Content uploaded by Gokhan Altan
Author content
All content in this area was uploaded by Gokhan Altan on Mar 24, 2022
Content may be subject to copyright.
3. Kongresi
(14 16 Ekim 2019 / Antalya)
(UBCAK)
Tam Metin
Adres: -
Telefon: 0532 643 75 23
Mail Adresi: asos@asosyayinlari.com
Web: www.asosyayinlari.com
https://www.instagram.com/asosyayinevi/
Facebook: https://www.facebook.com/asosyayinevi/
Twitter: https://twitter.com/Asosyayinevi
ISBN: 978-605-7736-31-4
1
.................................... 4
............................................................................................................................ 15
................................................................................................... 27
......................................................... 40
.............................. 47
. 52
........................................................................................................................................ 61
.................................................................. 75
... 80
- ..................... 91
..................................................................................................................... 100
................................................................ 105
................................................................................................................. 109
AYDINLATMA YAZILIMLARINI 123
...................................................... 134
FIBONACCI POEMS AND FIBONACCI POEM EXAMPLES ...................................................................... 145
........................................................................................................................................................... 148
A SEMI-AUTOMATED DISK DIFFUSION ZONE DIAMETERS DETERMINATION METHOD BY USING IMAGE
PROCESSING TECHNIQUES ................................................................................................................. 154
........................................................................................................................................................... 163
.............................................. 170
.................................................... 178
.......... 200
............... 212
................ 223
..................................... 231
................................ 239
178
emredemir1995@gmail.com
ahmet.gokcen@iste.edu.tr
gokhan.altan@iste.edu.tr
Yakup KUTLU
yakup.kutlu@iste.edu.tr
(Empirical Wavelet Transform -
Anahtar Kelimeler:
SVM, MLP
The Effect of Nonlinear Classifiers on the Diagnosis of Respiratory Diseases Using Empirical Wavelet
Transform based Features
Abstract
In this study, Empirical Wavelet Transform (EWT) was applied to lung sounds from
RespiratoryDatabase@TR consisting of 12-channel lung sounds and 4-channel heart sounds. The EWT
is mainly based on the design of an adaptive wavelet filter banks. The statistical features were calculated
from the transformed filters. Then, the performance of the proposed method was evaluated using Support
179
Vector Machines and Multilayer Artificial Neural Networks which are widely used nonlinear classifiers
in literature. The performances of classification algorithms for diagnosis of chronic obstructive
pulmonary disease were effectively evaluated by identifying abnormal patterns on lung sounds.
Although there are different results according to channels and modes, the proposed method has the
highest classification accuracy rates of 80,77% and 90,00% for artificial neural networks and support
vector machines, respectively.
Keywords: Auscultation, COPD, RespiratoryDatabase@TR, Empirical Wavelet Transform, SVM,
MLP
Empirical Wavelet Transform (EWT) uy
listesindedir (WHO, 2018).
ndez-
. EWT ile ilgili olarak ise Maheshwari ve
Makinesi (LS-
yine dijital fundus
-
180
MATERYAL VE METOT
1.1.
-
1
1.2. - EWT)
-
181
2
3
182
4
5
1.3.
etkileyecektir.
183
1.4.
1.5.
1.6.
Makine
(1)
(2)
184
(3)
-
a en
Tablo 1
Hassasiyet Genel
% 87,5 % 70 % 80,77
% 80 % 100 % 90
uygulanabilir.
Altan, G., Kutlu, Y., Garbi,
(RespiratoryDatabase@ TR): Auscultation Sounds and Chest X-rays. Natural and Engineering Sciences,
2(3), 59-72.
185
Altan, G., Kutlu, Y., & Allahverdi, N. (2019). Deep Learning on Computerized Analysis of Chronic
Obstructive Pulmonary Disease. IEEE journal of biomedical and health informatics.
Amaral, J. L., Faria, A. C., Lopes, A. J., Jansen, J. M., & Melo, P. L. (2010). Automatic identification
of chronic obstructive pulmonary disease based on forced oscillation measurements and artificial neural
networks. In 2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology (pp. 1394-1397). IEEE.
Babu, K. A., Ramkumar, B., & Manikandan, M. S. (2019, May). Empirical Wavelet Transform Based
Lung Sound Removal from Phonocardiogram Signal for Heart Sound Segmentation. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1313-
1317). IEEE.
Fernandez-Granero, M. A., Sanchez-Morillo, D., & Leon-Jimenez, A. (2018). An artificial intelligence
approach to early predict symptom-based exacerbations of COPD. Biotechnology & Biotechnological
Equipment, 32(3), 778-784.
Gilles, J. (2013). Empirical wavelet transform. IEEE transactions on signal processing, 61(16), 3999-
4010.
Hong, K. J., Essid, S., Ser, W., & Foo, D. G. (2018). A robust audio classification system for detecting
pulmonary edema. Biomedical Signal Processing and Control, 46, 94-103.
Hosseini, M. P., Soltanian-Zadeh, H., & Akhlaghpoor, S. (2011, February). A novel method for
identification of COPD in inspiratory and expiratory states of CT images. In 2011 1st Middle East
Conference on Biomedical Engineering (pp. 235-238). IEEE.
Kumar, R., & Saini, I. (2014). Empirical wavelet transform based ECG signal compression. IETE
journal of research, 60(6), 423-431.
Maharaja, D. ve Shaby, S. M. (2017). Empirical Wavelet Transform and GLCM Features Based
Glaucoma Classification From Fundus Image . International Journal of MC Square Scientific Research,
9(1), 78 85. doi:10.20894/ijmsr.117.009.001.010
Maheshwari, S., Pachori, R. B., & Acharya, U. R. (2016). Automated diagnosis of glaucoma using
empirical wavelet transform and correntropy features extracted from fundus images. IEEE journal of
biomedical and health informatics, 21(3), 803-813.
Mondal, A., Banerjee, P., & Somkuwar, A. (2017). Enhancement of lung sounds based on empirical
mode decomposition and Fourier transform algorithm. Computer methods and programs in
biomedicine, 139, 119-136.
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer New York.
doi:10.1007/978-1-4757-2440-
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death