ArticlePDF Available

Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States

Authors:

Abstract and Figures

Sound therapy is a revolutionary approach for medical treatment and prevention, transforming the current treatment landscape. The therapy is based on the notion of resonance. Typically, in homeostasis, electromagnetic fields-surrounding the body and all organs, cells, bones, tissues, and liquids-have a healthy a healthy vibratory frequency. Sound wave treatment induces profound relaxation, which facilitates the healing of emotional anguish and scars. Sound therapy helps a person release fear and sadness, improves the feelings of loneliness and despair, "cleanses" harmful emotions, and provides constructive insights regarding emotional conflicts. It also helps alleviate physical disorders, such as aches and pains, muscle and connective tissue difficulties, mobility issues, postoperative rehabilitation, and tinnitus. Also, it can be used as adjunctive therapy with standard cancer treatments. This review article discusses the importance of sound therapy and the pioneers' use of sound strategies to heal. The review also highlights the frequencies generated by different body organs and how to detect diseases based on changes in these frequencies. Furthermore, tools used to administer healthy frequencies to diseased cells and the future of sound therapy are offered and explained.
Content may be subject to copyright.
Nicholas A Kerna1,2*, Sudeep Chawla3, ND Victor Carsrud4, Hilary M Holets5,6, Stephen M Brown7, John V Flores5,6,
Kevin D Pruitt8,9, Uzoamaka Nwokorie10, Joseph Anderson II11, Rashad Roberson12 and Oghenetega Esther Ayisire13
1SMC–Medical Research, Thailand
2First InterHealth Group, Thailand
3Chawla Health & Research, USA
4Lakeline Wellness Center, USA
5Beverly Hills Wellness Surgical Institute, USA
6Orange Partners Surgicenter, USA
7International University of Health Sciences, St. Kitts
8Kemet Medical Consultants, USA
9PBJ Medical Associates, LLC, USA
10University of Washington, USA
11International Institute of Original Medicine, USA
12Georgetown American University, College of Medicine, Guyana
13University of South Wales, United Kingdom
*Corresponding Author: Nicholas A Kerna, (mailing address) POB47 Phatphong, Suriwongse Road, Bangkok, Thailand 10500.
Contact: medpublab+drkerna@gmail.com.
Received: January 04, 2022; Published: February 28, 2022
Abstract
Sound therapy is a revolutionary approach to medical treatment and prevention, transforming the current treatment landscape.
     
      
relaxation, which facilitates the healing of emotional anguish and scars. Sound therapy helps a person release fear and sadness, im-
proves the feelings of loneliness and despair, "cleanses" harmful emotions, and provides constructive insights regarding emotional

postoperative rehabilitation, and tinnitus. Also, it can be used as adjunctive therapy with standard cancer treatments. This review
article discusses the importance of sound therapy and the pioneers' use of sound strategies to heal. The review also highlights the
frequencies generated by different body organs and how to detect diseases based on changes in these frequencies. Furthermore,
tools used to administer healthy frequencies to diseased cells and the future of sound therapy are offered and explained.
Keywords: Ancient Healing Methods; Frequency; Music Therapy; Musical Medicine; Natural Cancer Treatment; Body Vibration
Cronicon
OPEN ACCESS EC EC 
Review Article
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
Abbreviations
  -
    



DOI: 10.31080/eccmc.2022.05.00532
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
Introduction
Background
  -
mony and well-being. Figure 1 (below) illustrates how sound therapy can be administered [1].
Figure 1: Ways through which sound therapy can be delivered.
Every physical system in the cosmos vibrates at a unique frequency [1]. The complex human body vibrates in several ways, with each


are listed in Figure 2 (below) [1,4].
Figure 2: 
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
113
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.


treat broken bones, muscle tears, and several diseases for at least 40,000 years [6]. The use of “bija-

are used in Chinese qigong (or qi gong

De Anima


those who were ill [5].

 
psychological problems, such as despair, aggressive conduct, and rage [5].
Shamans worldwide have used the rhythmic thumping of drums to transcend themselves and their patients to a state of altered con-

thousand years ago. Chants and monosyllabic phrases, known as mantras (a common motif in religious and spiritual circles), were used by
-
ing people cope with life’s adversities. The  mantra is the most common type of religious chanting, and one of the earliest

a vital mode for gaining spiritual transcendence and treating the mind and soul. Physical recovery, on the contrary, is frequently second-
ary, almost a consequence, to the primary objective of achieving spiritual enlightenment and a sense of happiness and inner peace [5].
 
[5,6] and used in religious rites and meditation. Singing bowl therapy incorporates certain aspects of meditation and sound therapy, ef-
et al. (2016)

women and men (average age, 50 years). The physical body, including the nerve centers, circulatory systems, and cells that work with




lowers BP, increases heart function, decreases PR, and, in general, improves the functioning of the peripheral nervous system [3].
Toward the end of the nineteenth century, researchers began to conduct systematic studies regarding sound or music in medicine and




Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
114
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
     
     


-

method helped adults overcome depression, learn foreign languages more quickly, improve communication skills, increase creativity, and
      

       Southern
Medical Journal. -

Discussion
-
ic waves. Physiological functions, including the heartbeat, respiration, circulation, and other bodily processes, generate infrasonic waves.
 


Figure 3: Resonance frequency readings of human organs.

  
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
115
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
semicircular canals (mostly associated with balance), the otolith system, the chest, abdominal cavity, and entire body. The tympanic mem-


Frequency is an exogenous factor, and the extent of deviation of target cells from their particular frequencies helps in diagnosis and



    
treatment has revealed that each cell has a unique response to the transmitted frequencies. Patients with breast cancer, hepatocellular
      -
spectively [19].
et al 

1 min in 20-ms bursts destroyed all cancer cells without affecting the blood cells. Also, this technique did not adversely affect more than
eight out of every ten immune cells [21]. Zimmerman., et al

in vitro
gene expression, and disrupt the mitotic spindles (Figure 4) [18].
Figure 4: 
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
116
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.


in vitroin vitro, in vivo, and

Figure 5: Summary of PMF-/AMF-based cancer treatment observations.
Note: Column 1: Cancer Cell Line; Column 2: Treatment; Column 3: Observations
Tools used to identify disease state vibratory frequencies
Vibrational spectroscopy
     

spectroscopy, is the frequency used in biological and medical sciences [23,24].
Raman spectroscopy
   
sample and help distinguish samples based on their chemical compositions. RS does not harm the cells, does not require external dyes,

an appropriate approach for in vivo tissue diagnostics. Several organizations use RS to investigate skin biochemistry. Lieber., et al. (2008)

     et al   
normal and basal cell cancer in Raman spectra, obtained from various skin depths [25].
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
117
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
IR spectroscopy
 
-

spectral biomarkers for diagnosis. Furthermore, these spectral indicators may be used to determine the best medications and dosages
for therapy [26]. Bortolotto., et al. (2005) measured the total trans fatty acid (TFA) content in subcutaneous, visceral, and retroperitoneal
fat in morbidly obese and non-obese individuals undergoing bariatric, cosmetic, and abdominal surgery. TFA concentration in all adipose


than in other fatty regions in severely obese and non-obese individuals [27].
Finite element analysis and digital image correlation
Finite element (FE) analysis is performed on a typical skin model, including the stratum corneum, epidermis, dermis, and subcutane-
     
    in vivo      
supporting a non-invasive approach for obtaining skin vibration qualities. This technology can distinguish healthy from unhealthy skin

incidence, morbidity, and mortality associated with skin cancer [28].
Tools used to apply “healthy state” frequencies to “disease state” cells
Whole-body vibration
     

           
muscle group [29]. According to Song., et al    
regulatory cells [30].
Furthermore, Boyle., et al
than simple exercises alone, emphasizing its contribution to preventing and treating cardiovascular diseases [31]. Additionally, Park., et al.
(2015) and Sa-Caputo., et al

Rife machines; Rife frequency generators
-
quency of the ailment. A similar frequency impulse is then used to destroy or inhibit aberrant cells. Low-frequency waves affected cancer
In vitro studies by Zimmerman., et al. (2012) demonstrated

Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
118
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
Low-magnitude, high-frequency vibration (LMHFV)

 et al. (2009) discovered


        
et al


increases in femoral strength and yield load [38].
Neurologic music therapy
        

persons with chronic conditions. A 30-minute music therapy session paired with standard treatment improved depressive symptoms in
et al -
physiological health in people with various medical problems [41].
Brainwave entrainment
   
the brain waves to sync with the frequency of the beat. Brainwave entrainment also aids in inducing increased attention, enhanced mental
    

binaural beats slept for more extended periods than those who did not [42].
Tuning fork therapy
        
stress, increase energy, and promote emotional equilibrium. Tuning fork therapy functions similar to acupuncture, except instead of


Dedicated sound therapy devices
Neuromonics®

alone. Several studies have shown that this therapy lowers the unpleasant psychological elements of tinnitus. The effectiveness
 et al. (2011) conducted a multicenter cohort trial
regarding long-term advantages of tinnitus control with Neuromonics Tinnitus Treatment (NTT). The study included 70 people
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
119
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
who had previously received the treatment. Tinnitus distress was assessed using the Tinnitus Reaction Questionnaire, and patients
were asked to report on the percentage of time they were aware of and disturbed by their tinnitus. Patients reported a consider-


symptoms [45].
  

    
larger tumors [46].
The Tomatis 
to and interpret spoken language. The patient is exposed to sound and music using an auditory training device, known as the Elec-


Cymatics and ultrasonics are two further sound healing modalities that music therapists explore. Cymatics purportedly heals the
-

as echocardiograms to investigate the heart, echoencephalography to study the brain, echocardiograms to study assess structures,
   
kidney stones, and gallstones [47].
The future of sound therapy

determine strategies to develop the discipline in theory, research, and practice to move sound therapy ahead in the most effective manner
     
widespread applications in the future.
Conclusion
Sound healing is a holistic therapeutic approach, using precise frequencies, vibrations, and musical melodies and refrains to poten-
tially restore the body’s energy system, supporting healing and recovery processes. Sound application has been a primary component of
-

herein, it is posited that applying sound, music, and vibration therapy with standard medical treatment will contribute to humanity’s
well-being, health, and spiritual growth.



Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
120
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
1. The International Journal of Healing and Caring 7.3 (2007). https://www.researchgate.net/pub-

2. Jaganathan SK., et alCurrent Science (2016): 1828-1832.
https://www.jstor.org/stable/24908072
3.     Psychiatry 6.9 (2009): 43. https://www.ncbi.nlm.nih.gov/pmc/

4. 
5. The history of sound healing (2021). https://soundtherapy.education/history of sound-healing/
6.   et al             Journal
of Evidence-Based Complementary and Alternative Medicine 22.3 (2017): 401-406. https://www.ncbi.nlm.nih.gov/pmc/articles/

7.        https://www.unyp.cz/news/music-and-mathematics-pythagorean-
perspective
8. Sound Therapy (2021). https://www.encyclopedia.com/medicine/encyclopedias-almanacs-transcripts-and-maps/sound-therapy
9. Complementary Therapies in Medicine
51 (2020): 102412. https://www.sciencedirect.com/science/article/abs/pii/S096522991931756X
10.  https://www.musictherapy.org/about/history/
11.  https://www.pierrestocker.com/origins-and-research-on-sound-healing/
12. Southern Medical Journal 98.3 (2005): 282-288.
13. Scientists research effects of infrasonic vibrations in humans (2021). https://phys.org/news/2016-10-scientists-effects-infrasonic-
vibrations-humans.html
14.               Shock and Vibration 13.4-
5 (2006): 367-377. 
Comfort_Levels
15. et al Journal of Sensors (2018).
https://www.hindawi.com/journals/js/2018/7140610/
16. Frequency boosts (2021). https://medium.com/thrive-global/three-hacks-to-boost-your-frequency-af1a6c3887c2
17. 
World Journal of Stem Cells 7.3 (2015): 568.
References
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
121
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
18. et al-
Chinese Journal of Cancer 32.11 (2013): 573.
19.      -
        Biomedicine and Pharmacotherapy 122 (2020): 109770. https://pubmed.ncbi.nlm.nih.
gov/31918289/
20. Cheng CF., et al   The Open Sports Sciences
Journal 10.1 (2017). -
cal_Recovery_from_Exhaustive_Exercise
21. et alApplied Physics Letters 116.1 (2020):
013701. https://aip.scitation.org/doi/10.1063/1.5128627
22.   Journal of Ad-
vanced Research 14 (2018): 97-111. https://pubmed.ncbi.nlm.nih.gov/30109147/
23. Lieber CA., et alLasers in Surgery and Medicine 40.7
(2008): 461-467. https://pubmed.ncbi.nlm.nih.gov/18727020/
24. et al
Intech Open (2018). https://cdn.intechopen.com/pdfs/63997.pdf
25. Choi J., et al
Biopolymers 77 (2005): 264-272. https://pubmed.ncbi.nlm.nih.gov/15657894/
26. et al
Intech Open (2018). https://cdn.intechopen.com/pdfs/63997.pdf
27. et al       -
 Obesity Surgery 15.9 (2005): 1265-1270. https://www.researchgate.net/publica-
-
iatric_Surgery_compared_to_Non-Obese_Subjects
28. Panchal R., et alJournal of Biomedical Optics
24.1 (2019): 015001. https://pubmed.ncbi.nlm.nih.gov/30666853/
29.  Journal of Geriatric
Physical Therapy 32 (2009): 134-145. https://pubmed.ncbi.nlm.nih.gov/20128338/
30. Song N., et al
Frontiers in Bioengineering and Biotechnology 7 (2019): 377. https://pubmed.ncbi.nlm.nih.gov/31850333/
31. The European Journal of Applied
Physiology 110 (2010): 1057-1061. https://pubmed.ncbi.nlm.nih.gov/20686900/
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
122
Citation: 
Oghenetega EA. EC Clinical and Medical Case Reports 5.3
(2022): 112-123.
32. Park SY., et al
Journal of Exercise Rehabilitation 11 (2015): 289-295. https://pubmed.ncbi.nlm.nih.gov/26730378/
33. et al-
Evidence-Based Complementary and Alternative Medicine
(2016): 2560710. https://pubmed.ncbi.nlm.nih.gov/27190529/
34.  https://www.webmd.com/cancer/cancer-rife-machine-evidence
35.   et al        British Journal of Cancer 106.2
(2012): 307-313. https://cancerres.aacrjournals.org/content/72/8_Supplement/916A
36. 
World Journal of Stem Cells 7.3 (2015): 568.
37. et al. “Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended
The Spine Journal 9.6 (2009): 470-477. https://pubmed.ncbi.nlm.nih.gov/19356986/
38. -
Bone 53 (2013): 507-514. https://pubmed.ncbi.nlm.nih.gov/23352925/
39.  https://www.healthline.com/health/sound-healing
40. Nurs-
ing 47.6 (2017): 58-63. https://pubmed.ncbi.nlm.nih.gov/28538355/
41. -
Journal of Music Therapy 54.1 (2017): 1-34. https://pubmed.ncbi.nlm.nih.gov/27941132/
42. Frontiers in Hu-
man Neuroscience 12 (2018): 387. https://www.frontiersin.org/articles/10.3389/fnhum.2018.00387/full
43.       Senses and Sciences 4.2 (2017). https://www.researchgate.net/
publication/317503571_The_tuning_fork_and_the_Soundtherapy
44. et alFrontiers in Digital
Health (2021): 3. https://pubmed.ncbi.nlm.nih.gov/34713191/
45. et alThe
International Tinnitus Journal 16.2 (2011): 111-117. https://pubmed.ncbi.nlm.nih.gov/22249869/
46.  https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/
other/high-intensity-focused-ultrasound-hifu
47.    
Journal of Music Therapy 41.4 (2004): 282-320. https://pubmed.ncbi.nlm.nih.gov/15762835/et al. “Tar-
         Chinese
Journal of Cancer 32.11 (2013): 573.
Volume 5 Issue 3 March 2022
©2022. All rights reserved by Nicholas A Kerna.
Sound Therapy: Vibratory Frequencies of Cells in Healthy and Disease States
123
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Background: Digital processing has enabled the development of several generations of technology for tinnitus therapy. The first digital generation was comprised of digital Hearing Aids (HAs) and personal digital music players implementing already established sound-based therapies, as well as text based information on the internet. In the second generation Smart-phone applications (apps) alone or in conjunction with HAs resulted in more therapy options for users to select from. The 3rd generation of digital tinnitus technologies began with the emergence of many novel, largely neurophysiologically-inspired, treatment theories that drove development of processing; enabled through HAs, apps, the internet and stand-alone devices. We are now of the cusp of a 4th generation that will incorporate physiological sensors, multiple transducers and AI to personalize therapies. Aim: To review technologies that will enable the next generations of digital therapies for tinnitus. Methods: A “state-of-the-art” review was undertaken to answer the question: what digital technology could be applied to tinnitus therapy in the next 10 years? Google Scholar and PubMed were searched for the 10-year period 2011–2021. The search strategy used the following key words: “tinnitus” and [“HA,” “personalized therapy,” “AI” (and “methods” or “applications”), “Virtual reality,” “Games,” “Sensors” and “Transducers”], and “Hearables.” Snowballing was used to expand the search from the identified papers. The results of the review were cataloged and organized into themes. Results: This paper identified digital technologies and research on the development of smart therapies for tinnitus. AI methods that could have tinnitus applications are identified and discussed. The potential of personalized treatments and the benefits of being able to gather data in ecologically valid settings are outlined. Conclusions: There is a huge scope for the application of digital technology to tinnitus therapy, but the uncertain mechanisms underpinning tinnitus present a challenge and many posited therapeutic approaches may not be successful. Personalized AI modeling based on biometric measures obtained through various sensor types, and assessments of individual psychology and lifestyles should result in the development of smart therapy platforms for tinnitus.
Article
Full-text available
Early detection is the most important strategy for controlling and management of cancer, which can significantly increase the survival rate by detecting disease in the early stages and rapid treating and preventing the progression of the disease. There are a number of methods to differentiate the normal and cancerous cells including pH changes, temperature change, variation in electrical properties and also preliminary evidence on specific frequency of some cancer cells which are reviewed in this work. The results obtained in cancer treatment using the amplitude-modulated electromagnetic fields indicate that each type of cell has a specific response to the emitted frequencies. Also, the results reveal that the recorded frequencies of prostate and breast cancers are lower compared to the normal cells associated with these tissues. There are more evidences for the existence of specific cell frequencies in the form of the response of each cell to its own specific frequency and the difference between normal and tumor cell frequency levels. Based on these evidences, it can be introduced as a hallmark with the ability to the distinction between normal and tumor cells for cancer detection. Our suggestion is to hear the voice of cancer, by designing and developing a non-invasive, biocompatible, affordable and miniaturized tools, such as nano-antennas and implantable biosensors that able to detect and record cell-specific frequencies. Designing transducers to convert the cell-specific frequency to a sound or other measurable signal will accomplish the job. To the best of our knowledge, this is the first time that the cell-specific frequency measurement, which is derived from cell activity, is introduced as a biomarker for early detection of cancer. The development of studies aimed at expanding research and designing instruments for detection of the frequency with the goal of establishing a comparative library of cell-specific frequency for all cell types, especially non-communicable diseases such as cancer. The main goal of the project is to plan the idea of developing modern tools and hallmark for early detection of cancer as one of the most important global strategies for managing the disease by introducing new parameters with a high-accuracy and in proportion and direct relationship with the activity and functioning of the body, without any affecting exogenous interferer.
Article
Full-text available
Whole body vibration (WBV) is a non-invasive physical therapy that has recently been included in the hospital's patient rehabilitation training catalog, but its health effects have not been sufficiently studied. In the present study, to examine the possible effects of WBV on immune cell differentiation, the IFN, IL-4,−17, F4/80 and CD3,−4,−8,−11b,−11c,−19 markers were used to characterizing the cells in mouse spleen. The results showed that the CD4 and CD25 positive lymphocytes in the spleen were significantly increased in the WBV group, and the population of Treg cells was enhanced significantly in response to WBV. Since the differentiation in immune cells is usually associated with microbiota, therefore the intestinal flora was characterized in mice and human individuals. The results indicated that WBV significantly reduced the α-diversity of mouse intestinal microbiota. Moreover, the principal coordinate analysis (PCoA) results indicated that the β-diversities of both mice and human fecal microbiota increased after WBV. Analysis of the bacterial composition indicated that the contents of a variety of bacteria changed in mice upon the stimulation of vibration, such as Lactobacillus animalis in mice, and Lactobacillus paraplantarum and Lactobacillus sanfranciscensis in human. The succeeding correlation analysis revealed that some bacteria with significant content variations were correlated to the regulatory T cell differentiation in mice and physical characteristics in human. Our research will provide the basis for future non-invasive treatment of microbial and immune related diseases.
Article
Full-text available
Several noninvasive imaging techniques have been developed to monitor the health of skin and enhance the diagnosis of skin diseases. Among them, skin elastography is a popular technique used to measure the elasticity of the skin. A change in the elasticity of the skin can influence its natural frequencies and mode shapes. We propose a technique to use the resonant frequencies and mode shapes of the skin to monitor its health. Our study demonstrates how the resonant frequencies and mode shapes of skin can be obtained using numerical and experimental analysis. In our study, natural frequencies and mode shapes are obtained via two methods: (1) finite element analysis: an eigensolution is performed on a finite element model of normal skin, including stratum corneum, epidermis, dermis, and subcutaneous layers and (2) digital image correlation (DIC): several in-vivo measurements have been performed using DIC. The experimental results show a correlation between the DIC and FE results suggesting a noninvasive method to obtain vibration properties of the skin. This method can be further examined to be eventually used as a method to differentiate healthy skin from diseased skin. Prevention, early diagnosis, and treatment are critical in helping to reduce the incidence, morbidity, and mortality associated with skin cancer; thus, making the current study significant and important in the field of skin biomechanics. (2019)
Article
Full-text available
Special equipment drivers often suffered from vibration which threatened their physical and mental health. In order to study the riding comfort of a special equipment cab, a hammering experiment has been carried out on it by acceleration sensors. According to the test results, the natural frequency has been calculated which was compared with the result analysis by the finite element method. Next, the equipment operating condition test on a flat road was done. The vibration characteristics of the whole vehicle were obtained later. The results show that the cab vibration and the finite element results agree well, but the natural frequency of the cab is close to the vibration frequency of the human body. And this is not conducive to long-term operation of the drivers. In order to improve the human operational comfort, it is necessary to reduce its natural frequency during the cab structure design process. The research in this paper can provide help for the similar human-machine operation comfort study and product design.
Article
Full-text available
Objective This study examined the effects of low-frequency vibration on physiological recovery from exhaustive exercise. Methods Twelve college males were recruited in this randomized crossover-designed study, and were asked to perform one of three treatments following a graded cycling exercise test: nonvibration (0 Hz, 0 mm, CON), high-amplitude vibration (8 Hz, 8 mm, HVT), or low-amplitude vibration (8 Hz, 2 mm, LVT). After the 10-min treatment, participants were asked to rest in a supine position for a 1-h recovery. The oxygen uptake, heart rate (HR), and blood lactate concentration (La) were measured during the trials. Results The oxygen uptake during HVT were significantly higher than those in the CON and LVT (p < 0.05, effect size = 1.52−1.63). The La immediately following HVT was significantly lower than that following CON (HVT vs. CON = 11.52 ± 1.85 vs. 12.95 ± 1.78 mmol•L ⁻¹ , p < 0.05, effect size = 1.94). Additionally, the Las following HVT and LVT at the post 30-min were significantly lower than that following the CON (HVT vs. LVT vs. CON = 4.72 ± 0.97 vs. 4.58 ± 1.06 vs. 5.98 ± 1.49 mmol•L ⁻¹ , p < 0.05). No significant differences were found on the HRs, or on the time and frequency domain indices of HR variability among treatments during the recovery period. Conclusion These results indicated that vibration with low frequency (8 Hz) can facilitate the removal of metabolic by-products after exhaustive exercise, but it has little effect on the autonomic nervous modulation of HR recovery.
Article
Objective The objective of this study was to determine the human health effects (beneficial or adverse) of any singing bowl therapies. Design A systematic review was conducted. Setting The setting was not specified, so it could include clinical and non-clinical settings. Intervention Studies of any intervention predominantly involving singing bowls (e.g. playing singing bowls, listening to singing bowls) were eligible for inclusion. The comparison interventions were not specified, and studies without comparisons (e.g. pre-post studies) were also considered potentially relevant. Main outcome measures Any human health outcome was investigated. Results The effects of singing bowls on human health were investigated in four peer-reviewed studies, one of which investigated patients with metastatic cancer, and another those with chronic spinal pain. Low-level designs were used in two studies. Improvements in distress, positive and negative affect, anxiety, depression, fatigue, tension, anger, confusion and vigour were reported, as were improvements in blood pressure, heart rate, respiratory rate, peripheral capillary oxygen saturation, cutaneous conductance, and anterior-frontal alpha values. Conclusions Given there were few studies and the potential risk of methodological bias, we cannot recommend singing bowl therapies at this stage. As the evidence suggests positive health effects we recommend that future studies consider the effect of singing bowl therapist using more robust study methods, allowing for evidence-based recommendations to be made to reduce the disease burden.
Article
Current popular cancer treatments include tumor surgery, chemotherapy, and hormonal treatment. These treatments are often associated with some inherent limitations. For example, tumor surgery is not effective in mitigating metastases; the anticancer drugs used for chemotherapy can quickly spread throughout the body and is ineffective in killing metastatic cancer cells. Therefore, several drug delivery systems (DDS) have been developed to target tumor cells, and release active biomolecule at specific site of infection to eliminate the side effects of anticancer drugs. However, common challenges of DDS used for cancer treatment include poor site-specific accumulation, difficulties in entering the tumor microenvironment, poor metastases and treatment efficiency. In this context, non-invasive cancer treatment approaches, with or without DDS, involving the use of light, heat, magnetic field, electrical field and ultrasound appears to be very attractive. These approaches can potentially improve treatment efficiency, reduce recovery time, eliminate infections and scar formation. In this review we focus on the effects of magnetic fields and ultrasound on cancer cells and their application for cancer treatment in the presence of drugs or DDS.
Article
Background: Chronic health disorders increase the risk of depression, a serious mental health issue for older adults. Medications used to treat depressive symptoms can be costly and cause drug-drug interactions. Literature has shown that music therapy can improve mood and behaviors in older adults with dementia. Objective: To examine the effect of different types of music therapy in improving depressive symptoms in older adults with chronic diseases. Methods: The systematic review of literature was conducted using CINAHL, PubMed, and PsycINFO. The key words used for the search included depression, mood, elderly, aged, older, geriatric, music, stroke, and pain. The search was limited to peer-reviewed articles published from 2006 through 2015 that were written in English. Approximately 65 articles were found for initial reviews, and then 13 studies were selected for thorough reviews. Results: Five randomized controlled trials and eight quasi-experimental studies were examined in this review. Eight of nine studies that specifically used a depression-measuring instrument showed significant decreases in depression. All studies reviewed showed some benefits of music therapy in improving emotional well-being in older adults with chronic diseases. Listening to music, playing an instrument, singing, or a combination of these was useful in relieving depression and improving overall mood. Limitation: The studies in this review were selected if the full texts were available through the university library. Conclusions and implications: Music therapy can reduce depressive symptoms in older adults with chronic diseases. Nurses and healthcare providers should be aware of the benefits of music therapies and consider incorporating them into patient care when feasible. Music therapy is often low cost and has much less risk of harmful adverse reactions than medications. Further research with large sample sizes is needed to support the effect of music therapy.
Article
Background The Bonny Method of Guided Imagery and Music (GIM) is a music-centered approach to exploring consciousness for personal growth and transformation. Applications have been reported in a variety of clinical and nonclinical contexts. Objective The purpose of this study was to review evidence that a series of Bonny Method of GIM sessions may promote positive health outcomes in adults. Methods This systematic review examined randomized and nonrandomized controlled trials and repeated measures designs that reported psychological or physiological outcomes following a series of at least six individual Bonny Method of GIM sessions. Researchers assessed each study for risk of bias and computed effect sizes for outcome variables. Results Of 270 non-duplicate titles retrieved, nine met criteria for inclusion, and eight had moderate or low risk of bias. These included 275 participants 18–78 years of age representing a variety of populations. Multiple studies measured anxiety, depression, mood disturbance, interpersonal problems, quality of life, sense of coherence, and/or psychiatric symptoms and found medium to large effect sizes. Four included physiological measures (systolic and diastolic blood pressure, beta-endorphin, cortisol, and pain) and reported medium to large effect sizes, none of which were replicated across studies in this review. Conclusions Evidence is promising that a series of Bonny Method of GIM sessions may be effective for improving both psychological and physiological health and may be therapeutically indicated for adults seeking treatment with medical, mental health, and nonclinical needs. Further research is needed to replicate findings within outcomes and populations.