Chapter

BatteryLab: A Collaborative Platform for Power Monitoring: https://batterylab.dev

Authors:
  • Brave Software
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Advances in cloud computing have simplified the way that both software development and testing are performed. This is not true for battery testing for which state of the art test-beds simply consist of one phone attached to a power meter. These test-beds have limited resources, access, and are overall hard to maintain; for these reasons, they often sit idle with no experiment to run. In this paper, we propose to share existing battery testbeds and transform them into vantage points of BatteryLab, a power monitoring platform offering heterogeneous devices and testing conditions. We have achieved this vision with a combination of hardware and software which allow to augment existing battery test-beds with remote capabilities. BatteryLab currently counts three vantage points, one in Europe and two in the US, hosting three Android devices and one iPhone 7. We benchmark BatteryLab with respect to the accuracy of its battery readings, system performance, and platform heterogeneity. Next, we demonstrate how measurements can be run atop of BatteryLab by developing the “Web Power Monitor” (WPM), a tool which can measure website power consumption at scale. We released WPM and used it to report on the energy consumption of Alexa’s top 1,000 websites across 3 locations and 4 devices (both Android and iOS).KeywordsBatteryTest-bedPerformanceAndroidiOS

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Recent studies have determined that server power consumption is measured sequentially with resource usage [5][6][7]. This information also calls for a significant contribution to the standardization of ta sks in reducing energy consumption. ...
Chapter
Full-text available
The power consumption of untapped resources, especially during a cloud background, represents a significant sum of the specific power use. By its nature, a resource allotment approach that takes into account the use of resources would direct to better power efficiency; this, in clouds, expands even additional, and with virtualization techniques often jobs are easily combined. Job consolidation is an effective way to expand the use of resources and sequentially reduce power consumption. Current studies have determined that server power utilization extends linearly with processor resources. This hopeful fact highlights the importance of the involvement of standardization to reduce energy utilization. However, merging tasks can also cause freedom from resources that will remain idle as the attraction continues. There are some remarkable efforts to decrease idle energy draw, usually by putting computer resources into some kind of power-saving/sleep mode. Throughout this article, we represent 2 power-conscious task reinforcement approaches to maximize resource use and explicitly consider both passive and active power consumption. Our inferences map each job to the resource at which the power consumption to perform the job is implicitly or explicitly reduced without degrading the performance of that task. Supporting our investigational outcome, our inference methods reveal the most promising power-saving potential.KeywordsLoad balancingCloud computingPower-aware computing
... According to the CPU logic capacity, the cached space is sufficient and the GPU floating point computational performance is superior, and the heterogeneous platform is assigned as shown in Figure 3. The part in which the cuBLAS library and the cuSPARSE library implementation are called by calling the cuBLAS library and the cuSPARSE library, and the functions are completed between the vectors and the operation between the matrices and the vector, respectively [22,23]. ...
Article
Full-text available
In order to seek a refined model analysis software platform that can balance both the computational accuracy and computational efficiency, a CPU-GPU heterogeneous platform based on a nonlinear parallel algorithm is developed. The modular design method is adopted to complete the architecture construction of structural nonlinear analysis software, clarify the basic analysis steps of nonlinear finite element problems, so as to determine the structure of the software system, conduct module division, and clarify the function, interface, and call relationship of each module. The results show that when the number of model layers is 10, the GPU is 210.5/s and the CPU is 1073.2/s, and the computational time of the GPU is significantly better, with an acceleration ratio of 5.1. For all the models, the GPU calculation time is much less than that of the CPU, and when the number of model degrees of freedom increases, the acceleration effect of the GPU becomes more obvious. Therefore, the CPU-GPU heterogeneous platform can more accurately describe the nonlinear behavior in the complex stress states of the shear walls, and is computationally efficient.
Conference Paper
Full-text available
Recent advances in cloud computing have simplified the way that both software development and testing are performed. Unfortunately, this is not true for battery testing for which state of the art test-beds simply consist of one phone attached to a power meter. These test-beds have limited resources, access, and are overall hard to maintain; for these reasons, they often sit idle with no experiment to run. In this paper, we propose to share existing battery testing setups and build BatteryLab, a distributed platform for battery measurements. Our vision is to transform independent battery testing setups into vantage points of a planetary-scale measurement platform offering heterogeneous devices and testing conditions. In the paper, we design and deploy a combination of hardware and software solutions to enable BatteryLab's vision. We then preliminarily evaluate BatteryLab's accuracy of battery reporting, along with some system benchmarking. We also demonstrate how BatteryLab can be used by researchers to investigate a simple research question.
Conference Paper
Full-text available
While developing mobile apps is becoming easier, testing and characterizing their behavior is still hard. On the one hand, the de facto testing tool, called "Monkey," scales well due to being based on random inputs, but fails to gather inputs useful in understanding things like user engagement and attention. On the other hand, gathering inputs and data from real users requires distributing instrumented apps, or even phones with pre-installed apps, an expensive and inherently unscaleable task. To address these limitations we present CHIMP, a system that integrates automated tools and large-scale crowdsourced inputs. CHIMP is different from previous approaches in that it runs apps in a virtualized mobile environment that thousands of users all over the world can access via a standard Web browser. CHIMP is thus able to gather the full range of real-user inputs, detailed run-time traces of apps, and network traffic. We thus describe CHIMP»s design and demonstrate the efficiency of our approach by testing thousands of apps via thousands of crowdsourced users. We calibrate CHIMP with a large-scale campaign to understand how users approach app testing tasks. Finally, we show how CHIMP can be used to improve both traditional app testing tasks, as well as more novel tasks such as building a traffic classifier on encrypted network flows.
Article
Full-text available
Modeling the energy consumption of applications on mobile devices is an important topic that has received much attention in recent years. However, there has been very little research on modeling the energy consumption of the mobile Web. This is primarily due to the short-lived yet complex page load process that makes it infeasible to rely on coarse-grained resource monitoring for accurate power estimation. We present RECON, a modeling approach that accurately estimates the energy consumption of any Web page load and deconstructs it into the energy contributions of individual page load activities. Our key intuition is to leverage low-level application semantics in addition to coarse-grained resource utilizations for modeling the page load energy consumption. By exploiting fine-grained information about the individual activities that make up the page load, RECON enables fast and accurate energy estimations without requiring complex models. Experiments across 80 Web pages and under four different optimizations show that RECON can estimate the energy consumption for a Web page load with an average error of less than 7%. Importantly, RECON helps to analyze and explain the energy effects of an optimization on the individual components of Web page loads.
Conference Paper
Full-text available
Open experimentation with operational Mobile Broadband (MBB) networks in the wild is currently a fundamental requirement of the research community in its endeavor to address the need of innovative solutions for mobile communications. Even more, there is a strong need for objective data about stability and performance of MBB (e.g., 3G/4G) networks, and for tools that rigorously and scientifically assess their status. In this paper, we introduce the MONROE measurement platform: an open access and flexible hardware-based platform for measurements and custom experimentation on operational MBB networks. The MONROE platform enables accurate, realistic and meaningful assessment of the performance and reliability of 11 MBB networks in Europe. We report on our experience designing, implementing and testing the solution we propose for the platform. We detail the challenges we overcame while building and testing the MONROE testbed and argue our design and implementation choices accordingly. We describe and exemplify the capabilities of the platform and the wide variety of experiments that external users already perform using the system.
Article
Full-text available
Utilization of computer tools in linguistic research has gained importance with the maturation of media frameworks for the handling of digital audio and video. The increased use of these tools in gesture, sign language and multimodal interaction studies has led to stronger requirements on the flexibility, the efficiency and in particular the time accuracy of annotation tools. This paper describes the efforts made to make ELAN a tool that meets these requirements, with special attention to the developments in the area of time accuracy. In subsequent sections an overview will be given of other enhancements in the latest versions of ELAN, that make it a useful tool in multimodality research.
Conference Paper
This paper presents a measurement study of information leakage and SSL vulnerabilities in popular Android apps. We perform static and dynamic analysis on 100 apps, downloaded at least 10M times, that request full network access. Our experiments show that, although prior work has drawn a lot of attention to SSL implementations on mobile platforms, several popular apps (32/100) accept all certificates and all hostnames, and four actually transmit sensitive data unencrypted. We set up an experimental testbed simulating man-in-the-middle attacks and find that many apps (up to 91% when the adversary has a certificate installed on the victim's device) are vulnerable, allowing the attacker to access sensitive information, including credentials, files, personal details, and credit card numbers. Finally, we provide a few recommendations to app developers and highlight several open research problems.
Conference Paper
High-end mobile GPUs are now becoming an integral part of mobile devices. However, a mobile GPU constitutes a major portion of power consumption on the devices, and mobile games top as the most popular class of graphics applications. This paper presents the design and implementation of RAVEN, a novel, on-the-fly frame rate scaling system for mobile gaming applications. RAVEN utilizes human visual perception of graphics change to opportunistically achieve power saving without degrading user experiences. The system develops a light-weight frame comparison technique to measure and predict perception-aware frame similarity. It also builds a low resolution virtual display which clones the device screen for performing similarity measurement at a low-power cost. It is able to work on an existing commercial smartphone and support applications from app stores without any modifications. It has been implemented on Nexus 5X, and its performance has been measured with 13 games. The system effectively reduces the overall power consumption of mobile devices while maintaining satisfactory user experiences. The power consumption is reduced by 21.78% on aver-age and up to 34.74%.
Conference Paper
Mobile Web page performance is critical to content providers, service providers, and users, as Web browsers are one of the most popular apps on phones. Slow Web pages are known to adversely affect profits and lead to user abandonment. While improving mobile web performance has drawn increasing attention, most optimizations tend to overlook an important factor, energy. Given the importance of battery life for mobile users, we argue that web page optimizations should be evaluated for their impact on energy consumption. However, examining the energy effects of a web optimization is challenging, even if one has access to power monitors, for several reasons. First, the page load process is relatively short-lived, ranging from several milliseconds to a few seconds. Fine-grained resource monitoring on such short timescales to model energy consumption is known to incur substantial overhead. Second, Web pages are complex. A Web enhancement can have widely varying effects on different page load activities. Thus, studying the energy impact of a Web enhancement on page loads requires understanding its effects on each page load activity. Existing approaches to analyzing mobile energy typically focus on profiling and modeling the resource consumption of the device during execution. Such approaches consider long-running services and apps such as games, audio, and video streaming, for which low-overhead, coarse-grained resource monitoring suffices. For page loads, however, coarse-grained resource monitoring is not sufficient to analyze the energy consumption of individual, short-lived, page load activities. We present RECON (REsource- and COmpoNent-based modeling), a modeling approach that addresses the above challenges to estimate the energy consumption of any Web page load. The key intuition behind RECON is to go beyond resource-level information and exploit application-level semantics to capture the individual Web page load activities. Instead of modeling the energy consumption at the full page load level, which is too coarse grained, RECON models at a much finer component level granularity. Components are individual page load activities such as loading objects, parsing the page, or evaluating JavaScript. To do this, RECON combines coarse-grained resource utilization and component-level Web page load information available from existing tools. During the initial training stage, RECON uses a power monitor to measure the energy consumption during a set of page load processes and juxtaposes this power consumption with coarse-grained resource and component information. RECON uses both simple linear regression and more complex neural networks to build a model of the power consumption as a function of the resources used and the individual page load components, thus providing benefits over individual models. Using the model, RECON can estimate the energy consumption of any Web page loaded as-is or upon applying any enhancement, without the monitor. We experimentally evaluate RECON on the Samsung Galaxy S4, S5, and Nexus devices using 80 Web pages. Comparisons with actual power measurements from a fine-grained power meter show that, using the linear regression model, RECON can estimate the energy consumption of the entire page load with a mean error of 6.3% and that of individual page load activity segments with a mean error of 16.4%. When trained as a neural network, RECON's mean error for page energy estimation reduces to 5.4% and the mean segment error is 16.5%. We show that RECON can accurately estimate the energy consumption of a Web page under different network conditions, such as lower bandwidth or higher RTT, even when the model is trained under a default network condition. RECON also accurately estimates the energy consumption of a Web page after applying popular Web enhancements including ad blocking, inlining, compression, and caching.
Conference Paper
Many popular, free online services provide cross-platform interfaces via Web browsers as well as apps on iOS and Android. To monetize these services, many additionally include tracking and advertising libraries that gather information about users with significant privacy implications. Given that the Web-based and mobile-app-based ecosystems evolve independently, an important open question is how these platforms compare with respect to user privacy. In this paper, we conduct the first head-to-head study of 50 popular, free online services to understand which is better for privacy---Web or app? We conduct manual tests, extract personally identifiable information (PII) shared over plaintext and encrypted connections, and analyze the data to understand differences in user-data collection across platforms for the same service. While we find that all platforms expose users' data, there are still opportunities to significantly limit how much information is shared with other parties by selectively using the app or Web version of a service.
Conference Paper
It is well known that apps running on mobile devices extensively track and leak users' personally identifiable information (PII); however, these users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties. In this paper, we present the design, implementation, and evaluation of ReCon: a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. ReCon leverages machine learning to reveal potential PII leaks by inspecting network traffic, and provides a visualization tool to empower users with the ability to control these leaks via blocking or substitution of PII. We evaluate ReCon's effectiveness with measurements from controlled experiments using leaks from the 100 most popular iOS, Android, and Windows Phone apps, and via an IRB-approved user study with 92 participants. We show that ReCon is accurate, efficient, and identifies a wider range of PII than previous approaches.
Conference Paper
This paper presents a measurement study of information leakage and SSL vulnerabilities in popular Android apps. We perform static and dynamic analysis on 100 apps, downloaded at least 10M times, that request full network access. Our experiments show that, although prior work has drawn a lot of attention to SSL implementations on mobile platforms, several popular apps (32/100) accept all certificates and all hostnames, and four actually transmit sensitive data unencrypted. We set up an experimental testbed simulating man-in-the-middle attacks and find that many apps (up to 91% when the adversary has a certificate installed on the victim's device) are vulnerable, allowing the attacker to access sensitive information, including credentials, files, personal details, and credit card numbers. Finally, we provide a few recommendations to app developers and highlight several open research problems.
Conference Paper
Web browsing is a key application on mobile devices. However, mobile browsers are largely optimized for performance, imposing a significant burden on power-hungry mobile devices. In this work, we aim to reduce the energy consumed to load web pages on smartphones, preferably without increasing page load time and compromising user experience. To this end, we first study the internals of web page loading on smartphones and identify its energy-inefficient behaviors. Based on our findings, we then derive general design principles for energy-efficient web page loading, and apply these principles to the open-source Chromium browser and implement our techniques on commercial smartphones. Experimental results show that our techniques are able to achieve a 24.4% average system energy saving for Chromium on a latest-generation big.LITTLE smartphone using WiFi (a 22.5% saving when using 3G), while not increasing average page load time. We also show that our proposed techniques can bring a 10.5% system energy saving on average with a small 1.69\% increase in page load time for mobile Firefox web browser. User study results indicate that such a small increase in page load time is hardly perceivable.
Article
Despite the growing popularity of mobile web browsing, the energy consumed by a phone browser while surfing the web is poorly understood. We present an infrastructure for measuring the precise energy used by a mobile browser to render web pages. We then measure the energy needed to render financial, e-commerce, email, blogging, news and social networking sites. Our tools are sufficiently precise to measure the energy needed to render individual web elements, such as cascade style sheets (CSS), Javascript, images, and plug-in objects. Our results show that for popular sites, downloading and parsing cascade style sheets and Javascript consumes a significant fraction of the total energy needed to render the page. Using the data we collected we make concrete recommendations on how to design web pages so as to minimize the energy needed to render the page. As an example, by modifying scripts on the Wikipedia mobile site we reduced by 30% the energy needed to download and render Wikipedia pages with no change to the user experience. We conclude by estimating the point at which offloading browser computations to a remote proxy can save energy on the phone.
uhubctl - USB hub per-port power control
  • V Mikhailov
How to AirPlay video and mirror your device’s screen
  • Apple Inc
Smartphone energy drain in the wild: analysis and implications
  • X Chen
  • N Ding
  • A Jindal
  • Y C Hu
  • M Gupta
  • R Vannithamby
RPiPlay - An open-source AirPlay mirroring server for the Raspberry Pi
  • Florian Draschbacher