To read the full-text of this research, you can request a copy directly from the author.

Abstract and Figures

Thanks to a citizen science approach a stranding event of Anodonta cygnea specimens has been detected along the shores of the Cavata River in Latina Province (Latium region) at the end of the winter season. The evidence-based approach confirmed the contributors empirical deductions supporting the hypothesis of the ongoing climate-change driven events threatening both freshwater and marine ecosystems.
Content may be subject to copyright.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.
Natural variation in abiotic factors, such as temperature and pH, probably influence the activity of enzymes used as potential biomarkers in bivalve mollusks to assess environmental contamination in the field. Changes in levels of an enzymatic biomarker may thus merely reflect natural variation in the annual physiological cycle of a species rather than exposure to contaminants. To investigate this issue, we documented the relationship between pesticide levels in water and three different enzymatic biomarkers over 1 year in enclosed populations of the freshwater unionid mussel Anodonta cygnea at three different sites of exposure. We considered the natural variation in temperature, pH and dissolved oxygen over the year and across the different sites as a potential correlate of enzymatic activity to disentangle the relative contribution of abiotic factors and pesticide levels. Pesticide levels varied among the three sites and over the course of the year. Catalase (CAT) and acetylcholinesterase activity (AChE) varied as a function of abiotic factors but showed no relation to pesticide levels. Glutathione S-transferase (GST) activity was also related to abiotic factors but also decreased with increases in total pesticide levels. The lack of activity induction or inhibition by pesticides and the natural variation in abiotic factors among sites and across time limits the use of CAT and AChE to assess environmental contamination in this species.
The increasing frequency by which the production of paralytic shellfish toxins (PST) by freshwater bloom-forming cyanobacteria is being noticed world-wide raises the possibility of PST bioaccumulation by freshwater mussels. This study evaluates PST accumulation and depuration by the freshwater mussel Anodonta cygnea exposed over a 14-day period to high densities (mean = 1.4 x 10(9) cells1(-1), S.D. = 0.29 x 10(9) cellsl(-1)) of the toxic cyanobacterium Aphanizomenon issatschenkoi (corresponding to a mean toxin concentration of 25.5 nmol PSTl(-1), S.D. = 9.9 nmol PSTl(-1)). Mussels were subsequently detoxified either by starvation or by feeding on the non-toxic green-algae Ankistodesmus falcatus. Filter feeding activity and toxin uptake by the mussels were followed by cell counting and toxin analysis in water samples taken before and after each daily water renewal. The accumulation and depuration of PST as well as the anatomical distribution of toxins were monitored throughout the experiment by HPLC analysis of mussel extracts. Mussels fed the toxic cyanobacterium removed on average 65.3% of cells and 40.36% of total PST daily provided. Daily rates of cell clearance (% of initial) were negatively correlated with the amounts of PST daily provided (but not with the amount of cells). This suggests a negative effect of toxins on the feeding behaviour of mussels. Small amounts of toxins could be detected in the mussels after the second day of exposure, reaching a maximum of 26 microg PST100 g(-1) by day 7. The viscera contained the greatest proportion of toxins (78%) at the start of the toxification. However, increasing amounts of PST were found in the remaining tissues (gills, mantle and foot) over time. Toxins detected in the mussel extracts were the same provided in the dietary A. issatschenkoi. Nevertheless, mussels showed a higher proportion of saxitoxin and decarbomoylsaxitoxin and a lower proportion of gonyautoxin-5 than the fed cyanobacterium. Similar depuration efficiencies were observed among starved individuals (6.9% day(-1)) and those fed with A. falcatus (8.2% day(-1)) indicating that both treatments had comparable effects on toxin metabolism. Mussels showed a typical S shaped depuration kinetics curve consisting of a first short period of slow toxin decay followed by a rapid loss and a subsequent slower release of toxins. Trace to undetectable levels of PST were found in mussels after the 14-day depurating period. Although freshwater mussels are not widely consumed by humans, their capacity to accumulate PST points to the risk of PST propagation through the food chain of freshwater ecosystems via filter-feeding mussels.