatology Network(Menne etal.,2009).
Figure7showsthelocationsoftheweatherstations.Althoughnot
uniformintheirdistribution,theycovereverystateandregioninthe
continentalUnitedStates.
Toinvestigateevidenceforchangeinthecolorofthemeanan-
nualtemperaturespectraovertime,wedividedthe100-yearrecord
from each station into four 25-year inter vals and computed the
spectralexponentsforeachtimeinterval(seesection2.5).Figure8
shows the histograms of spectral exponentsforthe1218stations.
Thedashedlinerepresentsthezerovalue(whitenoiseenvironmen-
talfluctuations); spectral exponentsto the leftindicate arednoise
bias and those to the right represent a blue noise bias. The arrow
atthe topof each histogramshowsthemean.Themeanvaluesare
0.500,0.313,0.432,and−0.160fortherangeof years1915–1939,
1940–1964, 1965–1989, and 1990–2015, respectively. It appears
thattherewasashiftfrom1990to2014fromblue-shiftedspectra
tored-shifted spectra. The significancevalues forthechangesbe-
tweenadjacenttimeintervalsarep =.046for1915–1939vs.1940–
1964 ,p =.654for1940–1964vs.1965–1989,andp =1. 676 × 10 −10
for1965–1989vs.1990–2015.
The spec tral anal yses conduc ted for Figu re 8 assume that t he
residualdeviationsfromthefittedquadratictrendsforeach25-year
time period are stationary,that is,the probability distribution and
timescaleproper tiesoftheresidualtimeseriesareinvariant .Amean
field wave let analysis w hich relaxe s the stati onarity as sumption is
presentedin Figure9for the entire 100 -yeartime period. There-
gionsofstatisticallysignificantwaveletpowerareoutlinedinblack.
Theyindicate that thetimescaleofthe fluc tuationsin mean annual
temperature, whenaveragedoverall weather stations, has shifted
tolongtimescalevaluesofapproximately3.5–7yearsfortheperiod
after1980,againsuggestingthattherehasbeenarecentreddening
ofthe timescale forrandomfluctuations inmean annual tempera-
turesaroundtheirchangingtrends.
FIGURE 5 Smoothednormalizedcospectrabet weenthefilteredOntarioAirporttemperaturetimeseriesandthecensusnumbersfor(a)
theWGSand(b)theFS.Dashedlinesin(a)and(b)are95%significancethresholdsforthenullhypothesisofnotimescaledependenceinthe
orderingofthetemperature,WGS,andFSdatatriplets
120 12 643 2
Timescale (months)
0 0.1 0.2 0.3 0.4 0.5
Frequency (cycles/month)
-0.04
-0.03
-0.02
-0.01
-0.01
0.00
0.01
Normalized cospectral power
120 12 64
32
Timescale (months)
00.1 0.20.3 0.
40
.5
Frequency (cycles/month)
-0.04
-0.03
-0.02
-0.01
-0.01
0.00
0.01
Normalized cospectral power
(a) (b)
|
11 of 23
DESHA RNAIS E t Al.
4 | DISCUSSION
Ourcospectralcorrelationanalysisdoesnotimplyadirectcausal
linkbet wee npopulationnu mbersofthetwospe cie softreesquir-
relsandambienttemperature.Therearemanyenvironmentaland
biotic fa ctors which inte ract to impac t the dynamics of n atural
populations. Although we used temperature asaproxy forenvi-
ronmentalfluctuations,thismetricisoftenassociatedwithother
environmentalvariables.Forexample,ZhaoandKhalil(1993)have
shownthatmeanmonthlytemperatureandtotalmonthlyprecipi-
tation are negatively correlated insummer months over most of
thecontiguous UnitedStates.Excellent timeseriesontempera-
tures are av ailable and the d ata lend thems elves to analysis by
spectralmethods.Timeseriesoftotalmonthlyprecipitationdata,
whileavailableforthesouthwestUniteStates,arenotwell-suited
foranalysisusingspectralmethods,astheycontainmanyconsec-
utivevaluesofzero.
Our spectralanalyses of the WGS and FS census datasuggest
that most ofthe variation in animal numbers occurson timescales
thatexceed15months.InthecaseoftheFS,thereisalsoevidence
forvariationon asix-monthtimescale.Thistimesc ale-specificvari-
ationmaybeduetochangesinresourceabundance,thetimingand
frequencyofreproduction,andreproductiveoutput.
Changesinpopulationnumbersonalongtimescalecouldbedue
tova ria tio ni nth esu ppl yoffo odr eso urc eso nm ult i-ye a r,h igh lyv ari -
able time scales. Fo r example, a corns provide a v aluable sou rce of
foodfortreesquirrels(Steele&Yi,2020),butaverylarge(>600g/
m2)mastcropwas onlyproducedinoneof the nine yearsin which
wemeasuredrelativeacornproduction(AppendixB).Weobserved
the prod uction of a ver y large mas t crop within o ur study ar ea in
the fall of 2013 (TableA2). Census counts for both species began
to increas e in the late sprin g and summer of 2013 an d continued
toincreasethrough thespringof2014(Figure2).Aprecipitous de-
creaseinabundancewasobservedthroughoutthesummerof2014
FIGURE 6 (a)Linearenvironmentalspectrausedforthemodelsimulations.Eachspectrumhasthesamevariance,butadifferent
distributionofvariationovertimescales.Thearrowindicateshowthespectraweregraduallychangedfrombluenoise,towhitenoise,to
rednoiseforthesimulationsinpanels(c)and(d).(b)Meansmoothednormalizedspectraandcospectraforthepopulationswiththeblue,
red,andwhiteenvironmentalnoiseshowninpanel(a).Bothcompetingpopulationshadthesameparametervalues,sotheirspectrawere
identical.(c)Meanspectralexponentsforthepopulations(solidline)andenvironmentalnoise(dashedline)withenvironmentalnoisecolor
variedcontinuouslyfrombluetowhitetoredasshowninpanel(a).Morenegativeslopesindicatelongertimescalefluctuationsinpopulation
numbers.(d)Probabilitiesofextinctionforthenativespecies(solidlines)andinvadingspecies(dashedlines)for2000simulationsofthe
modelwithenvironmentalnoisecolorvariedcontinuouslyfrombluetowhitetoredasshowninpanel(a).Largervaluesofαrepresent
higherintensitiesofcompetitionfromtheinvadingspecies
(a)
(c)
(b)
(d)
12 of 23
|
DESHARNAIS E t Al.
which mayhavebeenbroughtaboutbydispersalofanimalsout of
our studysite. A ver y small acorn crop (<6 g/m2) wasproducedin
thefallof2014.Amodest-sizedcropofacorns(~35g/m2)produced
inthefallof2015wasfollowedbyanincreasein censuscountsfor
both spe cies throug h the summer of 2016. A corn produ ction was
verylowinthefallof2016,2017,2018,and2019,andthislongtime
FIGURE 7 Geographiclocationsof
the1218weatherstationsfromwhich
a100-yearrecord(1915–2014)ofmean
annualtemperatureswereobtained.Data
arefromtheU.S.HistoricalClimatology
Network
FIGURE 8 Spectralexponentsforthe1218timeseriesofmeanannualtemperatures.Each100-yearrecordwasbrokenintofour25-
yearinter vals(a–d).Thearrowsindicatethelocationsofthemeanvalues.Thedashedlinesrepresentaspectralexponentofzero.Positive
spectralexponentsindicatespectrabiasedtowardsshorttimescales(blue-tingednoise)andnegativevaluesindicateabiastowardslong
timescales(red-tingednoise)
-2 02
0
50
100
150
200
250
Frequency
-2
02
0
50
100
150
200
250
-2 02
Spectral exponents
0
50
100
150
200
250
Frequency
-2
02
Spectral exponents
0
50
100
150
200
250
1915-1939 1940-1964
1965-1989 1990-2014
(a)
(c)
(b)
(d)
|
13 of 23
DESHA RNAIS E t Al.
periodwithoutamodest tolarge-sizedacorncropcorrespondedto
relativelylowcensuscountsforbothspecies(≤20animals).Amod-
est acorn cropproducedinthefall of 2020 againcorrespondedto
anincreaseincensuscountsforbothspeciesduringthesummerand
fallof2020.Acornsarepresentinthe treesfor aprolongedperiod
before they appear in significant quantities on the ground, so this
foodresource isalsoavailabletotheanimalspriortothe fall ofthe
yearwhichmayaccount forthehighcensuscount sinthesummers
priortoouracorncropsamplingperiods.
Acornproductionbycoastalliveoaks(Quercus agrifolia),acom-
montreespecieswithinourstudyarea,isinfluencedbytheamount
of rain in th e one or two years p rior to the year in w hich acorns
areproduced (Koeniget al., 1996).MannandGleick(2015),aswell
as Diffe nbaugh et al. (2015 ), documented t hat an increase i n am-
bienttemperatures has beenaccompaniedby adecreasein rainfall
within C alifornia. A pl ot of temperatu re and precipit ation anoma-
lies over the period of 1895 through November 2014showed the
3-year period ending in 2014 was by far the hot test anddrieston
recordinCalifornia(Mann&Gleick,2015).Diffenbaughetal.(2015)
documentedthatalthoughtherehasnotbeenalargechangeinthe
probabilityofeithernegative ormoderatelynegativeprecipitation
anomalies in recent decades, the occurrence of drought years has
beengreaterinthetwodecadespriortotheirstudythaninthepre-
cedingcentur y.Inaddition,theprobabilitythatprecipitationdeficits
co-oc cur with warm co nditions an d the probabil ity that pre cipita-
tion defi cits prod uce drought have b oth increase d. Climate mo del
experiments by Diffenbaugh et al. (2015) revealed an increased
probability thatdry precipitation years are alsowarm years. Many
regions ofCaliforniawereinmoderate,severe,orextremedrought
conditionsformuchof2015through2021,exceptformostof2019
(NCEI website,accessed2Februar y 2022). So,the droughtislong
termandpersistedformuchofourstudy.
Theyearlyrecordofobservationsofjuvenileandsubadultindi-
viduals for bothspecies shown in Appendix C illustrates the effect
thatlong-termvariabilit yoffoodresources may haveonreproduc-
tionbythe WGSandtheFSoverlongtimescales.As statedabove,
productionofacornsvaried widelybetweenyearsandtheproduc-
tionofotherfoodsupplyitemscouldcertainlyvarywidelybetween
years. Vari ability in the av ailability of fo od items each year a long
withchangesin the numberofjuvenile and subadult animalscould
leadtopopulationvariabilityonlongtimescales,asobservedinthe
spectralanalysisofourdat a(Figure3).
The availa bility of food in ou r study site also va ried on a six-
month timescale.Itemssuchascatkinsfromoak and walnuttrees,
flowers on Fremontodendronspp.andArctostaphylosspp., andmale
cones on pin e trees bec ame availab le in the sprin g. Items such as
acorns, walnuts, and fruit bodies from the C alifornia Bay Laurel
(Umbellularia californica)andCaliforniaBuckeye( Aesculus californica)
becameavailable in thefall ofthe year (Or tiz & Muchlinski, 2015).
The timin gs (spring and fa ll) of the first av ailability of t hese food
itemsonayearlybasisfitwellwiththepotentialtimingofreproduc-
tiononayearlybasisbyboththeFSandWGS.
FIGURE 9 Meanfieldwaveletfor100-yeartimeseriesofmeanannualtemperatures.Thewaveletisavisualizationofhowthe
timescaledistributionofvariationinmeanannualtemperatureshasvariedfrom1915to2014.Each100-yeartimeserieswasquadratically
detrendedandaMorsewaveletwasobtainedusingtheMATLABdefaultvaluesof3and60forthesymmetr yandtime-bandwidthproduct,
respectively.Thewaveletsforthe1218stationswerethenaveraged.Thewhitedashedcurveistheconeofinfluencewhereedgeef fect s
canaffectthewaveletpower.Thedarkcurvesindicateareaswherethewaveletpowerisstatisticallysignificantatthe5%level,basedon
theupper95thpercentilesof2000surrogatedatasetswherethetimeseriesforallstationswerereorderedrandomlyintandem.Achange
tolongertimescalefluctuationsisindicatedbythesignificantshiftinwaveletpowertolowerfrequencies
20
10
6
5
4
3
2.5
Timescale (yrs)
1915 1939 1964 1989 2014
Year
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
Frequency (cycles/year)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Wavelet power
14 of 23
|
DESHARNAIS E t Al.
Two distinct periods of potential reproduction for the FS in
Southern California were documented by King’s (2004) study of
135Lsubmittedtothreewildliferehabilitationcentersduring20 02.
Approximately,60%oflitterproductiondocumentedbyKing(2004)
wasassociatedwiththemonthsofFebruary,March,andApril,with
the largest number of littersborn inMarch.A second pulse of lit-
ter production occurred during the months of August, September,
and October with thelargestnumber of litters borninSeptember,
sixmonths after the largest pulseoflittersborn duringthe spring.
Although production of litters by the FS on a semi-annual basis is
possible,thusleadingtoanincreaseinobservedpopulationsizeon
a semi-annual basis,t henumber of juvenile/subadult animals ob-
servedduringcensuscount sinthisstudyvariedwidelyamongyears
(FigureA1).
TheWGSappearstoe xhibitayearlypatternofr eproduc tiondif-
ferent th an the FS. Mos t research d ocument s breeding ac tivit y in
latefallandearlywinter monthswithbirth ofmostlittersin spring
and earl y summer months (C arraway & Verts , 1994; K ing, 2004).
A few pregna nt females wer e observe d in June, July, Augu st, and
Septemb er (Fletcher, 1963), and lactating females have been o b-
servedas late asOctoberinCalifornian(Swift, 1977). However,no
definite records of multiple pregnancies not attributable to intra-
uterine l oss of the first lit ter are availabl e (Bailey, 1936; Fletcher,
1963;Jameson& Peeters,1988; Swift,1977).The difference inre-
productivepatternsbetweentheFSandtheWGScouldbringabout
the pres ence of a 6-mon th cycle in abun dance of the FS and t he
absence of a si milar 6-month cycl e in the WGS. Th e differe nce in
reprodu ctive patte rns could also give a co mpetitive adv antage to
the FS in certain habitats through higher natalityin yearsof good
resourceproduction.
Muchlins ki et al. (2012) produce d a Habitat Suita bility Model
(HSM)fortheWGSandtheFSwhichallowedshort-termandlonger-
term coex istence habi tats to be id entified usi ng a linear com bina-
tion of three habitat variables: percent canopy cover, percent of
deciduoustrees,andaverageheightofground cover.Habitatswith
alowpercentageofcanopy cover,a high percentage of deciduous
trees,andalowheightofgroundcoverwereclassifiedasshort-term
coexiste nce habitat s. Location s with a high perce ntage of canopy
coverage, alowpercentage ofdeciduoustrees,andalow height of
groundcoverwereclassifiedaslonger-termcoexistencesites.(Sites
withahighheightofgroundcover,ahighpercentagecanopycover,
andalowpercentagedeciduous treeswere identifiedas“exclusion
habitat s” where on ly the WGS is foun d, but the FS e xists in ad ja-
cent habit ats.) For example, Muchlinski etal. (20 09) reported that
theFSreplaced the WGS in four yearsat a short-termcoexistence
habitat, California State Polytechnic University, Pomona, which
contain ed manicured an d more natural a reas on the cam pus with
paved pathwaysand buildings surroundedby a mixture of Juglans,
Eucalyptus,Washingtonia,Pinus,andothertreespecies.Incontrast,
thetwospecieshavecoexistedwithinlonger-termcoexistencehab-
itats of G riffith P ark in Los Ange les, CA , for more than 6 0 years,
whichweremorenaturalinappearanceconsistingofPinus,Quercus,
Umbellularia,Sequoia,andUlmusspecies,butwithhuman-influenced
aspectssuchaspicnictables,aplayground,andrestrooms(DeMarco
etal.,2020;King,200 4;Kingetal.,2010).ThestudyareaatCBGhas
been classified asa longer-term coexistence habitat by Muchlinski
etal. (2012).Howlongcoexistence cancontinueinlonger-termco-
existencehabitatsis unknown.Manylonger-term coexistence sites
arefragments of habitat wherethe FS, butnotthe WGS, exists in
surroundinghabitats.TheWGS isalsosubjecttolossofgenetic di-
versit y in these hab itat frag ments as des cribed by De Marco et al.
(2020).
The predictions of the competition model presented in sec-
tion 3.4 can be interpreted in terms of the HSM developed by
Muchlinskietal.(2012).TheHSMimpliesthat thecompetitiveef-
fe ctsofthe FS ont he WG Sar eh ighin as hor t-t erm co e xi s te ncesi te
suchasC aliforniaStatePolytechnicUniversity,Pomona,andother
former lowland coexistence sites(Cooper & Muchlinski,2015).In
terms of the c ompetitio n model pre sented in Fig ure 6, the val ue
of the competition coefficient αwouldbelargerelativetothe
coefficient β, an d extinc tion of the WGS c ould occur un der con-
ditions of b lue and red env ironment al noise. Conve rsely, a lower
level of competitionin a longer-term coexistence site implies the
valuesofαandβaremoresimilarandahigherlevelofreddened
environmentalnoisewouldbeneededtobringaboutextinctionof
theWGS(Figure6d).Ourresultsfromsection3.5suggestthatcli-
matechangesareincreasingthetimescaleofyearlyenvironmental
fluctuations.Ourspectrala nalysesofmonthlycensusdatasu gge st
that mostofthe variation in numbers of the WGS and FSoccurs
over times cales of more than 15 m onths (Figure 2). Thu s, aside
fromt heef fec tsof awar mi ngclimate,a nychangesinthet im esc al e
oftemperaturefluctuationsaroundtheincreasingtrendcouldrep-
resent an additional riskfactor for thepersistenceoftheWGSin
someofitsnativerange.
After the annualchanges in meanmonthly temperaturewere
removedfromtheONTdat ausingaband-stopfilter,theremain-
ing variation in temperature fluctuations was composed of a
strongsix-monthcycleandsignificantvariationontimescalesthat
exceeded 28 months(Figure 4c). Meteorologists andclimatesci-
entistshaveusedharmonicanalysistodocumentsemi-annualcy-
clesinrainfallandtemperatureswhoseamplitudeandphaseshift
vary by geographical location, withmoderateamplitudes for the
southwestUnitedStates(Hsu&Wallace,1976;White&Wallace,
1978).AnalyzingNorthAmericantemperaturedatafrom1979to
2018, Nor th et al. (2021) used Baye sian analysis to f it a model
withannualandsemi-annualharmonicsthatvaryoverspaceand
time.Theyidentifygeographicalregionswithsignificantchanges
in the contributions of the two harmonics to seasonal cycles.In
Appendix D, we used le ast squares to fit a model with annual
andsemi-annual harmonics to the unfiltered meanmonthlytem-
peratu re data in Figu re 4a and show th at a model that i ncludes
both annual and semi-annual c ycles provides a significantly bet-
terfittothedata than a modelbasedontheannual cyclealone.
Figure4cshowsthat thefilteredtemperature timeseries hasthe
sameperiod,phase,andapproximateamplitudeasthetheoretical
semi-annualcycle.Onecanalsoseetheeffectsoflongtimescale
|
15 of 23
DESHA RNAIS E t Al.
variabilityinthewaythefiltereddatameandersaboveandbelow
thesemi-annualcycle.ThecospectraofFigure5indicateasignif-
icantnegative correlation between thesquirrel census data and
theONTfilteredweatherdataatatimescaleofsixmonths.While
weca nno td emo nst r at ea dir ect cau sal me c ha nis mf ort hi scorr ela -
tion,thisobservationcouldmotivatefurtherresearch.
It was not pos sible to speci fy an est imated peak va lue for the
timescale of low-frequency variation in the squirrel numbers or
mean mont hly temperature s. The 140 months of the time series
representlessthan12years.Inspectralanalyses,estimatesoflong-
period,low-frequencyc ycles areless precise since theycannot be
asreadilyobserved asshort-period, high-frequencyoscillations. In
the estimated spectraofFigures3and 4, thespectral powercon-
tinuestoincreaseasthefrequenc ydecreases.However,therecord
ofmean annual temperatures forOntario Airport extendsback to
1999,providinga 22-year timeseries.InAppendixD,weshow that
asignificantpeakinthespectrumofannualtemperaturesoccurson
atimescale of about 7 years, which isconsistentwith thewavelet
analysis inFigure 9. If annual changesin environmentalconditions
aredrivingthelong-termvariationinsquirrelnumbers,whichseems
tobethec asefortheWGS(Figure5a),thisestimatecouldalsorep-
resentthetimescaleofthosefluctuations.
We presented s imulation resu lts in sect ion 3.4 that were de -
signedtoexploretheeffectsofchangesinthetimescaleofenviron-
mental noise ontheoutcomeofcompetitionbet weenecologically
similarnativeandnon-nativespecies.Weshowed thatanincrease
inthe timescale of environmental noisereddensthespectrumof
population fluctuations and decreases the likelihood of coexis-
tence, especially whenthe non-native is a better competitor.This
result dif fers fromone of the findingsofRuokolainenand Fowler
(2008), who concludedthat extinction risk decreased with a red-
deningofenvironmentalnoisewhen,likeinour model,therewas
astrong correlationin the species response to theenvironmental
fl u ctua tio n s.H owe ver,t hei r si m ula t ion pro t oco lsd iffe r edf r omo urs
inseveralways.First,theylookedatacommunit yofthreecompet-
ingspecies.Second,theirenvironmentalnoisewasgeneratedusing
an autoreg ressive proces s and was added to t he carryi ng capac-
ity for each species. Third, and most importantly, in their models
the intrinsic rate of increase for eachspecies was set to ri = 1 .8,
whereasinourmodelwechoser1 = r2 =.3,whichismoreconsis-
tentwiththereproductivecapabilitiesoftreesquirrels(Appendix
A).Indeterministic modelsofthetypeusedinoursimulationsand
those of Ruokolainen andFowler (20 08), values of 1 > r > 2lead
toovercompensatingdynamics,wheretheapproachtoequilibrium
exhibits damped oscillations. Although Ruokolainen and Fowler
(2008)claimedthattheirresultsarequalitativelysimilarforvalues
ofr <1,previousworkwithsingle-speciesmodels(e.g.,Danielian,
2016)hasshownthatextinctionriskincreaseswithareddeningof
environmentalnoise when thedeterministicmodel, like ours, has
undercompensating dynamics (ri <1),butdecreaseswithared-
deningof environmental noisewhenthedeterministicmodel has
overcompensatingdynamics(1< ri <2).Sincetheapparentcontra-
dictionbetweenourresultsandthose of Ruokolainen and Fowler
(200 8) occurred when th ere was a strong sy nchrony among th e
threespeciesduetothehighcorrelationoftheeffectsofenviron-
mentalnoise,theirresultisconsistentwithwhatonewouldexpect
from a singl e-species m odel. When we rep eated our simulat ions
usingvalues ofr1 = r2 =1.8,weobservedaresultconsistentwith
RuokolainenandFowler(2008).
Our simulation results were limited in their scope. They were
motivatedbyouranalysesoftimescaledifferencesinthevariability
ofpopulation fluctuations for two sympatric species of tree squir-
rels. Simulation analysesofthetypeconductedinthispaper could
beexpanded toincludea broaderexaminationof parameterspace,
other ecological interactions suchaspredatorand prey, and larger
communities of interacting species. Our approach could also be
adaptedtoappliedconservationmodelswhereenvironmentalvari-
abilityisapartofthesimulationprotocols.Theinferenceinsection
3.5 that timescale shifts in environmental fluctuations may be oc-
curring duetoclimatechange wouldbeamotivationtoexplorethe
impact s for populations of interest to conservationists and natural
resourcemanagers.
Our anal yses of spec tral expo nents for me an annual te mpera-
tures suggest that there has been a reddeningof the timescale of
climate fluctuations for the continental United States during the
time per iod 1990–2014. García-Carrer as and Reuman (2011) con-
ducted aglobal analysis ofspectral exponentsfor the time period
1911–1990.Theysplitthetimeseriesintotwohalvesandconcluded
that,whilemostofthespectralexponentswerered-shifted,thered
shiftwassmallerin1951–1990comparedwith1911–1950.Thiswas
trueforallcontinent sexceptA sia, which was redderin 1951–1990
than it was i n 1911–195 0. Thus, in gene ral, they obs erved a shif t
toshortertimescales in more recenttimes, whileweobservedthe
opposite.Thisinconsistencymaybeduetodif ferencesinour anal-
yses. García-Carrerasand Reuman(2011)useda linear func tion to
detrendtheirdata,whileweusedaquadraticfunction.Theydivided
their timeseries into twosegment sof40 yearseach, whilewedi-
vided oursintofoursegments of25years each.Most importantly,
our last timeseries segment covered 1990–2014 whichwent be-
yondthelatest yearthattheyexamined. Itwasinthislast 25-year
periodthatwesawastronglysignificantshiftfromblue-tingedfluc-
tuations tored-tinged fluctuations (Figure 8). Thisagrees with the
resultsofWangandDillon(2014)whoalsofoundanincreaseinthe
autocorrelation (timescale) ofannual temperaturesfromtheperiod
of1975through 2013.It may bethe case that the lengthening of
thetimescaleofmeanannualtemperaturefluctuationsisarelatively
recentphenomenon.
Our analyses of changes in climate fluctuations could be ex-
tendedinseveralways.ThedistributionsinFigure8showthatthere
isvariation inthevalues ofthespectral exponents amongweather
st ation s.The sam pl inglo cat io ns, wh ichar es c at ter edacr os sth ec on -
tinentalUnitedStates(Figure7),couldbesubdividedbyregion(e.g.,
northeastandsouthwest)toseewhethertherearesignificantdiffer-
encesinthevaluesofthespectralexponentsduetogeographiclo-
cation.FollowingGarcía-Carreras and Reuman (2011),ouranalyses
couldbeexpandedtoincludesamplingstationsonothercontinents
16 of 23
|
DESHARNAIS E t Al.
andothermeasures,suchasmeanseasonaltemperatures,couldbe
analyze d. To tal annual pre cipitation coul d also be include d in the
analyses.Furtherresearchisneededtosee whetherourinference
thatclimatechangesarelengtheningthetimescalesforenvironmen-
talfluctuations is robust.This could have implications,notonlyfor
conservationbiologyandresourcemanagement,butalsoforother
areassuchasforestfiremanagementandagriculture.
5 | CONCLUSIONS
Using spec tral analyses, we have shown that the variations in
monthly fluctuations of population numbers for native and non-
native tree squirrels coexistingin the same habitat aredistributed
mostly ove r long timescal es (>15 mont hs) and their numbe rs are
synchronous over long timescales. After annual cycles are filtered
from the time series for mean monthly temperatures from nearby
OntarioAirport,thereremainsastrong six-monthcycleandsignifi-
cantfluctuationsattimescalesthatexceed15months.Therewasa
significant negativecorrelation between the temperaturedata and
squirrelnumbersforbothWGSandFSatasix-monthtimescaleand
a signific ant amount of long t imescale corr elation betwee n mean
monthly temperatures and WGSnumbers.Weused modelsimula-
tionstoshowthatenvironmentallyinducedlongtimescalevariation
in popula tion numbers fo r two competing s pecies with mod erate
rates of reproduction greatly increases the probability of extinc-
tion of the inferior competitor. Finally,we conducted spectraland
wavelet analyses for 100 yearsofmeanannualtemperatures from
1218weatherstationsacrossthecontinentalUnitedStates.Ourre-
sults suggest that thetimescale of fluctuations around the chang-
ingclimatetrendshas increased inthelast fewdecades,providing
anotherenvironmentalaspectofclimatechangethatcouldthreaten
themaintenanceofbiodiversit y.
Thisstudy documentslongtimescale variationinnatural popu-
lationsofconservationinterest,showsthatlongtimescalevariation
can accelerate theloss of species diversity, and provides evidence
thatthetimescalesofenvironmentalfluctuationshaveincreasedin
recenttimes.Wehopethisservesasacautionarymessageforcon-
servationist sandnaturalresourcemanagersthatanexaminationof
timescales for environmental andpop ulationfluctuations are fac-
torsworthyofconsideration.
ACKNOWLEDGMENTS
WethankadministrationandstaffattheCaliforniaBotanicGarden
forallowing our studytobeconductedattheirlocation.Wethank
Ka t y aEr k abae v aa n dAar o nOc a r izf o rth e ira s sis t a nce with t hef i eld-
work.R.A.D.thanksRichardM.MurrayattheCaliforniaInstituteof
Technologyforhisho spi talit ywh ilepor ti onsofth isworkwerecom-
pleted there. This research was supported in partbyU. S. National
ScienceFoundationgrantDMS-1225529toR.A.D.
CONFLICT OF INTEREST
Nonedeclared.
AUTHOR CONTRIBUTIONS
Robert A. Desharnais: Conceptualization (equal); Formal analysis
(lead); Methodology (equal); Software (lead); Visualization (lead);
Writing – original d raft (lead); Wri ting – review & e diting (equal).
Alan E. Muchlinski:Conceptualization(equal); Datacuration (lead);
Investigation (equa l); Methodolog y (equal); Project administration
(lead); Supervision (lead);Writing – original draf t(equal); Writing–
review&editing(equal).Janel L. Or tiz:Investigation(equal);Writing
– orig inal draf t (equal); Writin g – review & e diting (equal ). Ruby I.
Alvidrez: Investigation (equal); Writing – original draft (equal);
Writing – review & editing (equal). Brian P. Gatza: Investigation
(equal);Writing–review&editing(equal).
DATA AVA ILAB ILITY STATE MEN T
Squirrelcensusdat aarearchivedonDr yad(https://doi.org/10.5 061/
dryad.w6m905qqv). Weather and climate data are accessible at
the Climat e Data Online web site of NOAA’s National Ce nters for
EnvironmentalInformation(https://www.ncdc.noaa.gov/cdo-web/).
MATLAB code usedforcomputingand smoothing the spectraand
cospectraandgeneratingunivariateormultivariatetimeserieswith
the asymptotic spectral properties of a supplied spectral matrix is
availableonlineat:https://doi.org/10.5281/zenodo.5753478 .
ORCID
Robert A. Desharnais https://orcid.org/0000-0003-2874-6835
Janel L. Ortiz https://orcid.org/0000-0001-5912-1366
REFERENCES
Bailey,V.(1936).ThemammalsandlifezonesofOregon.Nor th American
Fauna,55,1–416.https://doi.org/10.3996/nafa.55.0001
Becker, E. M., & K imball, M. H. (1947). Walnut g rowers turn squi rrel
catchers.Diamond Walnut News,29,4–6.
Brady,M.J.,Koprowski, J.L., Gwinn,R.N.,Yeong-Seok, J.,&Young, K.
(2017).Easternfoxsquirrel(Sciurus niger,Linnaeus1758)introduc-
tion tothe Sonoran Desert .Mammalia, 83, 221–223. https://doi.
org/10.1515/mammalia-2015-0162
Brillinger, D. R. (2001). Time series: Data analysis and theor y.
Societ y for Industrial and Applied Mathematics. https://doi.
org /10.1137/1.978 089871924 6
Carraway,L.N.,&Verts,B.J.(1994).Sciurusgriseus.Mammalian Species,
474,1–7.https://doi.org/10.2307/3504097
Cazelle s,B.,Chavez,M.,Berteaux,D.,Ménard,F.,V ik,J.O.,Jenouvrier,
S., & Stens eth, N. C. (20 08). Wavelet an alysis of ecolo gical time
series. Oecologia, 156, 287–304. https://doi.org/10.1007/s004 4
2 - 0 0 8 - 0 9 9 3 - 2
Chambe rs, M. J. (1995). The simulat ion of random vec tor time serie s
withgivenspectrum.Mathematical and Computer Modelling,22,1–
6 . h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / 0 8 9 5 - 7 1 7 7 ( 9 5 ) 0 0 1 0 6 - C
Cliffo rd, P.,R ichardson , S., & Hemon, D. (1989). Ass essing the sig nifi-
canceofthecorrelationbetweentwospatialprocesses.Biometrics,
45,123–134.https://doi.org/10.2307/2532039
Cooper, D. S. (2 013). The distribution of the WGS (Sciurus griseus) in the
Los Angeles basin, California(31pp.). California.CooperEcological
Monitoring,Inc.
Cooper,D.S.,&Muchlinski,A.E.(2015).Recentdeclineoflowlandpop-
ulation s of the Western gr ay squirrel i n the Los Angel es area of
SouthernCalifornia.Bulletin of the Southern California Academy of
Sciences,114, 4 2 – 5 3 . h t t p s : / / d o i . o r g / 1 0 . 3 1 6 0 / 0 0 3 8 - 3 8 7 2 - 1 1 4 . 1 . 4 2
|
17 of 23
DESHA RNAIS E t Al.
Danielia n, S. (2016). The effects of environmental noise and dispersal on
ecological extinction and the spectral properties of metapopulations.
CaliforniaStateUniversity.
DeMarco , C., Coop er,D. S ., Torres, E., Mu chlinski, A . E., & Ag uilar, A.
(2020). Effe cts of urbanizationonpopulationgeneticstructure of
Western gray squirrels.Conservation Genetics, 22, 67–81. https://
d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 5 9 2 - 0 2 0 - 0 1 3 1 8 - x
Desharnais, R . A., Reuman, D. C ., Cost antino, R. F., & Cohen, J. E.
(2018).Temporalscaleofenvironmentalcorrelationsaffectseco-
logical synchrony. Ecology Letters, 21, 1800–1811. https://doi.
org /10.1111/el e.13155
Di Cecco, G . J., & Gouhie r,T. C. (2018). I ncreased s patial and tem po-
ralautocorrelation oftemperatureunderclimate change.Scientific
Reports,8, 1 – 9 . h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 1 8 - 3 3 2 1 7 - 0
Diffe nbaugh, N. S., Swa in, D. L., & Touma, D. (2015). An thropogenic
warming has incre ased drought risk i n California. Proceedings of
the National Academy of Sciences, 112, 3931–3936. https://doi.
org /10.1073/p nas.142 238 5112
Do o d y, J. S ., R h in d ,D . ,G r ee n , B. , C as t e ll a no , C ., M cH e n r y,C . , &C l ul o w,
S. (2017). Ch ronic effec ts of an invasive spe cies on an anima l
community. Ecology, 98, 20 93–2101. ht tp s://doi.org /10.10 02/
ec y.18 89
Dueñas, M. A., Hemming, D. J., Rober ts, A., & Diaz-Soltero, H.(2021).
ThethreatofinvasivespeciestoIUCN-listedcriticallyendangered
species:Asystematic review.Global Ecology and Conservation,26,
e01476.ht tp s://doi .org/10.1016/j. gecco.2021.e01476
Dutilleul, P.,Clifford, P.,Richardson,S .,&Hemon, D.(1993).Modifying
the t-tes t for assessin g the correla tion betwe en two spati al pro-
cesses. Biometrics,49,305–314.https://doi.org/10.2307/2532625
Escobar-Flores, J. G., Ruiz-Campos, G., Guevara-Carrizales, A . A., &
Martínez-Gallardo, R. (2011). Specimens of the Western gray
squirrel, Sciurus griseus Anthonyi (Mammalia: Sciuridae), in Baja
California,México.Western Nor th American Natu ralist,71,119–120.
https://doi.org/10.3398/064.071.0117
Fey,S.B.,&Wieczynski,D.J.(2017).Thetemporalstructureoftheen-
vironment mayinfluence range expansions during climatewar m-
ing. Global Change Biology, 23, 63 5–645 . ht tps: //doi .or g/10.1111 /
gcb.13 46 8
Fletcher,R.A.(1963).The ovarian cycle of the gray squirrel, Sciurus griseus
Nigripes.MSThesis,Univer sityofC alifornia.
Flory,L.S.,&Lockwood,J.L.(2020).Advancingtowardageneraltheor y
ofinvasivespeciesimpacts:Howdoecologicaleffectsvary across
timeandspace?Bulletin of the Ecological Society of America,101,1–
4.https://www.jstor.org/stable/26920136
Flyger,V.,&Gates,J.E.(1982).Foxand graysquirrels.InJ.A .Chapman
&G.A.Feldhamer(Eds .),Wild mammals of North America(pp.209–
229).JohnsHopkinsUniversityPress.
Frey,J.K .,&C ampbell,M.L .(1997).Introducedpopu lati onsoffoxsquir-
rel(Sciurus niger)intheTrans-PecosandLlanoEstacadoregionsof
NewMexicoandTexas.The Southwestern Naturalist,42,356–358.
Garcia,R.B.,&Muchlinski,A.E.(2017).RangeexpansionoftheEastern
fox squirrel within the greater Los Angeles metropolitan area
(2005–2014) and projec tions for continued range expansion.
Bulletin of the Southern California Academy of Sciences,116,33–45.
h t t p s : / / d o i . o r g / 1 0 . 3 1 6 0 / s o c a - 1 1 6 - 0 1 - 3 3 - 4 5 . 1
García-Carreras,B., &Reuman, D.C. (2011).Anempiricallinkbetween
thes p e c t r al c o l o u r ofc l i m a t e a n dthes p e c t ra l c o l o u r off ie l d p o p u l a -
tionsinthecontextofclimatechange.Journal of Animal Ecology,80,
1042–104 8.ht tp s://doi.o rg /10.1111 /j.1365-2656 .2 011.01833 .x
Geluso, K. (20 04). West ward expansion of the Eas tern fox squirrel
(Sciurus niger) in northeastern New Mexico and southeastern
Colorado.The Southwestern Naturalist,49,111–116 .
Heino, M. (1998). Noise colour, synchrony and extinctions in spa-
tially structured populations. Oikos, 83, 368–375. https://doi.
org/10.2307/3546851
Heino, M., Ripa, J., & Kaitala, V. (200 0). Ex tinction risk under co-
loured environmental noise.Ecography, 23, 177–184. ht tps://doi .
org/10.1111/j.1600-0587.2000.tb00273.x
Hoefler,G.,&Harris,J.(1990).MO78foxsquirrel.In D.C .Zeiner,W.F.
Laude nslayer, K. E. Mayer & M . White (Eds.), California’s wildlife.
Volume III Mammals (pp. 148–149). California Statewide Wildlife
HabitatRelationshipsSystem.
Hsu,C.F.,&Wallace,J. M. (1976).Theglobaldistribution oft heannual
and semiannual c ycles in precipit ation. Monthly Weather Review,
104,1093–1101.
Huxe l,G. R.(19 99).R api dd is pl ac ementofn at ives pec ie sb yinvasivespe -
cies:Effectsofhybridization. Biological Conservation,89,143–152.
h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / S 0 0 0 6 - 3 2 0 7 ( 9 8 ) 0 0 1 5 3 - 0
Inchaus ti, P., & Halley, J. (2003). On the relation between tem-
poral variability and p ersistence time in animal popula-
tions. Journal of Animal Ecology, 72, 899–908. https://doi.
org /10.10 46/j.1365-2656. 20 03 .0 0767.x
Jameson, E. W., & Peeters, H. J. (1988). California mammals. Vol. 52.
California natural history guides.UniversityofC alifor niaPress.
Jordan , R. A., & Hamm erson, G. (1996). Comprehensive report: Sciurus
niger- Linnaeus 1758. Heritage Identifier. AMAFB07040. http://
www.natureserve.org
King, J. L . (2004). The current distribution of the introduced fox squirrel
(Sciurus niger) in the greater Los Angeles metropolitan area and its be-
havioral interaction with the native Western gray squirrel (Sciurus gri-
seus).MSThesis,CaliforniaStateUniversity.http://fishandwildlife.
lacounty.gov/Portals/FWC/PDF/Fox_Squirrel_Study.pdf
King, J. L ., Sue, M. C ., & Muchlinsk i, A. E. (2010). Dis tribution o f the
Eastern fox squirrel (Sciurus niger) in Southern California. The
Southwestern Naturalist, 55, 42–49. https://doi.org/10.1894/
R T S - 0 3 . 1
Kleiman,D.,Geist, V.,McDade, M.,Trumpet, J.,&Hutchins,M.(2004).
Mammals.Gale.
Koenig,W.D.,Knops,J.M.H.,Carmen ,W.J.,Stanback,M.T.,&Mumme,
R.L.(1996).AcornproductionbyoaksinCentralCoastalCalifornia:
Influence of weather at three levels. Canadian Journal of Forest
Research,26,1677–1683.https://doi.org/10.1139/x 26-189
Koprowski, J. L. (1994). Sciurus niger. Mammalian Species, 479, 1–9.
https://doi.org/10.2307/3504263
Lawton,J.H.(1988).Moretimemeansmorevariation.Nature,334,563.
https://doi.org/10.1038/334563a0
Linder s, M. J., & Stin son, D. W. (2007) . Washington state recovery plan
for the Western gray squirrel. Washington Department of Fish and
Wildlife.
Mann,M.E.,&G leick,P.H.(2015).ClimatechangeandCaliforniadrought
inthe21stcentur y.Proceedings of the National Academy of Sciences,
112,3858–3859.https://doi.org/10.1073/pnas.1503667112
Masson-Delmotte,V.,Zhai,P.,Pirani,A .,Connors,S.L.,Péan,C.,Berger,
S.,Caud,N.,Chen,Y.,Goldfarb,L.,Gomis,M.I.,Huang,M.,Leitzell,
K., Lon noy,E ., Matth ews, J. B. R ., Maycock, T. K. , Waterfie ld, T.,
Yelekçi,O., Yu,R .,Zhou,B.(Eds.)(2021).Climate change 2021: The
physical science basis. Contribution of Working Group I to the sixth
assessment repor t of the intergovernmental panel on climate change.
CambridgeUniversityPress.
Menne, M. J., Williams, C. N. Jr, &Vose,R .S.(2009). TheUS historical
climatologynetworkmonthlytemperaturedat a,version2 .Bulletin
of the American Meteorological Society, 90, 993–100 8. https ://doi.
o r g / 1 0 . 1 1 7 5 / 2 0 0 8 B A M S 2 6 1 3 . 1
Muchlin ski, A. E ., Gatz a, B., Lewi s, S., & Erkeb aeva, K. (2012). Eas tern
fox squirrels and Wes tern gray squirrels in Southern C alifornia.
Proceedings of the Vertebrate Pest Conference,25,7–12.ht tps://doi.
org /10.5070/ V425110358
Muchlinski, A. E., Stewart, G . R., King, J. L., & Lewis, S. A. (2009).
Documentation of replacement of native western gray squir-
rels by introduced eastern fox squirrels. Bulletin of Southern
18 of 23
|
DESHARNAIS E t Al.
California Academy of Sciences, 108, 160–162. ht tps ://doi.
org/10.3160/0038-3872-108.3.160
Mustin,K.,D ytham,C.,Benton,T.G.,&Travis,J.M.J.(2013).Rednoise
increasesextinctionriskduringrapidclimatechange.Diversity and
Distributions,19,815–824.https://doi.org/10.1111/ddi.12038
NationalCentersforEnvironmentalInformation(NCEI),HistoricalPalmer
Dro ug htI nd ices.Ac cesse do n2Februar y2022 .htt ps://ww w. ncdc.
n o a a . g o v / t e m p - a n d - p r e c i p / d r o u g h t / h i s t o r i c a l - p a l m e r s /
North,J.S.,S chliep,E.M.,&W ikle,C .K.(2021).Onthespatialandtem-
poral shif tinthe archet ypal seasonal temperaturecycle as driven
byannual and semi-annual harmonics. Environmetrics, 32, e2665.
https://doi.org/10.1002/env.2665
Olhede, S. C., & Walden, A . T. (2002). Generalized Morse wavelets.
IEEE Transactions on Signal Processing, 50, 2661–2670.https://doi.
org/10.1109/TSP.2002.804066
Oregon D epartm ent of Fish and W ildlife (20 16).O regon conse rvation
strategy.https://www.dfw.state.or.us/conservationstrategy
Orti z, J. L. (2021). Tempora l and spatial ove rlap in the be haviors of a
native an d invasive tree sq uirrel in sout hern Califor nia. Ethology
Ecology & Evolution, 34, 1–17. https://doi.org/10.1080/03949
370.2021.1936651
Ortiz, J. L., & Muchlinski, A. E. (2015). Food selec tion of coexist-
ing Wester n gray squirrels a nd Eastern fox sq uirrels in a native
California botanicgarden in Claremont, California. Bulletin of the
Southern California Academy of Sciences, 114 , 98–103. htt ps://do i.
o r g / 1 0 . 3 1 6 0 / 0 0 3 8 - 3 8 7 2 - 1 1 4 . 2 . 9 8
Petchey,O.L.,Gonzalez,A.,&Wilson,H.B.(1997).Effectsonpopulation
persistence:Theinteractionbetweenenvironmentalnoisecolour,
intraspecificcompetitionandspace.Pr oceedings of the Royal S ociety
of London Series B: Biological Science s,26 4, 1841–1847.https://doi.
org /10.1098/rspb.1997.0254
Pimm,S.L.,&Redfearn,A.(1988).Thevariabilityofpopulationdensities.
Nature,334,613–614.https://doi.org/10.1038/334613a0
Rangel,T.F.,Diniz-Filho,J.A.,&Bini,L.M.(2006).Towardsanintegrated
computationaltoolforspatialanalysis inmacroecologyandbioge-
ogr aphy.Global Ecology and Biogeography,15,321–327.https://doi.
org /10.1111/j .146 6- 822 X.200 6. 00237.x
Ripa, J., & Heino, M. (1999). Linearanalysissolves t wo puzzles in pop-
ulation dynamic s: The route to extinction and ex tinction in co-
loured environments. Ecology Letters, 2, 219–222. https://doi.
org /10.10 46/j.1461-024 8.199 9.00 073 .x
Ripa, J., & Lundbe rg, P. (1996). Noise col our and the risk of popula-
tion extinctions. Proceedings of the Royal Society of London Series
B: Biological Sciences, 263, 1751–1753. https://doi. org /10.1098/
rspb.19 96.02 56
Ruokolainen, L., & Fowler, M. S. (2008). Community ex tinction pat-
terns in colouredenvironments. Proceedings of the Royal Society
B: Biological Sciences, 275, 1775–1783. https://doi.org/10.1098/
rspb. 20 0 8. 0193
Ruokolainen,L.,Lindén,A.,Kaitala,V.,&Fowler,M.S.(2009).Ecological
and evolutionary dynamics under coloured environmental vari-
ation. Trends in Ecology & Evolution, 24, 555–563. https://doi.
org/10.1016/j.tree.2009.04.009
Sakai, A . K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J.,
With, K . A., Baughman, S., Cabin, R. J.,Cohen, J. E., Ellstrand, N.
C., McC auley, D. E., O'Ne il, P. , Parker, I. M., Tho mpson, J. N., &
Weller, S. G. (20 01). The popul ation biolog y of invasive speci es.
Annual Review of Ecology and Systematics,32,305–332.ht tps://doi.
org/10.1146/annurev.ecolsys.32.081501.114037
Schreib er, T., & Schmitz, A. (20 00). Surrogate time series. Physica D
Nonlinear Phenomena, 142, 346–382. http s://doi.org /10.1016/
S 0 1 6 7 - 2 7 8 9 ( 0 0 ) 0 0 0 4 3 - 9
Schwager, M., J ohst, K. , & Jeltsch, F. (20 06). Does red no ise increase
or decre ase extinc tion risk? Singl e extreme eve nts versus ser ies
ofunfavorableconditions.The American Naturalist,167,879–888.
htt ps://doi.org/10.10 86/5036 09
Sheppard, L. W., Bell, J. R., Harrington, R., & Reuman, D. C. (2016).
Changes in large-scale climate alter spatial synchrony of aphid
pests. Nature Climate Change,6,610–613.https://doi.org/10.10 38/
nclimate2881
Steele, M.A., &Koprowski,J.L.(2001). North American tree squirrels (p.
201).SmithsonianInstitutionPress.
Steele, M.A.,&Yi,X. (2020).Squirrel-seedinter actions:Theevolution-
ary strategiesand impac t ofsquirrels as both se ed predators and
seed dispersers. Frontiers in Ecology and Evolution, 8, 259.https://
doi.org/10.3389/fevo.2020.00259
Stuart,K.D.(2012).Ecolog y and conservation of the Western gray squirrel
(Sciurus griseus) in the North Cascades. Disser tation , Universit y of
Washington,Seattle,USA.
Swift,R.(1977).The reproductive cycle of the Western gray squirrel in But te
County, California.MSThesis,C alifor niaStateUniversity.
Vasseur, D. A., & Yodzis , P. (2 004). The co lor of environm ental noise .
Ecology,85,1146–1152.https://doi.org/10.1890/02-3122
Wang, G., &Dillon,M.E.(2014).Recentgeographicconvergenceindi-
urnalandannualtemperaturecyclingflattensglobal thermalpro-
files.Nature Climate Change,4,988–992.https://doi.org/10.1038/
NCLIMATE2378
White, G . H., & Wallace, J. M. (1978). The global distributi on of the
annual and semi-annual cycles in surface temperature. Monthly
Weather Review, 106, 901–906. https://doi.org/10.1175/1520-
0493(1978)106%3C0901:TGDOTA%3E2.0.CO;2
Wolf,T.F.,&Roest,A.I .(1971).Thefoxsquir rel(Sciurus niger)inVentura
County.California Fish and Game,57,219–220.
Wood, D. J. A ., Koprowski, J. L ., & Lurz, P. W. W.( 2007). Tree squir-
rel introduction: A theoretical approach with population viabil-
ity analysis”. Journal of Mammalogy, 88, 1271–1279. https://doi.
o r g / 1 0 . 1 6 4 4 / 0 6 - M A M M - A - 3 0 3 . 1
Zhao, W., & Khalil, M. A . K. (1993). The relationship bet ween pre-
cipitation and temperature over the contiguous united states.
Journal of Climate, 6, 1232–1236. htt ps: //doi.o rg /10.1175/1 520 -
0442(1993)006<1232:TRBPAT>2.0.CO;2
How to cite this article:Desharnais,R.A.,Muchlinski,A.E.,
Ortiz,J.L.,Alvidrez,R.I.,&Gatza,B.P.(2022).Timescale
analysesoffluctuationsincoexistingpopulationsofanative
andinvasivetreesquirrel.Ecology and Evolution,12,e8779.
https://doi.org/10.1002/ece3.8779
|
19 of 23
DESHA RNAIS E t Al.
APPENDIX A
INTRINSIC RATES OF INCREASE FOR SQUIRREL S
WeusedtheEuler-Lotkaequationtocomputetheintrinsicrateofincrease,r,fortheSciurusspeciesintable1ofWoodetal.(20 07).Forthis
equation,risthesolutionto
where lxisthesurvivalprobabilitytoagexandbxisthenumberofof fspringborntoanindividualof agex.Intheirpopulationviabilityanalysisof
treesquirrels,Woodetal.(2007)givevaluesforthepercentageoffemalesbreedingperseason,P,thenumberofbreedingsperyear,β,thelitter
sizeperfemale,L,andthemor talit yratesforagezero,m0,andindividualsoneyearandolder,m(TableA1).Foreachspecie s,bre edingbeginsatage
one.Giventhisinformation,wecomputedannualsurvivalratesasl1 =1–m0andlx =(1–m0) ( 1–m)x– 1 forx≥2.(Bydefinition,l0 =1.)Thenumberof
offspringperindividualwascomputedasb0 =0andbx = PβL/2forx≥1.Wedivideby2becauseonlyfemalesproduceoffspringandonlyhalfthe
litterarefemale.TheEuler-Lotkaequationbecomes
Takinglogarithms,weget.
Aroot-findingalgorithmwasusedtonumeric allysolveequationA2forr.
Woodetal.(2007)providedthreesetsofthelifehistor yvaluesdescribedforthefollowingspecies:Sciurus aberti,S. carolinensis,S. granat-
ensis,S. niger(FS),andS. vulgaris.Thethreesetsofparametersarelabeledas“optimistic,”“average,”and“pessimistic.”Usingthevalueslabeled
asaverage,wecomputedthevaluesofr,respectively,forthefivespecies(TableA1).Theaverageofthesefivevaluesis0.32.Therefore,we
usedavalueofr1 = r2 =.3inoursimulations.Thisisclosetothevalueof0.29obtainedforFS(TableA1).
APPENDIX B
NUMBERS OF ACORNS
Estimatesofacornproductionweremadeinyears2012through2020bymeasuringduringthemiddleofOctoberthemassofacornsinaone
squaremeterplotundereachofsixoaktreeswithinthestudyarea.Thesametreesandthesameplot swereusedeachyearforestimationof
aco rnpr od uctiontoas se ss va ri ab ilit ya mo ng year sandrelationshi ptochangesi nabu nd an ceoft he tr ee sq ui rr el s. Th edat aapp ea rinTab leA2 .
(A1)
∞
∑
x=0
e−rxlxbx=
1
∞
∑
x
=1
(P𝛽L∕2)(1−m0)(1−m)x−1e−rx =(P𝛽L∕2)(1−m0)e−r
∞
∑
x=0[(1−m)e−r]
x
=(P𝛽L∕2)
(
1−m
0)
e−r
(
1−(1−m)e−r
)
−1=1.
(A2)
ln [
(P𝛽L∕2)
(
1−m
0)]
−r−ln
[
1−(1−m)e
−r]
=
0
TABLE A1 ParameterestimatesfromWoodetal.(2007,table1,“average”)forfivespeciesoftreesquirrelsfromthegenusSciurus
Parameter Description Sciurus aberti Sciurus carolinensis Sciurus granatensis Sciurus niger Sciurus vulgaris
P%femalesbreeding 62 70 70 55 90
βbreedingsperyear 2 2 2 2 2
Llittersize(perfemale) 3.4 2.8 2.2 2.2 2.2
m0mortality(1styear) 0.60 0.60 0.60 0.60 0.62
mmortality(≥1year) 0.28 0.338 0.48 0. 28 0.32
rrateofincrease(year–1 )0.45 0. 37 0.13 0.29 0.36
20 of 23
|
DESHARNAIS E t Al.
APPENDIX C
NUMBERS OF JUVENILE AND SUBADULT SQUIRRELS
StartinginJanuary2015,observersatourfieldsitestarteddistinguishingamongadults,subadults,andjuveniles.Thelattertwocategoriescan
serveasaproxyforreproduction.FigureA1showsthenumbersofjuvenilesandsubadultsfortheWGSandtheFS.Forbothspecies,juveniles
andsubadultsareseenmoreofteninspringandfall(FigureA1,shadedareas),especiallyinthecaseoftheFS.However,thereisagreatdeal
ofyear-to-yearvariation(longtimescales)inthenumbers.
APPENDIX D
ANNUAL AND SEMI- ANNUAL TEMPERATURE CYCLES
Meteorologists and climatologists haveused harmonicanalysis to identify seasonalcyclesin atmospherictemperature ( White &Wallace,
1978).Inadditionto astrongannualcycle,asemi-annualcycle, whichcanvarybyyearandlocation,hasbeen identified(Northetal.,2021;
White&Wallace,1978).Intheirequation(1),Northetal.(2021)usedthefirsttwotermsofaFourierrepresentationofanannualtemperature
timeseries.Theirequation,usingmonthsasthetimeunit,isgivenby
where xtisthetemperature(in°C),tisthetime(inmonths),a0isthecentervalueforthetemperatureoscillations(in°C),Aiistheamplitude(in°C)
andϕiisthephaseshift(inmonths)oftheannual(i =1)andsemi-annual(i =2)componentcycles.
Wefit equation(A3)tothemeanmonthlytemperaturedatafromOntarioAirport(ONT)(Figure4a) using themethodofnonlinearleast
squares.TheparameterestimatesandtheirstandarderrorsappearinTableA3.Thephaseshift sarerelativetothemonthofSeptember.The
temperature data andthe fittedfunction appearinpanel A of FigureA2. Thefitted functionprovidesa gooddescription of the observed
temperaturetimeseries.
ThetwocomponentcyclesareshownseparatelyinpanelBofFigureA2.Theannualcycleisthelargerofthetwoandisobtainedbysetting
A2 =0inequation (A3). Itpeaksin July–Augustandhasitstrough inJanuar y–February.Thesmaller semi-annualcycle,obtainedby setting
A1 =0 in equation (A3),peaks twice per year in February–March andAugust–September and has it stroughsinNovember–December and
May–June.Theamplitudeofthesemi-annualcycleis21%thesizeoftheamplitudeoftheannualcycle.
Inpanel(c)ofFigureA2,weplottedthetemperaturetimeseriesobtainedafterfilteringouttheannualcycle(Figure4a,dashedline)withthe
semi-annualcyclefrompanel(b)ofFigureA2.Thetheoreticalandfilteredcycleshavethesameperiodicity,phase,andapproximateamplitude.
Moreover,onecanseetheeffectsoflongtimescalevariabilit yinthewaythefiltereddatameandersaboveandbelowthesemi-annualcycle.
Thisgivesusconfidencethattheband-stopfilterusedtoattenuatetheannualcycleworkedwell.
Wefitequation(A3)to theobservedtemperaturetime serieswithA2 =0,sothatonlytheannualcyclewaspresent.Theparameteresti-
matesandtheirstandarderrorsarealsopresentedinTableA3.WecomputedthefollowingAkaikeInformationCriterion(AIC)forbothfitted
models:
(A3)
xt=a0+A1cos
2𝜋
t+𝜙1
12
+A2cos
4𝜋
t+𝜙2
12
,
AIC =nln
(
SSE
n
)
+2k
,
TAB LE A 2 Massofacorns(g)ina1m2plotundereachtreeinthestudyarea
Tre e
Year
2012 2013 2014 2015 2016 2 017 2018 2 019 2020
Blueoak 0250 683 0 7 12 098
Canyonoak 230 960 053 54 19 27 84 68
Coastliveoak 18 290 18 29 353 0 5
Coastliveoak 75 880 60 2 40 1 16
Coastliveoak 69 590 234 39 40 0 24
Coastliveoak 2680 210 14 0 0 0 136
Mean±SE 65.7±35.5 608.3± 120.1 5.7± 2.7 34.8± 12.3 18 .7 ± 9. 2 6.5± 2.7 7. 0 ±4.4 14. 2± 14.0 57. 8 ± 21.2
|
21 of 23
DESHA RNAIS E t Al.
where n =140ist hesam plesize,SSEistheresid ualsumofs quare sfo rth ere gression,andkisthenumbe roffit te dpa ra meter s(k =3forth ean nual
modelandk =5forthemodelwithbothannualandsemi-annualcycles).TheannualmodelhadanAICof165.02andthemodelwithbothannual
andsemi-annualcycleshadanAICof114.82.ThesmallerAICsuggeststhatthemodelwithbothcycliccomponentsisabetterdescriptionofthe
seasonaltemperaturechanges.Themagnitudeofthedifference,ΔAIC=50.20,suggeststhattheannualmodelhaslittlesupportrelativetothe
fullmodel.
APPENDIX E
MEAN ANNUAL TEMPERATURE DATA FOR ONTARIO AIRPORT
Weconductedaspectralanalysisofmeanannualtemperatures forOntarioAirport(ONT).Thedatavaluesaretheaveragesofthe12 mean
monthly temperaturesfor eachyear.The firstyearofcomplete data isfor1999,sothetimeseriesspans22yearsfrom1999through2021
(Figure A3, panel (a)).We used the same methodsasdescribedin section2.5forclimatedata: wedetrendedthedataby fit ting aquadratic
poly no mialusingl eas tsqu ar es,computedth es tan da rd iz ed re si duals ,andcomp ut edas mo ot hedno rm al iz ed sp ect rumfortheresidu alti me se -
ries.Becausethetimeseriesisrelativelyshort,weusedsmallerspansof3and3datapointsforthetwoiterationsofthesmoothingalgorithm.
Parameter Description
Estimate (±SE)
for full model
Estimate (±SE) for
annual model
a0centervalueofcycles(°C) 19. 5 0 ± 0 .12 19.4 9±0 .15
A1amplitudeofannualcycle(°C) 6.82± 0 .18 6.80± 0.21
ϕ1phaseofannualcycle(mo.) 1. 52±0.05 1.53±0.06
A2amplitudeofsemi-annualcycle(°C) 1.42± 0 .18 —
ϕ2phaseshiftofsemi-annualcycle(mo.) 0.48± 0 .12 —
TAB LE A 3 Parameterestimatesand
standarderrorsforfullandannualmodels
FIGURE A1 Monthlytimeseriesfornumbersofjuvenilesandsubadultsfor(a)theWGSand(b)theFSfromJanuar y2015throughMay
2021.Theshadedregionsrepresentspring(March–May)andfall(September–November)
JMMJ SN JMMJ SN JMMJ SNJMMJ SNJMMJ SNJMMJ SNJMM
0
2
4
6
8
Juveniles and subadults
Month
JMMJ SN JMMJ SN JMMJ SNJMMJ SNJMMJ SNJMMJ SNJMM
0
2
4
6
8
10
12
Juveniles and subadults
Month
2015 2016 2017 2018 2019 2020
2015 2016 2017 2018 2019 2020
(a)
(b)
22 of 23
|
DESHARNAIS E t Al.
Wecomputed95%significancethresholdbygenerating2000randompermutationsoftheresiduals,obtainingasmoothednormalizedspec-
trumforeach,andusingthe95thpercentilesofthesesurrogatespectraforthe95%limits.FigureA3showstheONTtemperaturedataand
spectrum.Thefittedquadraticpolynomial(dashedlineinFigureA3,panel(a))isnearlylinearandsuggestsatrendofincreasingtemperatures.
Althoughthesignificancebandiswideduetotheshortlengthofthetimeseries,thespectrumfortheresidualsshowsasignificantpeakata
timescaleofabout7years(FigureA3,panel(b)).Thiscorrespondstothetimescalerangeofthelocalpeakinmeanwaveletpowerinthelower
rightcornerofFigure9.
FIGURE A2 (a)TimeseriesforobservedandfittedmeanmonthlytemperaturesfromOntarioAirport.(b)Plotsofthecomponentannual
andsemi-annualcyclesfromthefullmodel(equationA1).(c)Comparisonplotsofthefilteredtemperaturetimeseriesandthetheoretical
semi-annualcycle
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
10
15
20
25
30
Monthly mean temperature (°C)
Observed
Fied
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
10
15
20
25
30
Monthly mean temperature (°C)
Annual
Semiannual
SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDMJ SDM
15
20
25
Monthly mean temperature (°C)
Filtered
Semiannual
Month
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(a)
(b)
(c)
|
23 of 23
DESHA RNAIS E t Al.
FIGURE A3 (a)Timeseriesforobser vedmeanannualtemperaturesfromOntarioAirport.Thedashedlineisthefittedquadratictrend
curvewhichisnearlylinear.(b)Smoothednormalizedspectrumforthestandardizedresidualsfromthetemperaturetimeseriesinpanel(a).
Dashedlineisthe95%significancethresholdforthenullhypothesisofnotimescaledependenceintheorderingoftheresiduals
2000 2005 2010 2015 2020
Year
17
18
19
20
21
Mean annual temperature (°C)
20 10 54
32
Timescale (years)
0.00.1 0.20.3 0.
40
.5
Frequency (cycles/year)
0.00
0.05
0.10
0.15
0.20
0.25
Normalized spectral power
(a) (b)
Available via license: CC BY
Content may be subject to copyright.
Content uploaded by Janel Ortiz
Author content
All content in this area was uploaded by Janel Ortiz on Apr 07, 2022
Content may be subject to copyright.